Aug 6th, 9:00 AM - 12:00 PM

Construction of a thiF genetic disruption in Bacillus subtilis

Kathleen Bradley
University of Nevada, Las Vegas

Christine Pybus
University of Nevada, Las Vegas

Ronald Yasbin
University of Nevada, Las Vegas

Eduardo Robleto
University of Nevada, Las Vegas

Repository Citation
http://digitalscholarship.unlv.edu/cs_urop/2008/aug6/16

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
The goal of our research is to determine whether the level of transcription of a gene is correlated with the level of mutation in that gene. One factor involved in the mutability of a transcribed gene is the ability of the single stranded DNA to form secondary stem loop structures (SLS), in the wake of the transcription bubble, that contain unpaired mutable bases. We are interested in correlating the levels of mutation with transcription in the thiF gene, which is predicted by bioinformatic analysis to be highly mutable. To achieve this goal, Kathleen will first construct a non-polar thiF genetic knockout using a chloramphenicol cassette. Then, she will test the phenotype of the ThiF- strain. She will also build an IPTG-inducible construct containing thiF with a stop codon in the loop of a putative SLS. This will be introduced into ThiF- Bacillus subtilis and assayed for the accumulation of Thy+ mutations under starvation conditions, in the presence and absence of IPTG.
Construction of a *thiF* Genetic Disruption in *Bacillus subtilis*

Kathleen Bradley of the University of Maine
Christine Pybus, Ronald Yasbin, and Eduardo Robleto
School of Life Sciences, University of Las Vegas, NV

Abstract

The goal of our research is to determine whether the level of transcription of a gene is correlated with the level of mutation in that gene. We are interested in observing whether increasing expression of the *thiF* gene, which is predicted by bioinformatic analysis to be highly mutable, will result in increased reversion of a point mutation in this gene. To achieve this goal a non-polar *thiF* genetic knockout using a chloramphenicol cassette was constructed and introduced into *Bacillus subtilis* strain YB955. The phenotype of the ThiF strain will be tested. An inducible construct containing the mutated *thiF* gene will then be introduced into the YB955 *thiF::cm* strain. This will allow us to assess the correlation between levels of *thiF* mutation with levels of transcription.

Introduction

1. Stationary phase mutagenesis is the process by which non-dividing cells in a stressful environment may acquire adaptive mutations resulting in genetic diversity.

2. Previous experiments in *E. coli* and yeast have demonstrated that levels of transcription are correlated to levels of mutation of genes in growing cells (1, 2).

3. Single-stranded DNA can form secondary loop structures in the transcription bubble (Fig. 1). The non-paired bases in these structures are predicted to be prone to higher mutability rates due to exposure to mutagenic substances (such as oxidative damage, lack of dinucleotide triphosphates, and conditions of low or no repair) in the cells' cytoplasm (3).

4. The *thiF* gene in *Bacillus subtilis* has been shown via bioinformatic analysis to be highly mutable.

5. We hypothesize that, in resting cells under non-lethal stress, increased transcription of genes induced under selective pressure results in a higher level of adaptive mutation of those genes.

Objective: Is there a correlation between the level of transcription of *thiF* and the level of adaptive mutation of that gene?

Goal One: Construct a *thiF* genetic disruption in *B. subtilis* strain YB955.

Goal Two: Integrate an expression vector containing a point-mutated *thiF* gene subcloned downstream of an IPTG-inducible promoter (Phyespanski) into the amycE locus.

Goal Three: Assay the accumulation of mutations in Psh-thiF during starvation conditions in stationary cells in the presence and absence of inducer.

References


Figure 2. Experimental design.

Methods

1. Amplify the *thiF* gene from the genome of *B. subtilis* strain YB955 using PCR.

2. Subclone *thiF* into the pGEMT vector. Cut pGEMT-thiF with restriction enzymes Clai and AfeI to remove a portion of *thiF*.

3. Amplify the chloramphenicol acetyltransferase cassette from the pMK4 vector by PCR.

4. Cut the cassette with Clai and AfeI and ligate into cut pGEMT-thiF. This results in a genetic disruption of *thiF*.

5. Transform this construct into *B. subtilis* strain YB955 to disrupt chromosomal *thiF*. Assay this strain for the presence of *thiF::cm* by PCR and by testing the strain for thiamin (vitamin B1) auxotrophy.

Future Directions

- A stop codon will be placed in a region of predicted high mutability in a putative stem loop structure of the *thiF* gene.
- This mutated gene will be subcloned downstream of an IPTG-inducible promoter.
- This construct will be introduced into strain YB955 and assayed for accumulation of Thy* mutations under starvation conditions, in the presence and absence of IPTG.

Acknowledgements

Funding was provided by the National Science Program (REU 0649267) and the NIH GM072554 Bob Marley, for soothing my soul.

Figure 1. Transcription drives supercoiling of single-stranded DNA and the formation of stem-loop structures containing unpaired bases.