2005

Radiation Transport Modeling using Parallel Computational Techniques

William Culbreth
University of Nevada, Las Vegas, william.culbreth@unlv.edu

Denis Beller
University of Nevada, Las Vegas

Follow this and additional works at: http://digitalscholarship.unlv.edu/hrc_trp_reactor
Part of the [Nuclear Commons](http://digitalscholarship.unlv.edu/hrc_trp_reactor), and the [Oil, Gas, and Energy Commons](http://digitalscholarship.unlv.edu/hrc_trp_reactor)

Repository Citation
Available at: http://digitalscholarship.unlv.edu/hrc_trp_reactor/10

This Annual Report is brought to you for free and open access by the Transmutation Research Program Projects at Digital Scholarship@UNLV. It has been accepted for inclusion in Reactor Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Task 12
Radiation Transport Modeling using Parallel Computational Techniques
W. Culbreth and D. Beller

BACKGROUND

One of the most significant tools available for the design and analysis of accelerator-driven systems, such as the systems proposed for transmutation, is the high-energy particle transport code MCNPX. The MCNPX code suite, developed by the national laboratories, allows researchers and engineers to model the complex interactions of high-energy particles with the target and related systems, including the spallation reaction and subsequent neutron multiplication expected in the accelerator targets.

The next stage in the development of the MCNPX code suite is to validate the code by comparing the theoretical predictions from the models with experimental observations. Additionally, the nuclear database, particularly the cross sections (i.e., reaction probabilities) for high-energy particle interactions, needs to be revisited to reduce the uncertainties associated with key nuclear properties.

The Department of Energy, through its national laboratories, has initiated several experiments geared towards removing uncertainties in the MCNPX libraries, with more in the planning stages. These experiments utilize the proton and neutron beam lines at the LANSCE proton accelerator at the Los Alamos National Laboratory to irradiate a target, producing a pulse of neutrons which are observed by the experimenters. The results of these experiments are then compared against the predictions from the MCNPX models of the system. By comparing the predicted system behavior to the data acquired from the experiments, the experimenters will be able to validate the MCNPX code and its nuclear data libraries.

Through this project, UNLV researchers are involved in support of these experiments by developing the system models in MCNPX and benchmarking/validating the models against the experimental results. UNLV students have also been involved in conducting experiments at LANL and in assisting researchers in designing new experiments.

RESEARCH OBJECTIVES AND METHODS

The second year of this project involved modeling several aspects of the LANCSE beam experiments:

- Modeling targets of varying diameter in air, in a vacuum, and in the presence of humid air;
- Modeling various proton beam profiles;
- Modeling the effects of off-axis proton beam impingement on the target;
- Modeling the asymmetry introduced by the steel table below the target;
- Modeling the effect of varying ratios of Pb to Bi and the effect of impurities; and

With the experience gained through modeling these systems, the UNLV researchers plan, with the assistance of their national laboratory collaborators, to develop a benchmark program for the neutron leakage tests and other tests related to transmuter development. A comprehensive three-dimensional computer-aided design (CAD) image of the LANSCE experiments was prepared using ProEngineer to help benchmark the experiments and provide accurate geometric data for MCNPX modeling.

RESEARCH ACCOMPLISHMENTS

Undergraduate student Daniel Lowe worked on neutron spallation tests at the LANSCE facility (Summer 2002). He performed MCNPX runs and worked on calculations for initial benchmarking data. His early MCNPX calculations helped the experimenters determine where foil packets should go and what types of neutron flux to expect from these foils. He also prepared foils to determine neutron flux from the experiment and assisted in radiation counting of the foils. Mr. Lowe completed Solid Works CAD models of the Blue Room at LANSCE and conducted MCNPX simulations of the summer experiments when he returned back to UNLV. His MCNPX runs included estimations of the effect of the proton beam striking the target at positions slightly off of the centerline. He also estimated the neutron energy spectra expected from the time-of-flight neutron detectors.
Through MCNPX simulations of the neutron leakage from lead-bismuth targets, the UNLV team was able to assist in the design of the experimental configurations for the LANCSE experiments. These models were also used to predict the results for the experiments, and assist in positioning detectors for measuring the leakage. Similar computational support was also provided for proton activation experiments in sodium coolant.

Extensive studies on how MCNPX performs with respect to MPI (Message Pass Interface) and PVM (Parallel Virtual Machine) have been run. PVM will no longer be supported by the LANL team after 2005, hence more emphasis is being put on how MCNPX runs with MPI on Beowulf system.

Parallelization of MCNPX for a Parallel Virtual Machine was completed. Message Passing Interface (MPI) bugs and compiling problems were resolved.

Analysis of linearization characteristics on a Beowulf cluster was completed. Work was then focused on characteristics of the Supercomputing Center and the linearization of criticality studies.

Benchmarking and optimization of MCNPX to run on multiple platforms was performed. This insured that the user will not be limited to a specific system type when running simulations. In addition, the MCNPX simulations of experiments was performed.

User guides were developed for future users. These will describe how to implement an optimized version of MCNPX on a heterogeneous cluster using a Message Passing Interface. Efforts to increase the speed of MCNPX on parallel clusters of computers was conducted and a preliminary graphical user interface (GUI) for MCNPX using open source code and tools was developed. The GUI interface is written in Visual Basic allowing easy integration into Excel codes that contain databases of results from criticality and heat transfer studies of waste storage containers.

With the help of Trevor Wilcox, a doctoral student in mechanical engineering, the MCNPX software was ported to a Beowulf cluster located in the Tiberti Laboratory at UNLV. The cluster has between 32 and 50 processors available to run a single MCNPX job.

TASK 11 PROFILE

Start Date: August 2001
Completion Date: August 2004

Thesis Generated:

Conference Proceedings:

![Schematic of the experimental facility at LANSCE used for modeling.](image1)

![Experimental facility at LANSCE, Los Alamos, NM.](image2)