Design and Analysis of a Process for Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides

Yitung Chen
University of Nevada, Las Vegas

Darrell Pepper
University of Nevada Las Vegas, pepperu@nye.nscee.edu

Randy Clarksean
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels

Part of the Nuclear Commons, and the Nuclear Engineering Commons

Repository Citation
The incorporation of non-fertile actinides into a fuel matrix for a transmuter blanket is of interest to the Advanced Fuel Cycle Initiative. One of three proposed candidate matrices for the transmuter is a metallic alloy fuel matrix. Metallic fuels are an outstanding candidate for a transmutation fuel due to excellent irradiation performance and ease of fabrication. However, incorporating a volatile constituent during fabrication of these or other fuel pins presents a challenge.

Volatile actinides, particularly americium, are susceptible to rapid vaporization during the traditional metal fuel casting processes. The actinide vapors boil off, and flow out of the system into the off-gas recovery system, resulting in only a fraction of the volatile actinide charge being incorporated into the fuel pins. The loss of these actinides from the fuel greatly complicates the task of preparing them for transmutation, requiring additional recovery and fuel fabrication steps to try to incorporate the volatile actinides into the transmuter fuel.

RESEARCH OBJECTIVES AND METHODS

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.

RESEARCH ACCOMPLISHMENTS

Development of the induction-heating model: Modeling efforts centered on the development of the governing equations, incorporating these equations into computer codes, setting up a test problem, and making preliminary calculations for the geometry of interest. Detailed analyses were conducted for an Induction Skull Melter (ISM) previously built and tested by ANL.

Modeling of casting process: Efforts continued to improve a model for the casting of fuel pins. Work considered the flow of the melt into the mold and heat transfer into the mold during solidification (after flow has stopped). Results from an energy balance model indicate that the thermal mass would typically be greater than needed to solidify the melt within the mold. The results of this simple model have aided in designing a mold to hold and solidify the fuel pins. Detailed flow and heat transfer models show how the melt flows into the mold and ultimately solidifies.

In order to test the impact of process parameters (temperature, pressure, alloying elements, etc.) on the casting process, parametric studies were carried on different processing parameters. These studies centered around model development and analysis of the impact of mold preheating on heat transfer into the model. Results will assist with determining which process parameters are critical in manufacturing a suitable metallic fuel pin.

Americium Transport Models: A model that analyzes the transport of americium from the melt to the vapor phases above the crucible has also been developed. The model considers mass transport in the melt, vaporization at the surface, and transport through the vapor phase. Parametric studies are underway to evaluate the impact of different properties or situations on the transport of americium from the melt.

Develop Prototype Furnace Design: A preliminary furnace design that can be built and tested with surrogate materials is critical in order to assess the viability of metal fuels. A preliminary analysis of potential surrogate materials has been completed. Manganese appears to be an acceptable surrogate material. Discussions will be held with Argonne National Laboratory staff members to insure that no health and safety issues prevent manganese from being used in future tests.

Axial velocity profile for constant inlet pressure of 20 kPa (Mold temperature = 400°C, initial melt temperature = 1500 °C, interfacial heat transfer coefficient = 2,000 W/m²·K).
TASK 1 PROFILE

Start Date: June 2001
Completion Date: June 2004
Theses Generated:
Journal Article:
Conference Proceedings:

Contour plot and surface plot of field variable S in the induction field. Peak occurs near the top edge of the melt region.