LUMINESCENT IONIC LIQUID CRYSTALS BASED ON STILBAZOLIUM MOIETIES

By William L. McCurdy and Pradip K. Bhowmik*
Department of Chemistry, University of Nevada, Las Vegas

Abstract

Liquid crystals have become pivotally important to a variety of image displaying technologies. They have drawn much attention due to their ability to confer luminescent properties to a wide spectrum of image-based devices. The purpose of this research is to describe a new methodology for an efficient synthesis of luminescent ionic liquid crystals including a discussion of their applications in the biological/medicinal sciences.

Introduction

• Rod-like Molecular Structure • Strong Dipole
• Rigidness of the Long Axis • Easily Polarizable Substituent

Applications

• Chemical Industry • Solar Thermal Energy
• DNA, RNA and protein tracking • Liquid Crystal Display

Results

Figure 1. 1H NMR spectrum of Compound 3.

Figure 2. Emission spectra of compounds 3, 4 and 6 when excited at 394, 386, and 392 nm, respectively, in methanol.

Figure 3. Photomicrographs of (a) compound 3 taken at 170 °C (b) compound 4 taken at 160 °C (c) compound 4 taken at 250 °C and (d) compound 6 taken at 40°C under crossed polarizers by using polarizing optical microscope (magnification 400×).

Conclusions

• Compounds 1–6 were synthesized with respectable yields
• Chemical structures were confirmed by 1H NMR and 13C NMR spectroscopy and elemental analyses
• Compound 3–6 showed light-emitting properties in solvents of various polarities as well as in solid states

Future Research

• Thermal analyses of compounds 3–6 will be performed.
• Their crystal structures will be investigated by X-ray analysis.
• Salts containing six stilbazolium moieties will be synthesized to broaden their application in light-emitting devices.

Scheme 1. Preparation of salts containing six stilbazolium moieties from hexakis(bromomethyl)benzene.

References

Acknowledgments

We sincerely acknowledge Dr. Haesook Han, Tae Soo Jo, Bradley J. Davey, Joseph K. Wray, Onlida Tanthanathanam, Jungiae Koh and Van Vo for their help in the execution of this project. We also acknowledge WAESO program for the financial support of this project.