MITIGATING CO₂ PRODUCTION IN COAL-TO-LIQUIDS PROCESSES

Presented by Robert Walty C2O Corporation

INTRODUCTION

<u>Coal-To-Liquids Definition</u>

- Process of converting all or part of the raw coal to liquid alternative fuels with petroleum fuel properties.
- Requires thermo-chemical treatment to accomplish the conversion.
- Results in CO₂ production equivalent to the net fossil-fuel energy required to drive the processes.

Environmental Challenges

- Compliance with current local, state and federal regulations.
- Technology to capture and convert all pollutants to products.
- Mitigate the life-cycle CO₂ footprint of synthetic fuel to less than that of petroleum fuels.

Enormous Potential for More Vehicle Use Highlights Need for Increased Liquid Fuel Supply

Petroleum Refining Is the Key Energy Conversion Step for Gasoline and Diesel

UNITED STATES ENERGY SECURITY AT RISK DRIVEN BY US AND FOREIGN DEMAND WITH DECREASING OIL RESOURCES

INELASTIC DEMAND WITH DECLINING US PRODUCTION

COMPOUNDED BY DWINDLING GLOBAL SUPPLY

THE WORLD'S OIL PRODUCTION IS IN DECLINE

8/10/2009

R. Walty - C2O Corporation

REDUCING AMERICA'S DEPENDENCE ON IMPORTS

Figure EX-5. Mitigation Impacts if Initiated in 2006

LONG-TERM ECONOMIC VIABILITY

DRIVEN BY THE VALUE OF OIL RELATIVE TO COAL

Source: US DOE Annual Energy Outlook 2006

Coal is Projected to Have a Significantly Lower Cost Than Oil Over the Next 25-30 Years—Btu Arbitrage

R. Walty - C2O Corporation

IEA Coal Industry Advisory Board workshop IEA Headquarters in Paris, 2 November 2006

SUMMARY OF COAL-TO-LIQUIDS TECHNOLOGIES

• DIRECT CONVERSION

- Finely ground coal is mixed with solvent and reacted in the presence of hydrogen and catalyst to produce synthetic crude oil.
- Requires moderate temperature and high pressure.
- Processing results in high process energy and water consumption.
- Equipment is high in foreign content.

• INDIRECT CONVERSION

- Finely ground coal is gassified to produce syngas which is reformed over a catalyst to produce synthetic diesel and other products.
- Requires moderate pressures at very high temperatures, (>2,800 deg. F).
- Processing results in high process energy and water consumption.
- Equipment is high in foreign content incorporating expensive ceramic lined hot gas handling components and catalysts.

PARTIAL CONVERSION

- Corse ground coal is heated producing coal char <u>and</u> condensable gasses which are converted into synthetic crude oil by hydrogenation over a catalyst.
- Requires moderate temperatures, pressures.
- Processing results in moderate energy consumption and produces water.
- Equipment is simple steel and stainless steel construction with high US content.

8/10/2009

WORLD'S LARGEST DIRECT CONVERSION PROJECT

WVU/NRCCE Supporting Shenhua Project

- Shenhua (China's largest coal Co.) building 100,000 bpd plant*
 - 20,000 bpd production starts this year
 - Construction 99.5% complete
 - Direct liquefaction technology

Mr. Ren (Shenhua), Drs. Fletcher and Sun (WVU) at Shenhua Liquefaction Pilot Plant

- \$1.5 million study of plant's economic and environmental effects underway
- · Carbon sequestration to be included
- Collaborators:
 - USA: DOE/FE and WVU/NRCCE
 - China: Shenhua Group and National Development Reform Commission

25

INDIRECT CONVERSION IS VERY ENERGY INTENSIVE

PARTIAL CONVERSION: CLEAN COAL PLUS OIL

PARTIAL CONVERSION PROCESS

EFFECIENCY DRIVES CO₂ EMISSIONS AND CAPITAL

COAL WITH 30% MOISTURE

COAL WITH 10% MOISTURE

Carbon Emissions Could Be a Major Concern for Coal to FT Diesel

- If coal-to-liquid (CTL) plant has an energy efficiency of 52%, CTL WTW CO₂ emissions will be two times as much as those of petroleum diesel
- With carbon capture and storage, CTL WTW CO₂ emissions will be about the same as those of petroleum diesel
- If CTL plant has an energy efficiency of 42%, CTL WTW CO₂ emissions will be 2.3 times as much as those of petroleum diesel
- Integrated design of CTL plants to produce fuels and power will help improve plant efficiency

NOTE: CO₂ EMMISSIONS ARE INVERSELY PROPORTIONAL TO EFFICIENCY AND ARE NOW <u>THE MAJOR CONCERN</u>

Michael Wang Center for Transportation Research Argonne National Laboratory

The Energy Modeling Forum on Climate Change Impacts and Integrated Assessment

<u>THE CO₂ CHALLENGE TO F-T SYNTHETIC FUELS</u> Secretary of Air Force Goals *

- By 2011, certify entire AF fleet to use 50/50 synfuel blends
- By 2016, acquire 50% of CONUS aviation fuels from domestically produced synthetic fuel blends

* EPACT 2007 says fuel must have equal or lower carbon footprint than petroleum fuels

RESULT: 25,000 BPD F-T DEMONSTRATION IN MONTANA WAS CANCELED IN 2008

*CTL MUST BE CO₂ NEUTRAL OR <u>NEGATIVE</u>!

