Plastic Deformation of ASTM A36 Steel Using Two-Stage Light Gas Gun
Shawoon K. Roy
PhD Student, Department of Mechanical Engineering
University of Nevada, Las Vegas
Email: roys8@unlv.nevada.edu

Objective
To characterize material deformation in high velocity impact.
To validate material models for computation simulation purposes.

Abstract
This ongoing research is an attempt to study the plastic deformation of A36 steel plate (0.5” thick) under hypervelocity impact.
Plastic deformation of the target plate was simulated using finite element software LS-DYNA.

Gas Gun Facility
Three major components – pump tube, launch tube, drift tube.
Hydrogen or, Helium gas accelerates 5.60 mm diameter projectile into a target chamber.
Target plate is bolted to a frame in the target chamber.
Lasers are used as trigger which measures projectile travel time i.e. speed.
A Multiplexed Photon Doppler Velocimetry (MPDV) is used to collect the shock data.

Projectile & Target Details
Projectile: Lexan (5.60 mm diameter)
Target: A36 steel plate (152.4 mm x 152.4 mm x 12.7 mm)
Projectile penetrates into the target material and create deformation on the other side.

Result
<table>
<thead>
<tr>
<th>Propellant</th>
<th>Velocity</th>
<th>Diameter</th>
<th>Penetration</th>
<th>Bulge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>6.57</td>
<td>18.06</td>
<td>8.58</td>
<td>4.31</td>
</tr>
<tr>
<td>Helium</td>
<td>5.34</td>
<td>17.01</td>
<td>6.32</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Future Work
Understanding the materials model for high velocity impact simulation.
Analyzing impact data using 32-channel MPDV system.
High speed imaging facility to understand the deformation behavior more precisely.

Acknowledgement
This project is funded by NSTec, LLC SDRD Task 50.
UNLV Team:
Dr. Brendan O'Toole, Dr. Mohamed Trabia, Dr. Jagadeep Thota, Richard Jennings, Deepak Somasundaram
NSTec Team:
Robert Hixon, Steven Becker, Edward Daykin, Michael Pena, Tim Meehan

Numerical Development
2D axisymmetric, smooth particle hydrodynamics (SPH) model in LS-DYNA.
*MAT_JOHNSON_COOK material card for plate and projectile.

Experimental vs. FEA

<table>
<thead>
<tr>
<th>Propellant</th>
<th>Velocity</th>
<th>Diameter</th>
<th>Penetration</th>
<th>Bulge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>6.57</td>
<td>18.06</td>
<td>8.58</td>
<td>4.31</td>
</tr>
<tr>
<td>FEAS</td>
<td>5.33</td>
<td>17.01</td>
<td>6.32</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Velocity Comparison

Velocity at the Probe Center

Velocity at the Probe Center

Experimental vs. FEA

Velocity Comparison

Experimental vs. FEA

Experimental vs. FEA