Design and Evaluation of Processes for Fuel Fabrication

Georg F. Mauer

University of Nevada, Las Vegas, georg.mauer@unlv.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_fuels

Part of the Nuclear Engineering Commons, Oil, Gas, and Energy Commons, and the Robotics Commons

Repository Citation
Available at: https://digitalscholarship.unlv.edu/hrc_trp_fuels/37
Task 9
Design and Evaluation of Processes for Fuel Fabrication
G. Mauer

BACKGROUND

The safe and effective manufacturing of actinide-bearing fuels for any transmutation strategy requires that the entire manufacturing process be contained within a shielded hot cell environment. To ensure that the fabrication process is feasible, the entire process must be designed for remote operation. The equipment must be reliable enough to perform over several decades, and also easy to maintain or repair remotely. The facility must also be designed to facilitate its own decontamination and decommissioning. In addition to these design factors, the potential viability of any fuel fabrication process will also be impacted by a number of variables, such as the current state of technology, potential problem areas, deployment scaling, facility safety, and cost.

RESEARCH OBJECTIVES AND METHODS

The goal of this research project was to provide technical support to process designers working on the development of the fuel cycles for transmutation applications. Detailed process models were developed to better define the impact of fuel choice on the transmuter fuel cycle, including relative process losses, waste generation, and plant capital cost. These process models provide insight regarding required plant size and number of plants needed to mesh with the fuel recycling line. They also determine requirements for automation.

Manufacturing models for large-scale production in a hot cell environment were also developed. Combined, these two models allow the assessment of plant layout, and provide the framework for estimation of plant capital and operating cost estimates, and for feasibility in general. The need for development in the areas of robotic and sensor technology was assessed. The manufacturing technology developed for hot cell applications was also applicable to other, more general uses, where occupational hazards prevent human presence near processes.

The research work was divided into several tasks and subtasks:

Methods and Processes – A literature survey and detailed analysis of the research and development pertaining to candidate processes for transmuter fuel manufacture was performed. Industry standards were used to refine equipment, instrumentation, and control specifications, and assessed the reliability and safety of operations.

Simulations – This task modeled manufacturing processes to generate a realistic assessment of plant layout, size, feasibility, and technology development required for large-scale remote fabrication of fuel. Modeling of the candidate fuel manufacturing processes was conducted using the MSC.visualNastran and ProEngineer simulation software tools. The modeling of powder-processed fuels was completed, and the modeling of other fuel types (metallic, TRISO etc.) was initiated.

Process and Equipment for Autonomous Manufacturing – This task developed an understanding of the cost and capability of current generation remotely operated equipment suitable for use in radiation environments. Monitoring of the market for equipment and components with regard to suitability for automated manufacturing under hot cell conditions was conducted.

Sensors, Controls, and Operational Safety – This task determined the adequacy of current technology and the need for suitable sensor technology development for deployment in hard radiation environments. A means to identify the precise location and spatial orientation of all parts in the robot’s work envelope were implemented. The ability to position and handle materials along with trouble shooting techniques were evaluated. Radiation hardened vision systems appear to be promising technologies.
Cost, Feasibility, and Large Scale Deployment –
This task developed the database necessary to pro-
vide cost estimates and differential cost for various
fuel manufacturing options. Efforts were initiated
to tabulate and quantify estimates regarding pro-
jected cost, reliability, and plant life.

RESEARCH ACCOMPLISHMENTS

A special simulation model with a Waelischmiller
hot cell robot was developed and coupled with
MatLab control software. Matlab provides the
interface with the robot and is used to control the
system. This renders a realistic simulation of the
forces and torques present during robot motion. A
3-D manufacturing process simulation using CAD
models and the Newtonian dynamics of the mov-
ing components was developed.

Results exist in the form of movies, data sets, and
images. Simulations for several robot types were
developed and their proper kinematic configura-
tion was verified. The simulations permit the de-
tailed analysis of forces and torques in any mod-
eled part or component.

While the simulation process generally worked flawlessly, the
simulation time rose considerably as more details were added to
the simulation. The speed of the simulation has been increased
about 100-fold by moving to fast dual-processor computers.

Efforts to develop a vision-based methodology for locating and
identifying objects within the robot’s workspace were conducted
using the Artificial Intelligence (AI) algorithm for object identifi-
cation.

Another accomplishment involved the development of algo-
rithms for knowledge based pattern recognition using IF (a set of
conditions is satisfied) THEN (a set of consequences can be exe-
cuted) routines. Other simulation variables established included
pattern matching using clustered indexing vectors containing
information about an object and feature vector indexing, where a
3-D object is segmented into a set of simple geometric features.
Each feature is stored with its vector segmentation and geometry
information (magnitude, inner angle, etc.).

TASK 9 PROFILE

Start Date: August 2001
Completion Date: August 2004
(This work is continued as Task 22, see pages 48-49.)

Thesis Generated:
Jae-Kyu Lee, Ph.D., Department of Mechanical Engineering,
“Three Dimensional Pattern Recognition using Feature-based

Journal Article:
J.K. Lee and G. Mauer, “Feature-Based Pattern Recognition and
Object Identification for Telerobotics,” submitted to IEEE/
ASME Journal of Mechatronics in August 2004 (under re-
view).

Conference Proceedings:
G.F. Mauer and J. Renno, “Virtual Testing of Robotic Assembly
Processes for Hot Cells,” Proceedings, 10th International Con-
ference on Robotics & Remote Systems for Hazardous Envi-
G.F. Mauer and J. Renno, “Design and Analysis of Robotic
Manufacturing Processes,” Proceedings, American Nuclear
Society Winter Annual Meeting, New Orleans, LA, November
2003.
Fuel Fabrication,” Proceedings, American Nuclear Society
G.F. Mauer, “Object Recognition Over An Expanded Range Of
Viewing Angles Using Indexing Methods,” Proceedings,

Research Staff
Georg Mauer, Principal Investigator, Professor, Mechanical Engineering Department
Caroline Wiejak, Visiting Scholar, Ecole Supérieure d’Ingénieurs en Electronique et Electrotechnique, Noisy-le-Grand, France

Students
Jae-Kyu Lee, Jamil Renno, and Richard Silva, Graduate Students, Mechanical Engineering Department

Collaborators
Mitchell K. Meyer, Group Leader, Fabrication Development Group, Nuclear Technology Division, Argonne National Laboratory