2008

Implementation of Uncertainty Propagation in TRITON/KENO

Charlotta Sanders
University of Nevada, Las Vegas

Denis Beller
University of Nevada, Las Vegas

Follow this and additional works at: http://digitalscholarship.unlv.edu/hrc_trp_reactor

Part of the Nuclear Commons, Nuclear Engineering Commons, Oil, Gas, and Energy Commons, Statistical Methodology Commons, and the Statistical Models Commons

Repository Citation
Available at: http://digitalscholarship.unlv.edu/hrc_trp_reactor/23
BACKGROUND

Monte Carlo methods are beginning to be used for three-dimensional fuel depletion analyses to compute various quantities of interest, including isotopic compositions of used nuclear fuel. The TRITON control module, available in the SCALE 5.1 code system, can perform three-dimensional (3-D) depletion calculations using either the KENO V.a or KENO-VI Monte Carlo transport codes, as well as the two-dimensional (2-D) NEWT discrete ordinates code. To overcome problems such as spatially non-uniform neutron flux and non-uniform statistical uncertainties in computed reaction rates and to improve the fidelity of calculations using Monte Carlo methods, uncertainty propagation is needed for depletion calculations.

RESEARCH OBJECTIVES AND METHODS

To enhance and expand the proper/informed use of Monte Carlo methods for 3-D depletion analyses, statistical uncertainty propagation will be developed and implemented in the TRITON/KENO sequence of SCALE. In particular, work will focus on development and implementation of an approach to determine the uncertainty in isotopic predictions based on the compound effects of multiple calculations (depletion time steps) with stochastic uncertainties in the spatial fluxes in each time step. Subsequently, an evaluation of the statistical uncertainties for an actual commercial used fuel sample will be performed to verify the implementation and develop a better understanding of the importance of statistical uncertainties in the prediction of isotopic compositions.

RESEARCH ACCOMPLISHMENTS

This project was initiated in collaboration with Oak Ridge National Laboratory. The first step was initial acquisition of the TRITON/KENO code system from ORNL and identification of a test problem for evaluating the code. An initial test problem was identified and modeled in TRITON and KENO.

Studies of the Pressurized Water Reactor Rim Effect were used to verify the TRITON code implementation. Examination of uncertainty propagation will follow verification and benchmarking studies.

ACADEMIC YEAR HIGHLIGHTS


Flowchart of TRITON-K-5 Sequence (photo from the Nuclear Science and Technology Division, Oak Ridge National Laboratory).

Research Staff
Charlotta Sanders, Principal Investigator, Research Professor, Mechanical Engineering Department
Denis Beller, Co-Principal Investigator, Research Professor, Mechanical Engineering Department

Students
Tanya Sloma and Matthew Voegele, Graduate Students, M.S. Program in Nuclear Engineering, Mechanical Engineering Department
Quinten Newell, Graduate Student, Ph.D. Candidate, Mechanical Engineering Department (Nuclear Concentration)

Collaborators
Mark D. DeHart, Project Technical Advisor, Reactor Analysis Group, Oak Ridge National Laboratory
Michael Dunn, Nuclear Data Group Leader, Oak Ridge National Laboratory