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FCAST partners
UNLV Experiment

• Chulsung Bae – Chemistry
• Andrew Cornelius – Physics
• B.J. Das - Electrical Engineering
• David Hatchett – Chemistry
• Clemens Heske – Chemistry
• Wayne Stolte, Oliver Hemmers, Dennis 
Lindle – Chemistry

UNLV Theory
• Changfeng Chen – Physics
• Eunja Kim – Physics
• Steven Lepp – Physics
• Bala Naduvalath – Chemistry
• Tao Pang – Physics
• Bernard Zygelman – Physics

External Partners

• United Technologies (UTC) Power
• Rice University
• Lawrence Berkeley National Lab 
• Air Products
• Hahn-Meitner-Institute, Berlin
• Shanghai Jiatong University
• Penn State 



Why Hydrogen Economy?



• We need a new fuel! (sooner or later)

Why Hydrogen Economy?



• We need a new fuel! (sooner or later)

• This could be: 
• Biodiesel
• Hydrogen
• Electricity
• Uranium
• ...

Why Hydrogen Economy?



• Hydrogen Production

• Hydrogen Storage

• Hydrogen Delivery

• Hydrogen Consumption

What would a Hydrogen Economy need?



• Hydrogen Production
• Solar (thermal, photoelectrochemical)
• Nuclear
• Currently: natural gas reforming

• Hydrogen Storage
• Nanomaterials, Metal Hydrides, Chemical 

Hydrides
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• Pipelines, Trucks, Tanks, ...
• Hydrogen Consumption

• Fuel Cells, Internal Combustion Engine
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Objectives of FCAST
• Perform closely-coupled theoretical and experimental 

investigations of
– hydrogen adsorption/desorption in various matrices to 

establish a solid understanding of optimal storage 
concepts

– the electronic and geometric structure of metal hydrides, 
nanomaterials (C, B, N, transition metals, alloys), metal 
adatoms, and adsorbed hydrogen molecules/atoms

– Fuel cell membranes and catalytic materials
to predict optimized materials and structures for hydrogen 
storage and fuel cells in the DOE Hydrogen program

• Collaborate closely with external partners



Task 1:   Theory and Experiment of Nanomaterials
for Storage Applications
(New Materials, Hydrogen Uptake, Local 
Electronic Structure, Adsorption Energies 
and Geometries, …)

Task 2: Metal Hydrides (Structure, Reversibility, T-
and P-Dependence, …)

Task 3: Mesoporous Polymer Nanostructures 
(Synthesis, Hydrogen Uptake, …)

Task 4: Improved Fuel Cell Membrane

Task 5: Design and Characterization of Improved 
Fuel Cell Catalytic Materials 10

Approach



Titanium-decorated Carbon Nanotubes as 
a Potential High-capacity Hydrogen 

Storage Medium
T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005)

Hydrogen storage 
in/on nanomaterials



nanotubes come in bundles

Samples have a size distribution

Samples contain impurities

A local experiment on
one individual nanotube would be ideal!

TEM of SWNT

5 nm

Which is the best nanotube for hydrogen storage ?
How does hydrogen adsorption/desorption work ?

How can we improve it ?

Single-Walled Carbon NanoTubes (SWNT)



• Up to 4 H2 are adsorbed on each Ti 
atom with the binding energy ranging 

from 0.1 eV to 0.4 eV per H2.   
(7.8wt% for double side coverage)

Ti 1H2 2H2 3H2 4H2 5H2

E  (eV/H2) 0.60 0.36 0.39 0.09 0.02

The binding energy of H2 on Sc is 
slightly lower than that on Ti.

Transition-metal decoration and hydrogen storage 
(Changfeng Chen, Physics, Task 1)
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• Car-Parrinello molecular dynamics simulations indicate that the 
proposed frameworks are thermodynamically stable up to 20 ps at 
300 K and 2 ps at 600K

• Preliminary results indicate that Li-decorated 3D nano-frameworks 
are promising for hydrogen storage

A novel class of 3D nanoframeworks based on CNTs
(Balakrishnan Naduvalath, Chemistry, Eunja Kim, Physics, Task 1)
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• Tin clusters evolve on Pentagonal growth pattern
• Second energy difference indicates Ti7 and Ti13 clusters

are highly stable, which agrees well with the experimental
results

Ti7

Ti9

Ti5

Ti8

Ti15

Ti13

Ti11

Ti10

1.8694 eV

2 ( 1) ( 1) 2 ( )E E n E n E nΔ = + + − −

Second Energy Difference

2.3128 eV

2.5187 eV

2.3562 eV

2.4472 eV
2.9270 eV

2.5700 eV

2.8063 eV

Electronic structure of Titanium 
clusters (B. Naduvalath, Task 1)
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Ti13H20 (μ3)

• Hydrogen multi-center bonds in Ti13Hm
• μ3 for m ≤ 20 and μ2 in Ti13H30
• Cage expansion due to saturation from

m = 20 – 30 by 6%

Ti13

H2
0

H30

H20

H30

μ3 μ2

Ti13 cluster and H2 saturation (B. Naduvalath, Task 1)

Ti13H30 (μ2)
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Ti55H120 (μ2 & μ3)



• How does Hydrogen interact with carbon-based 
nanomaterials?

• Why is there a “gap” between theory and experiment?

