Aug 6th, 9:30 AM - 12:00 PM

Martian life detection with amino acid enantiomers

Ali Jamil
Vassar College

Gaosen Zhang
Desert Research Institute, Gaosen.Zhang@dri.edu

Henry J. Sun
Desert Research Institute, Henry.Sun@dri.edu

Repository Citation

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
The Viking mission showed that Martian soil can degrade a heterotrophic medium to carbon dioxide as if live microorganisms were present. The result is considered inconclusive, however, because abiotic oxidants, such as superoxides, may also exist on Mars and would explain the Viking result. One way to resolve this ambiguity is to repeat the Viking experiment with a isomerically pure medium. The consumption of one isomer, either D or L, would indicate biological activity. Indiscriminate destruction of both isomers would indicate abiotic redox processes. This idea was validated for glucose by REU research last summer (Sun et al. 2009). The objective of this project is to test this idea with amino acids. Specifically, the consumption rates of D- and L-enantiomers will be compared for histidine, lysine, and serine in selected bacteria, archaea, and eukaryotic fungi and yeasts. Results with Bacillus revealed that in histidine, only the L-isomer was consumed while for serine and lysine, both the D- and L-isomers were utilized. If confirmed in other microorganisms, these results indicate that histidine is a suitable substrate for Martian life detection but serine and lysine are not.
Martian Life Detection with Amino Acid Enantiomers
Ali Jamil¹, Gaosen Zhang² and Henry Sun²
¹Vassar College, Poughkeepsie, NY 12603
²Desert Research Institute, Las Vegas, NV 89154

The Concept of Chiral LR
A concept for elucidating the Viking result has been validated by previous summe REU research (Sun et al. 2009). In the new scheme, biological and chemical reactivity are distinguished by stereoselective degradation of chiral substrates. It was shown that on Earth known life forms recognized only L-glucose, the natural enantiomer, but ignore D-glucose (Figure 2a). In contrast, inorganic oxidizers do not have this enantiomeric bias, oxidizing both D- and L-glucose (Figure 2b). This new approach is now being applied to amino acids alanine, glutamic acid, aspartic acid, and leucine by Drs. Gaosen Zhang and Henry Sun. Data collected so far showed that D- and L-enantiomers were consumed at equal rates. Clearly, not all amino acids are chiral selective.

The objective of this project is to determine whether or not other amino acids are stereo-selective and therefore suitable for chiral LR. This study focused on histidine, lysine, and serine. The microorganisms used in our study included Bacillus, Kocuria, and E. coli.

Experimental
Microorganisms were grown in LB media. Cells were collected via centrifugation, washed, and suspended in phosphate saline buffer (PSB). To the culture 1 added a mixture DL-histidine, DL-lysine, and DL-serine. Samples were taken hourly and assayed for enantiomeric levels. The samples were derivatized with o-phthaldialdehyde thiocN-acetyl L-cysteine, or OPA/NAC (Figure 3a). The derivatives were analyzed by the HPLC (Figure 3b). The OPA/NAC reaction is necessary prior to analysis because it adds steric bulk to the amine group thereby making it easier to be detected by the HPLC.

Discussion
This study showed that histidine is selective while serine and lysine are not. If confirmed in other life forms, this result suggests that histidine is suitable for chiral LR to clarify the nature of the Martian reactivity. If one isomer is consumed, this would illustrate biological activity. On the other hand, if both get consumed, it can be concluded that the reaction took place by chemical oxidation.

Acknowledgements
I would like to thank Dr. Henry Sun for allowing me the honor to work in his lab. I would also like to personally thank Dr. Gaosen Zhang for teaching me how to handle all equipment and machinery in the lab and always being there to help when I had a question. I would also like to thank the administration at the research facilities of UNLV and DRI for offering me a great opportunity. In addition, I would like to thank the National Science Foundation for funding this research experience (REU 0548267) and for their continued support for undergraduate research nationally.

References