Air Fonce Energy Strategy, Dr. Kon Sega, Under Secretary of the Air Fonce, August 15, 3007 R. Walty - C2O Corporation

<u>MEETING THE "0" CO₂</u> <u>ALTERNATATIVE FUEL CHALLENGE</u>

CO₂ STRATEGY #1- CAPTURE AND SEQUESTER

Figure SPM.3. Schematic representation of capture systems. Fuels and products are indicated for oxyfuel combustion, pre-combustion (including hydrogen and fertilizer production), post-combustion and industrial sources of CO₂ (including natural gas processing facilities and steel and cement production) (based on Figure 3.1) (Courtesy CO2CRC).

<u>CO</u>₂ CAPTURE AND SEQUESTRATION

MITIGATING CO₂ IS ESSENTIAL BUT SEQUESTERING CO₂ IS A DIFFICULT AND EXPENSIVE PROPOSITON.

Figure SPM.1. Schematic diagram of possible CCS systems showing the sources for which CCS might be relevant in a storage options (Courtesv of CO2CRC).

This summary, approved in detail at the Eighth Session of IPCC Working Group III (Montreal, Canada, 22-24 September 2005), represents the formally agreed statement of the IPCC concerning current understanding of carbon dioxide capture and storage.

R. Walty - C2O Corporation

The increased CO_2 production resulting from the loss in overall efficiency of power plants due to the additional energy required for capture, transport and storage and any leakage from transport result in a larger amount of "CO₂ produced per unit of product" (lower bar) relative to the reference plant (upper bar) without capture (Figure 8.2).

(1) MIT <u>THE FUTURE OF COAL</u> 2007 Confirmed by AEP & NETL

<u>"CLOSED LOOP" CO₂ MITIGATION W/ BIOMASS (TERRESTRIAL OR AQUATIC)</u>

- Plants absorb CO₂ and biomass can fuel processes.
- Waste heat is available for drying the biomass.
- Biomass can be co-fired with other solid fuels like coal.
- Biomass can yield additional oil products.
- Land can be used which is not suitable for food crops.

CTL ENVIRONMENTAL & ECONOMIC COMPARISON						
PLANT DESIGN	REF 01	SASOL	HTI			
	Reference	South Af.	Shenhua			
Feed Coal (t/day)	10,000	23,400	9,450			
bbls/day	7,600	80,000	20,000			
CTL PROCESS	PARTIAL	INDIRECT	DIRECT			
Oil Product	15%	29%	32%			
Metallurgical Coal Product	60.0%	0	0			
Water (% of Coal)	10.0%	10.0%	10.0%			
Ash (% of Coal)	5%	5%	5%			
Energy (% of Coal)	10%	56%	53%			
Water (gal/bbl oil)	29	-294	-815			
Relative % CO ₂	19%	100%	94%			
CO ₂ (tons / ton feed coal)	0.26	1.39	1.32			
CO ₂ (tons / bbl oil)	0.29	0.56	0.58			
Nul CO ₂ w/Biomass (t/bbl)	0.22	0.41	0.43			
Biomass (t/d) @10k bbl/d	2,153	4,134	4,318			
CAPX (\$/bbl-year) ¹	\$100	\$208	\$208			
CAPX (\$/rev \$-day)	\$530	\$1,000	\$1,000			

8/10/2009

R. Walty - C2O Corporation

(1) CCI CAPX allocated based on 21 revenue split between M-Coal & Oil

FOREST BIOMASS PROCESS FUEL EXAMPLE

Kentucky State Energy Plan, 2008 for Forest Products or Miscanthus

Renewable	Thousand Megawatt-Hours (MWh)				
Resource	Existing ¹	2012	2018	2025	
Total Generation	3,052	4,509	6,694	9,244	
Wind Energy	0	69	172	293	
LFG / Biogas	88	191	347	528	
Solar PV	0	272	679	1,154	
Hydropower	2,592	2,708	2,883	3,087	
Forest Biomass	372	1,268	2,613	4,182	
Equiv. tons Biomass / day	739	2,516	5,185	8,298	

Table 3: Renewable Electricity Generation Targets to 2025

At an oil production rate in bbls/day =	7,600	79,800	171,000
F-T diesel / Direct t/day to "0" $CO_2 =$	3,116	32,718	70,110
Partial Conversion t/day to "0" CO_2 =	1,672	17,556	37,620

(BASED ON COAL DRY WEIGHT)

CO₂ RECYCLING RETROFIT WITH ALGAE BIOMASS

Figure SPM.3. Schematic representation of capture systems. Fuels and products are indicated for oxyfuel combustion, pre-combustion (including hydrogen and fertilizer production), post-combustion and industrial sources of CO₂ (including natural gas processing facilities and steel and cement production) (based on Figure 3.1) (Courtesy CO2CRC).

Eighth Session of IPCC Working Group III

CLEAN ENERGY PLANT CONCEPT

SUMMARY

- Coal-to-liquids process offers opportunities for domestic fuel supply and energy security.
- While these technologies are technically mature they face significant environmental challenges, especially from CO₂ emissions.
- Advances in bio-energy production can significantly mitigate the CO₂ issues when integrated with the right CTL processes.
- Work is needed to integrate these processes and scale them up for industrial application.

THANK YOU!