Numerical modeling of high temperature bayonet heat exchanger and decomposer for decomposition of sulfur trioxide

Vijaisri Nagarajan, Yitung Chen, Tzu-Chen Hung, Qiuwang Wang, Valery Ponyavin
Department of Mechanical Engineering, University of Nevada, Las Vegas

Motivation
- Hydrogen is an attractive energy carrier in the future energy technology.
- Hydrogen is produced from splitting of water through various processes namely electrolysis, photo-electrolysis, photo-biological production and thermochemical water-splitting.
- The aim of this study is to numerically investigate fluid flow, heat transfer and chemical reaction in bayonet high temperature heat exchanger and decomposer.
- Parametric studies are performed to achieve maximum decomposition with less pressure drop.

Thermochemical water-splitting cycle
- The sulfur-iodine (S-I) cycle was developed by General Atomics (GA) for large scale hydrogen production

Boiler
- Inlet mass flow rate – 0.34×10^{-3} kg/s
- Inlet temperature – 473 K
- Solid – SiC
- Operating pressure – 101325 Pa
- $x_{SO_3} = 0.784; x_{H_2} = 0.216$
- Results
 - Pressure drop ΔP – 1.5 Pa
 - Friction factor – 0.128

Superheater and decomposer
- Superheater inlet temperature – 673 K
- Decomposer inlet temperature – 973 K
- Catalyst – Platinum
- Porosity – 0.46
- Surface to volume ratio – 128 m$^{-1}$
- $x_{SO_3} = 0.485; x_{H_2} = 0.514$
- Results
 - Pressure drop in decomposer $\Delta P = 512.59$ Pa
 - % decomposition of SO_3 – 61.97%

Future work
- Multiphase fluid flow can be considered in the future for the whole geometry
- Recuperator can also be modeled and analyzed
- Numerical analysis with turbulent flow can be carried out to find the decomposition percentage of SO_3

Parametric studies
- Conclusions
 - Percentage decomposition of sulfur trioxide obtained is 61.97%
 - Numerical results agree closely with the experimental results from SNL
 - Bayonet heat exchanger gives good decomposition rate with small pressure drop

Acknowledgement
The authors would like to thank “The Natural Science Foundation of China for International Cooperation and Exchange (Grant No. 51120165002)”