2008

Separation of Technetium from Uranium and Waste Form Synthesis

Kenneth Czerwinski

University of Nevada, Las Vegas, czerwin2@unlv.nevada.edu

Follow this and additional works at: http://digitalscholarship.unlv.edu/hrc_trp_waste

Part of the Nuclear Commons, Nuclear Engineering Commons, and the Radiochemistry Commons

Repository Citation

Available at: http://digitalscholarship.unlv.edu/hrc_trp_waste/3

This Annual Report is brought to you for free and open access by the Transmutation Research Program Projects at Digital Scholarship@UNLV. It has been accepted for inclusion in Waste Forms Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Task 33
Separation of Technetium from Uranium and Waste Form Synthesis
K. Czerwinski

BACKGROUND

In the Advanced Fuel Cycle Research & Development (AFC R&D) activities, the uranium extraction (UREX+1) process is proposed as one of the most promising technique to separate transuranic elements (TRU) from light water reactor spent nuclear fuel in the years to come. The isotope 99Tc will be separated together with U within the first process steps. After the separation of U, Tc must be immobilized by their incorporation in a suitable storage and waste form.

A candidate process to immobilize 99Tc is to alloy metallic Tc with excess metallic zirconium. This material has potential advantages in terms of the future reuse of 99Tc and its potential transmutation. Providing a Tc storage/waste form strongly promotes the AFC R&D and the separation of TRU elements using the UREX+1 process. However, little thermodynamic data in the binary technetium–zirconium metal system exist, and only few data are available on the synthesis of Tc-Zr alloys and on their potential performance under temporary or geological storage conditions.

In this project, systematic investigations on the Tc-Zr binary metal system will be evaluated for the first time. The synthesis of metallic Tc as well as its alloys with Zr will be evaluated. In order to provide valuable data to AFC R&D, the thermodynamic equilibrium phases, as well as their performance under repository conditions, will be examined.

RESEARCH OBJECTIVES AND METHODS

The research objectives of this project are as follows:

- Investigate Tc-corrosion and Tc-leaching of binary Tc-Zr phases under a range of conditions.

The following experimental techniques are used in the evaluation of the solutions and solids from the experiments: ultraviolet-visible spectroscopy, time-resolved laser fluorescence spectroscopy, X-ray Absorption Fine-Structure Spectroscopy (XAFS), and microscopy.

RESEARCH ACCOMPLISHMENTS

Separations

Static and dynamic experiments were performed to investigate the interaction of technetium with selected anion exchange resins. The kinetic static experiments showed Reillex resin had superior Tc sorption kinetics and was selected for further study. Reillex treated by nitric acid (Resin 6) was also used in the studies.

Dynamics experiments were performed on simulated UREX solution in order to determine the separation factor for uranium and technetium and to study the possibility of a Tc elution from the resin. The one column experimental set-up consisted of a reservoir of 250 mL, linked to a peristaltic pump, with a constant flux which can be between 1.2 to 8.4 mL/min. It is connected to a small column (length = 5 cm and diameter = 1 cm) and contained 1 g of resin (Reillex HP or Resin 6).

The process is divided into 3 steps: absorption, washing, and elution. For absorption, 150 mL of the UREX solution were placed in the reservoir and pumped with a peristaltic pump through the column at a constant flow rate (2, 4 or 8 mL/min). Samples were collected into centrifugation tubes (45 mL ± 0.5 mL for the first two and 10 mL ± 0.2 mL for the others). For each sample, 10 μL of solution were removed and mixed with 10 mL of liquid scintillation fluid for 99Tc analysis. For samples containing a high amount of technetium, a dilution (1/100) was necessary for the liquid scintillation analysis in order to be able to use the calibration curve. To optimize U/Tc separation, treated and untreated resin were combined. The set-up is composed as before by a reservoir, a pump and two columns.

Samples were collected into centrifugation tubes of 10 mL ± 0.2 mL with 10 μL of samples were removed and mixed with 10 mL of liquid scintillation fluid for 99Tc analysis. For samples containing a high amount of technetium, a dilution (1/100) was necessary for the liquid scintillation analysis in order to be able to use the calibration curve. To optimize U/Tc separation, treated and untreated resin were combined. The set-up is composed as before by a reservoir, a pump and two columns.

The absorption and washing steps were carried out with exactly the same conditions, as presented above.

Concerning the elution step, the columns are disconnected and only the first one containing the treated resin is eluted, whereas the second one is kept for a re-use and for an eventual Tc reprocessing by pyrolysis. A suitably pure Tc and U stream resulted from the experiment.
Solid phase synthesis

Steam reforming of pertechnetate in the presence of carbon yielded Tc metal at 700°C under Ar or N₂. Alloy samples were prepared by grinding Tc and Zr metal in different ratios, from 25 to 75 % Tc. Cylindrical pellets were obtained by pressing the powder and arc melting to produce the alloys. After arc melting, samples were analyzed by X-ray diffraction and optical microscopy.

Other progress

- Sm₂Tc₂O₇ oxide was prepared. This was the first of a series for lanthanide-Tc oxide waste form.
- 2 % Tc electrode studies were completed and evaluated.
- Studies were conducted on Tc/Nd/Sm ternary oxide formations. The compounds targeted were (RE)₂Tc₂O₇ (RE = Nd, Sm). Mainly unreacted TcO₂ and Sm₂O₃ was observed.

ACADEMIC YEAR HIGHLIGHTS

Kinetics of TcO₄⁻ removal from solution with initial [TcO₄⁻]=0.02 M by Dowex Marathon and Reillex resins.