Decimal ALU

Ming Zhu Zhum2@unlv.nevada.edu Department of Electrical and Computer Engineering University of Nevada, Las Vegas

Introduction

The decimal number system is used in many commercial applications, such as financial analysis, banking, tax calculation, currency conversion, insurance and accounting. With the explosively increasing amount the data to be proposed, computers are introduced to help deal with it. However, in digital Arithmetic Logic Unit (ALU) circuit systems, the binary number system is widely used for its simplicity and easy realization in physical layout. This project aims at constructing an ALU that contains decimal additions, subtractions and multiplications using binary coded decimal (BCD) on a binary system platform.

BCD Operations

A	0010	0101	0111	0101
В _	+0011	0100	0010	1000
Sum 1	0101	1001	1001	1101
Correction 1	+0000	0000	0000	0110
Sum 2	0101	1001	1010	0011
Correction 2	+0000	0000	0110	0000
Sum 3	0101	1010	0000	0011
Correction 3	+0000	0110	0000	0000
Result	0110	0000	0000	0011

Figure 1 Conventional BCD addition

A	В	Cin		
G	Р	Η		
Κ	L	S1	C1	
Cout		S2	S4	S8

A	0010 0101 0111 0101
В	0011 0100 0010 1000
Speculated Correction	$+0110\ 0110\ 0110\ 0110$
Sum	0111 0111 0011 1011
Carry	+ 0010 0100 0110 0100
Compressed Sum and Carry	1100 0000 0000 0011
Final Correction	- 0110 0000 0000 0000
Result	0110 0000 0000 0011

Figure 2 Adding 6 along with the addition

$$\begin{split} S_{1} &= (A_{1} \oplus B_{1}) \oplus C_{\text{in}} = H_{1} \oplus C_{\text{in}} = H_{1}\bar{C}_{\text{in}} + \bar{H}_{1}C_{\text{in}} \\ S_{2} &= H_{2} \oplus C_{1} \oplus C_{\text{out}} = H_{2}\bar{C}_{1}\bar{C}_{\text{out}} + H_{2}C_{1}C_{\text{out}} \\ &\quad + \bar{H}_{2}C_{1}\bar{C}_{\text{out}} + \bar{H}_{2}\bar{C}_{1}C_{\text{out}} \\ S_{2} &= H_{2}\bar{C}_{1}\bar{K} + H_{2}C_{1}L + \bar{H}_{2}C_{1}\bar{L} + \bar{H}_{2}\bar{C}_{1}K \\ S_{4} &= \bar{P}_{4}G_{2} + \bar{P}_{8}H_{4}\bar{P}_{2} + (\bar{P}_{8}\bar{P}_{4}P_{2} + G_{4}G_{2} + P_{8}P_{4})C_{1} \\ &\quad + (G_{8} + H_{4}H_{2})\bar{C}_{1} \\ S_{8} &= (G_{8} + H_{4}H_{2})\bar{H}_{8}C_{1} + L\bar{K}\bar{C}_{1} \end{split}$$

Figure 3 One-digit CLA BCD addition

		A3	A2	A1	A0 D 0	0 ×			A3 B3	A2 B2	A1 B1	A0 B0	
~					DU				PP04	PP03	PP02	PP01	PP00
		N/02	NAO 2		MOO	+		PP14	PP13	PP12	PP11	PP10	
		IVIU3	IVIUZ	IVIU I	IVIUU	+	PP24	PP23	PP22	PP21	PP20		
+	C03	C02	C01	C00		+ PP3	4 PP33	PP32	PP31	PP30			
_	PP04	PP03	PP02	PP01	PP 00	= P7	P6	P5	P4	P3	P2	P1	P0

Figure 4 BCD Multiplications