Aug 6th, 9:30 AM - 12:00 PM

The Role of rpoE in stationary phase mutagenesis in Bacillus

Turquoise C. Alexander
Fort Valley State University

Eduardo A. Robleto
University of Nevada, Las Vegas

Repository Citation
Turquoise C. Alexander and Eduardo A. Robleto, "The Role of rpoE in stationary phase mutagenesis in Bacillus" (August 6, 2009).
Undergraduate Research Opportunities Program (UROP). Paper 13.
Stationary phase mutagenesis is a phenomenon whereby random mutations are generated in non-dividing cells. In order to understand how these mutations arise, we use Bacillus subtilis, a gram positive rod-shaped model organism. It is hypothesized that increased transcription promotes stationary phase mutagenesis in this organism. We therefore examined the role of rpoE, a gene that encodes RNA polymerase δ subunit and proposed to influence efficiency of transcription. To this end, we will first generate a strain bearing a deletion in the rpoE gene. In order to determine if this gene is important for mutagenesis, we will examine the accumulation of mutations in this strain compared to the wild type by scoring for reversion to auxotrophy. If rpoE is significant in this process, we will expect a difference between the accumulation of mutations in the mutant strain and wild type. This project is a step towards understanding stationary phase mutagenesis, a process that has implications in evolution, drug resistance and cancer formation.
The Role of \textit{rpoE} in Stationary Phase Mutagenesis in Bacillus

Turquoise C. Alexander1 and Eduardo A. Robleto2

Fort Valley State University, Fort Valley, GA1

School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV2

Abstract

Stationary phase mutagenesis is a phenomenon whereby random mutations are generated in non-dividing cells. In order to understand how these mutations arise, we use Bacillus subtilis, a Gram positive rod-shaped model organism. Transcription is one of the major processes hypothesized to drive stationary phase mutagenesis in this organism. We therefore examined the role of \textit{rpoE}, a gene that encodes for an RNA polymerase delta subunit which is up regulated during stationary phase. To this end, we will first generate a strain bearing a deletion in the \textit{rpoE} gene. In order to determine if this gene is important for mutagenesis, we will examine the rate of mutations in this strain compared to wild type by scoring for reversion to auxotrophy. If \textit{rpoE} is significant in this process, we will expect a difference between the rate of mutations in the mutant strain and wild type. This project is a step towards understanding stationary phase mutagenesis, a process that has implications in evolution, drug resistance and cancer formation.

Introduction

- Stationary phase mutagenesis (SPM), also known as stress-induced or adaptive mutagenesis, is defined as the accumulation of mutations during conditions of no net growth or conditions of stress.

- Understanding SPM is important because it has been implicated in antibiotic resistance, evasion of the immune system and evolution. Also, this phenomenon has been implicated in formation of tumors.

- Our laboratory has shown evidence that suggest that accumulation of mutations in a gene depends on its level of transcription.

- An alternate RNA polymerase subunit, encoded by \textit{rpoE}, has been shown to be active during stationary phase and affect the overall stability of the RNA polymerase; however, its role in stationary phase mutagenesis has not been examined [1].

Hypothesis

We hypothesized \textit{rpoE} plays a role in stationary phase mutagenesis in \textit{Bacillus subtilis}. To test this hypothesis, I will knock out the \textit{rpoE} gene and compare to a wild type strain during stationary phase mutagenesis.

Methods

1) Transformed YBD55 with genomic DNA from an \textit{rpoE} deletion mutant in order to obtain isogenic wild type and mutant strains.

2) Inactivation of the \textit{rpoE} gene was verified using PCR.

3) Stationary phase mutagenesis assay was performed on both strains – cells are starved for amino acids for up to 9 days and revertants are scored.

Results

![Graph showing results](image)

Conclusion

It seems to be that \textit{rpoE} gene has no significant effect on stationary phase mutagenesis.

Acknowledgments

I would like to thank Eduardo Robleto and Katherine Ona for their guidance and assistance on this project. I would also like to thank Robleto Lab for their advice on this project. Also, I would like to thank NSF funding and Dr. Narwin Bhat advising.

Figure 1. Stationary Phase Mutagenesis Assay

Figure 2. Verification of knockout via PCR