Temporal and spatial variation in pelagic fish abundance in Lake Mead determined from echograms

Gene R. Wilde
University of Nevada, Las Vegas

Larry J. Paulson
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/water_pubs

Part of the Aquaculture and Fisheries Commons, Desert Ecology Commons, Environmental Monitoring Commons, Fresh Water Studies Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Sustainability Commons, and the Terrestrial and Aquatic Ecology Commons

Repository Citation
Available at: https://digitalscholarship.unlv.edu/water_pubs/35

This Article is brought to you for free and open access by the Water Resources at Digital Scholarship@UNLV. It has been accepted for inclusion in Publications (WR) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
TEMPORAL AND SPATIAL VARIATION IN PELAGIC FISH ABUNDANCE IN LAKE MEAD DETERMINED FROM ECHOGRAMS

GENE R. WILDE
and
LARRY J. PAULSON
Lake Mead Limnological Research Center
Environmental Research Center
University of Nevada, Las Vegas
Las Vegas, NV 89154

INTRODUCTION
Echograms have been used extensively to locate and estimate the relative abundance of marine fish stocks (Cushing 1973). In freshwater, echograms have been used to describe vertical (Netsch et al. 1971; Eggers 1978; O’Brien et al. 1984; Matthews et al. 1985) and temporal (Baker and Paulson 1983) patterns in fish abundance. Although most uses of echograms have been qualitative, Mullan and Applegate (1969) and Matthews et al. (1985) obtained relative estimates of fish abundance by counting targets (fish) on echograms. However, neither Mullan and Applegate (1969) nor Matthews et al. (1985) presented any statistical analysis of estimates obtained from echograms. Our purposes in this paper are to: 1) describe a procedure we have used for the scoring and statistical analysis of echograms as relative estimates of pelagic fish abundance; and 2) describe temporal and spatial variation in pelagic fish abundance in Lake Mead.

METHODS
As part of a limnological survey of Lake Mead, a large mainstem impoundment of the Colorado River, Arizona-Nevada, we conducted monthly echosounding surveys from March 1981 through December 1982. On each sampling date we echosounded transects, approximately 1 km in length, with a Furuno Model FM 22-A recording echosounder. The echosounder has a beam angle of 28° and an operating frequency of 50 KHz; maximum and effective paper widths are 150 and 130 mm, respectively, and paper feeds at a rate of 10 mm/min. We operated the echosounder with the depth range set at 100 or 50 m and gain (sensitivity) generally set at 4 (on a scale of 0 to 10). Transects were run between 0800 and 1300 hrs at a speed of 8 km/h in the immediate vicinity of each of 13 sampling stations (Figure 1).

RESULTS AND DISCUSSION
Only in exceptional situations (e.g., Wanjala et al. 1986) is it possible to identify individual species in echograms. However, electrofishing, fish trapping and midwater trawls (Deacon et al. 1972; Paulson and Espinosa 1975; Allan and Roden 1978) have shown that pelagic fish populations in Lake Mead are almost exclusively composed of threadfin shad, Dorosoma petenense. Also, a concurrent series of meter-net tows and echogram transects made at seven locations...
in Lake Mead on 21 June 1987 showed that estimates of pelagic fish abundance obtained from echograms were highly correlated \(r_s = 0.847, p = 0.0162 \) with meter-net catches composed entirely of threadfin shad. Estimates of fish abundance derived from echograms appear to be specific for threadfin shad in Lake Mead; however, we refer to these as estimates of total pelagic-fish abundance because large fish (e.g., striped bass, *Morone saxatilis*, and carp, *Cyprinus carpio*) frequently occur in our echograms.

Pelagic fish abundance exhibited considerable temporal and spatial variation in Lake Mead during 1981 and 1982 (Table 1). There was no difference in abundance between years \((p = 0.5017) \) so data were pooled. Seasonal variation in fish abundance was highly significant \((p = 0.0068) \). Fish abundance was greatest in the summer, following the threadfin shad spawn in May–June; abundance declined during fall and winter, but there was no change from winter to spring. Seasonal abundance of threadfin shad in Lake Mead shows a similar pattern based upon electrofishing results (Deacon et al. 1972) and occurrence in stomachs of striped bass (Wilde and Paulson 1989).

There was a highly significant spatial variation in fish abundance \((p < 0.0001) \) that was not attributable to variation in water temperature, dissolved oxygen concentration, pH and conductivity (Wilde 1984). Fish abundance was greatest near the inflows of the Colorado (Stations 1–3), Virgin (Station 10) and Muddy (Station 11) rivers and the Las Vegas Wash (Station 7) and decreased downstream from these inflows. Chlorophyll *a* concentration, a measure of phytoplankton abundance, exhibited a similar distribution (Wilde 1984) and was positively correlated with fish abundance \((r_s = 0.533, p < 0.0001) \). This correlation is based upon 256 station-date observations and is a measure of both the seasonal and spatial association between chlorophyll *a* and fish abundance.
Annual means (for each station) for fish abundance and chlorophyll \(a\) (Figure 3) which reflect only spatial trends were highly correlated \((r_s = 0.850, p < 0.0001)\). Positive relationships between the spatial distributions of threadfin shad and chlorophyll \(a\) have been reported by Rinne et al. (1982) and Siler et al. (1986).

Mullan and Applegate (1969) suggested that echograms could provide information on temporal, vertical and spatial patterns in fish abundance. Estimates of fish abundance derived from echograms are relative; however, these estimates meet the requirements and assumptions of many commonly used nonparametric methods and can be used to test hypotheses concerning trends in fish abundance. Our scoring scheme is only one of many possible; for example, fewer or more than five ranks could be used. Counts of individual targets or output from an optical digitizer could also be analyzed as relative estimates of fish abundance.

Echosounding requires a minimal investment of manpower and money compared with conventional sampling techniques (gill netting, electrofishing, etc.). More advanced hydroacoustic systems that supply quantitative estimates of fish abundance also require a small investment of manpower; however, such systems are expensive. Thorne (1983) estimated that the minimum cost for a hydroacoustic system with signal integration that produces data of scientific quality was $50,000; recording echosounders can be obtained for as little as 1 to 2% of that amount.

![RELATIVE FISH ABUNDANCE](image)

FIGURE 3. Scatterplot of annual means of relative fish abundance and log chlorophyll \(a\) concentration \((r_s = 0.850; p < 0.0001; N = 26)\). Note, \(r_s\) is unaffected by log transformation of chlorophyll \(a\).

ACKNOWLEDGMENTS

We would like to thank J. L. Wilhm and A. V. Zale for commenting on the manuscript. This study was funded in part by the Nevada Department of Wildlife.

LITERATURE CITED

