Aug 6th, 9:00 AM - 12:00 PM

An Investigation of the origin the bimodal distribution of optical afterglow luminosities of gamma-ray bursts

Tesla Birnbaum
University of Nevada Las Vegas

Bing Zhang
University of Nevada Las Vegas, Department of Physics & Astronomy, Mentor

Repository Citation
http://digitalscholarship.unlv.edu/cs_urop/2008/aug6/7

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Gamma-ray bursts (GRBs) are the most violent explosions in the universe. Much of what we know about these highly energetic, short-duration bursts of gamma-rays comes from their afterglows, which are long-lasting broadband signatures following the initial bursts. Scientists have long speculated over the x-ray afterglow light curves of GRBs, which contain a mysterious shallow decay component. Recently, Ryo Yamazaki introduced a new theoretical model for the shallow decay component called “prior emission.” According to his model, there is actually x-ray emission prior to the prompt GRB. Our goal is to determine if the prior emission model is consistent with the external shock model. To do this, we will analyze prompt optical data and compare it to predictions derived from the theoretical models. Determining whether or not prior emission is consistent with the external shock model is crucial to better understanding the origin of the prior emission and the physics of GRB progenitors.
An Investigation of the Origin the Bimodal Distribution of Optical Afterglow Luminosities of Gamma-Ray Bursts

Tesla Birnbaum¹, Bing Zhang¹
¹ Department of Physics and Astronomy, University of Nevada Las Vegas

Abstract
The determination of which properties of gamma-ray bursts and the surrounding interstellar medium contribute to the observed bimodal distribution of optical afterglow luminosities will provide insight into the physical processes that give rise to the two families of optical afterglows.

Background:
> Gamma-ray bursts (GRBs): the brightest sources of electromagnetic radiation since the Big Bang; also the most violent explosions in the universe
> Most GRBs (Type II) are linked to supernovae; other GRBs (Type I) may be related to mergers between compact objects such as neutron stars and black holes
> GRB afterglow: occurs when the material from the explosion collides with circumstellar material (such as the interstellar medium, also known as ISM); can be observed in all bands up to X-ray and lasts much longer than the initial explosion
> Light curve: plot of flux vs. time in a particular frequency; most common way to study GRB afterglows

The Question:
Analyses of the light curves of Type II GRB optical afterglows (detected approximately 10-12 hours after the prompt emission) have led three independent research groups (Liang & Zhang, Kann et al, Nardini et al) to determine that there are at least two distinct populations of optical afterglow luminosities. It appears that, despite the many different physical properties of individual GRBs, the optical afterglow luminosities cluster around two distinct values. This was an unexpected and puzzling result.

The physical origin of this bimodal distribution of optical afterglow luminosities has yet to be fully explained. Is it a property of the actual GRB that creates this effect, or is it a property of the ISM? The objective of my research project this summer was to address this question.

Increase

Figure 1 (left): Taken from Liang and Zhang (2006), this plot of the light curves of 42 GRBs illustrates the observed bimodality of afterglow luminosities in the optical band. The dashed line separates the more populous optically luminous group from the optically dim group. [1]

Figure 2 (lower left): Taken from Nardini et al. (2008), this histogram of optical luminosities of various samples of GRBs clearly illustrates the observed bimodal distribution at t = 12 hrs. [2]

The Variable Parameters
For the scope of this summer project I focused on five parameters upon which the luminosity light curve of a GRB afterglow depends: n (spectral index), E0 (isotropic kinetic energy of the fireball), B (ISM density), fI (fraction of internal shock energy partitioned to non-thermal electrons) and fM (fraction of internal shock energy partitioned to magnetic fields).

Acknowledgments
I would like to thank the following groups and individuals for their help, support, and technical/scientific advice throughout the duration of this program:

UNLV GRB Research Group (in particular, Francisco Virgili, Amanda Maschun, and Bing-Bin Zhang)
John Kilbeg
Johnon Choi
Len Zane
Bernard Zylgeman
Nicholas Giusti

This material is based upon work supported by the National Science Foundation under Grant No. 0447416.

Method
The objective of this research project required that I create a computational code that allowed me to calculate the flux and luminosity of a GRB afterglow at any frequency and at any time after the initial explosion. I could input any values for the five variable parameters and my afterglow luminosity code would output the corresponding luminosity light curve. As shown in Figures 3(a) through 4(b), I was able to reproduce the light curves from Sari et al. 1998, a landmark GRB afterglow paper. Once I had developed the afterglow luminosity code, I utilized the Monte Carlo method to simulate various distributions of the five variable parameters. By trial and error, I experimented with different combinations of the distributions to see which best reproduced the observed bimodal distribution of optical afterglow luminosities.

Results
Although I did not have time to experiment with a large number of combinations of distributions of the parameters, below are some examples of simulations using a uniform distribution of p between 2.0 and 3.0 and constrained Gaussian distributions of the log10 values of E0 and fI. The three simulations shown below were created by varying the values of E0 and n. In Simulation #1 and #2, the n distribution is given a Gaussian distribution of the log10 values of n. In Simulation #3, the E0 distribution is the same broken power law from Simulation #1. Judging from the testing thus far, changing the E0 distribution seems to have a larger impact on the simulations than does changing the distributions of the other four parameters.

Conclusions
Out of the current set of results, Simulations #2 and #3 are the closest reproductions of Figure 2. However, the break between the lower and upper luminosity groups is not as defined as it should be, or in the right place. The peaks in both groups may also be systematically lower than in Figure 2, especially the case of Simulation #3. In addition, the simulation generates outlying low luminosities that are not shown in Figure 2 because of an observational selection effect: low luminosity bursts (particularly at higher redshifts) are much less likely to be detected. As work on this project continues, this selection effect needs to be taken into account. In addition, more experimentation with distributions of the parameters (particularly E0 and n) is needed.

References