Experiment matrix for Hydrogen storage on (metal-
decorated) carbon nanomaterials:

– Carbon (nano)materials: C60, SWNT, HOPG
– Metal (co-)adsorbates: Ti, Li
– Hydrogenation: molecular, atomic

Surface and interface spectroscopy/microscopy of 
nanomaterials for hydrogen storage
(Clemens Heske, Chemistry, Task 1)
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Soft X-ray spectroscopies
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Auger-Electron-
Spectroscopy (AES)
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X-ray Absorption Spectroscopy (XAS)



High dynamic range
XPS, UPS, Auger, IPES

High resolution
XPS, UPS, Auger

Sample preparation 
and distribution

Scanning Probe
Microscope

Glovebox



Beamline 8.0 – Advanced Light Source – Lawrence Berkeley National Lab



Scanning Tunneling Microscopy (STM) / Spectroscopy (STS)

Microscopy

Tunneling tip can be scanned over the 
sample by piezos

Tunneling current is measured at a 
tunneling voltage V and kept constant 

by a feedback controlling the z-direction
→ “topography of electron density”

z-range 150 pm

HOPG 2x2 nm2

control
unitP

ie
zo

 tu
be

tip Computer
tunneling voltage

z

V

Spectroscopy

Tunneling voltage V is varied at one spot 
with constant tip-sample distance
→ density of states around EF



STM on SWCNT – 2 
Electro-deposited (6 min, upside down) on HOPG, SWCNT (not cut)

20x20 nm2200x200 nm2 10x10 nm2

Electro deposition worked

Low coverage with long SWCNT

“Small” bundles (e.g. two bundled tubes) and individual tubes are observed

Atomic resolution can be achieved



Scanning Tunneling 
Microscopy/Spectroscopy of SWNT 
with/without Ti decoration (Task 1)

I-V curve and STS of SWNT on Au

STM image of SWNT on Au with atomic resolution 

Ti deposited on top of SWNT/Au

200x200 nm2

200x200 nm2

23



Atomic Hydrogen Source (AHS)
Based on U. Bischler, J. Vac. Sci. 
Technol. A 11, 458 (1993)

Atomic hydrogen is produced by high 
temperature thermal cracking of 
molecular hydrogen via a W capillary 
tube, submitted to HV and electron 
bombardment

Atomic Hydrogen Source components:

• Gas Reservoir

• Tungsten Capillary Tube

– 50-mm long, 1.6-mm O.D, 0.6-mm I.D.

– Acceleration Voltage of ~+3 kV

• Tungsten Filament

– 1.7 A, 7.0 V, 12 W
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1. No shift in C 1s for molecular hydrogen adsorption (at RT)

2. C 1s shifts to higher binding energy for atomic hydrogen (along 
with capillary temperature), indicating H adsorption

H/H2 source
temperature

XPS: Hydrogenation of SWNT (Task 1)
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Gibbs free energy and temperature-pressure phase 
diagram of lithium alanates (Changfeng Chen, Task 2)
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Apply first-principles electronic structure and lattice dynamics calculations within and beyond 
the harmonic phonon approximation to examine the thermodynamic phase stability of lithium 
alanates and predict their reaction pathways and reversibility

Results:
• Obtained a comprehensive set of thermodynamic functions over a wide temperature range for 
LiAlH4, Li3AlH6 and LiH.

• Evaluated decomposition reactions to determine reversibility and suitability for practical use in 
mobile applications.

• Established the thermodynamic (temperature-pressure) phase diagram for lithium alanates
and identified key operating physical parameters for hydrogen storage and reversible release-
recharge process.



Polyaniline (PANI)/Pd Composites for Hydrogen 
Storage (David Hatchett, Task 3)

Pd(ii) reduction in PANI

Pd morphology is
a function of the
number of voltammetric
cycles

Pd aggregation also 
possible 
with potentiometric 
growth

29



PANI/Pd Composites (Task 3)

Pd(iv) Reduction in PANI

Pd thickness is a 
function of the number of 
voltammetric cycles
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H Sorption Apparatus (Task 3)

H2 Generator

Carrier in
PANI/Pd

GC

TCD

Exhaust

31



Hydrogen Sorption in Chemical Composites 
(Task 3)

Material A
Sorption is obtained
using a normal GC with
a hydrogen generator

• The first peak remains 
unchanged relative to the 
second because it represents 
the void volume of hydrogen 
in the tube rather than sorbed 
hydrogen

• The second peak represent 
sorbed hydrogen

• A temperature ramp is used to 
observed desorption

32



Hydrogen 
Sorption Results 
and Conclusions 
(Task 3)

• Five composite materials have been produced that show promise for 
Hydrogen sorption

• Preliminary measurements have been made to verify the sorption properties

• Variations in the chemical composites have been eliminated by treatment with 
NaBH4 thus reducing any unreduced species

• This material shows the highest sorption suggesting that treatment of the 
other chemically prepared composites may increase sorption properties 33

A
B
C
D

A+NaBH4



PEM Fuel Cell



3535

Summary
FCAST is a joint experimental and theoretical 

project to enhance the understanding of 
hydrogen fuel cells and storage materials

• Joint experimental and theoretical work performed on electronic structure of 
carbon nanoclusters

• Stable structures of graphitic-BC2N as potential hydrogen storage media 
identified

• The electronic structure of Ti decorated SWCNTs explored using X-ray and 
electron spectroscopy. Significant oxidation of Ti leading to TiO2 formation is 
observed

• Systematically explored hydrogen uptake of transition metal-bonded 
organometallic systems (Sc, Ti, V) using DFT methods

• Proposed new class of carbon nanoframeworks (thin SWCNTs linked by 
phenyl spacers) as potential hydrogen storage media

• Investigated electronic structures and bondings in hydrogen saturated Ti and 
Ti-Al clusters and identified novel bonding motifs which may be harnessed to 
design novel hydrogen storage systems

• Synthesized bulk quantities of mesoporous PANI/Pd composites for 
hydrogen storage

heske@unlv.nevada.edu
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