Experiential Programs: Best Practice: Effective programs are experiential

Allison Brody
University of Nevada, Las Vegas

Follow this and additional works at: http://digitalscholarship.unlv.edu/pli_environment_education
Part of the Curriculum and Instruction Commons, Educational Methods Commons, and the Science and Mathematics Education Commons

Repository Citation
Available at: http://digitalscholarship.unlv.edu/pli_environment_education/5

This Curriculum Material is brought to you for free and open access by the Educational Programs (PLI) at Digital Scholarship@UNLV. It has been accepted for inclusion in Education about the Environment by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Topic: Experiential Programs

Best Practice: Effective programs are experiential.

“Teaching by pouring in” refers to a medieval belief that we could teach people by drilling holes in the human head and, with a funnel, pour information into the brain. We laugh at this idea, yet we still see educators and interpreters use passive instruction to “fill up” the brains of their audiences.

Think back on how you learned to ride a bicycle. You took an action, saw the consequences of that action, and chose either to continue or to take a new and different action. What allowed you to master the new skill of riding a bicycle was your active participation in the event and your reflection on what you attained. Experience and reflection taught more than any manual or lecture ever could.

This is the basis of all experiential learning. Many educators believe that without an experience, there can be no true learning or real understanding of a concept or situation. However, experience alone does not necessarily mean that learning will take place. To accomplish this, there needs to be a sequence of three discrete components: 1) a *concrete experience* (Enfield, 2001; Kolb, 1984), where the learner is involved in an exploration, actually doing or performing an activity of some kind; 2) a *reflection* stage (Enfield, 2001; Kolb, 1984; Pfeiffer & Jones, 1981), where the learner shares reactions and observations publicly and processes the experience by discussing and analyzing; and 3) the *application* phase that helps the learner deepen and broaden understanding of the concept or situation by cementing the experience through generalizations and applications (Carlson & Maxa, 1998).

Activities, simulations, role plays, stories and “quiz shows” can all be part of an experiential program. The point is that knowledge should not be something that is transferred from an instructor. It is an active process, something that is transacted within life or life-like situations. We become experience providers and not just transmitters of the spoken word. Participants become knowledge creators (for themselves) as well as knowledge gatherers. This transmission is a deliberate process; we cannot expect it to always happen simply through exposure to an outdoor setting.

ADDITIONAL RESOURCES AND INFORMATION

The Web site hosted by the University of California’s Experiential Learning Project Group (ELPG) provides a number of resources (http://www.experientiallearning.ucdavis.edu/default.shtml) including an overview of the pedagogy that forms the basis for experiential education, resource toolbox, and training modules.

The Association for Experiential Education (AEE) is a nonprofit, professional membership association dedicated to experiential education and the students, educators and practitioners who utilize its philosophy. It strives to increase recognition of experiential education and publish and provide access to relevant research, publications, and resources.
REFERENCES

Changing Emphases – Best Practices in Education about the Environment includes implementing experiential learning activities at least some of the time. This means:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowing facts and information</td>
<td>Understanding concepts and developing thinking skills</td>
</tr>
<tr>
<td>Covering many topics</td>
<td>Learning a few fundamental concepts</td>
</tr>
<tr>
<td>Activities that demonstrate concepts</td>
<td>Providing activities that allow students to discover ideas, concepts, connections</td>
</tr>
<tr>
<td>Close-ended questions; questions that ask “what”</td>
<td>Using open-ended questions; questions that ask “how” or “why”</td>
</tr>
<tr>
<td>Instructor drives learning process</td>
<td>Allowing students drive learning process</td>
</tr>
<tr>
<td>Individual process skills, such as observation or inference</td>
<td>Using multiple process skills – manipulation, cognitive, procedural</td>
</tr>
<tr>
<td>Instructors setting the knowledge to be learned and hoping participants subsequently find ways to apply the knowledge</td>
<td>Allowing participants to engage in action, with time to reflect, and opportunities to apply knowledge</td>
</tr>
<tr>
<td>Assessing to learn what students do not know</td>
<td>Assessing to learn what students do understand</td>
</tr>
</tbody>
</table>