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GAs have been analyzed from two viewpoints. We studied the best so-
lution found by the system, to observe its ability to obtain a local or
global optimum. The second viewpoint is the diversity within the pop-
ulation of GAs; to examine this, the average fitness was calculated. For
the first viewpoint, the most important factors were selection operator,
type of mutation, the population size, and the number of generations.
It is noteworthy that the type of crossover factor (one point/two points)
produces practically identical results, although the application proba-
bility (pc) does present statistically significant differences in the evo-
lution of the GA from the perspective of Best Fitness. Regarding the
diversity of the population in the final generations, analysis of the av-
erage fitness revealed that the most important factors are the selection
and mutation operators and the mutation probability.
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Pursuit Evasion: The Herding Noncooperative
Dynamic Game—The Stochastic Model

Pushkin Kachroo, Samy A. Shedied, and Hugh Vanlandingham

Abstract—This correspondence proposes a solution to the herding
problem, a class of pursuit evasion problem, in stochastic framework. The
problem involves a “pursuer” agent trying to herd a stochastically moving
“evader” agent to a pen. The problem is stated in terms of allowable
sequential actions of the two agents. The solution is obtained by applying
the principles of stochastic dynamic programming. Three algorithms for
solution are presented with their accompanying results.

Index Terms—Admissible policy search stochastic shortest path, policy
iteration, value function, value iteration.

I. INTRODUCTION

This correspondence presents the herding problem as a class of
pursuit evasion problems. However, in pursuit evasion problems, the
terminal state satisfies the spatial coordinates of the pursuer and the
evader to be the same [1]–[3]. Meanwhile, the terminal state in the
herding problem relates to the evader having reached and satisfied at
the same time fixed spatial coordinate point. In another paper [4], we
have studied the herding problem in a deterministic setting where the
evader is passive. This correspondence studies the stochastic version
of the problem where the evader dynamics involves randomness. A
classic pursuit evasion game in a stochastic framework was studied
[5], but with different terminal state than that of the problem studied
here.

This problem can be viewed as a modified version of stochastic
shortest path problems. Despite the fact that shortest path techniques,
like label correcting algorithms [6] and auction algorithms [7], provide
a solution to shortest path problems, these techniques fail to deal with
situations like the one we study in this correspondence.

The correspondence is organized as follows. In Section II, we
give a detailed description of the system dynamics since it represents
the backbone of our proposed solution technique. Based on these
dynamics, some characteristic properties of the system are derived
in Section III. In Section IV, we introduce a mathematical statement
for the system model. Finally, the proposed solution techniques
with simulation results and graphs are given in Sections V and VI,
respectively.

II. A N N �N STOCHASTICPURSUER–EVADER PROBLEM

In this section, we introduce the pursuer–evader problem in anN �

N grid and present the dynamics. The pursuer can occupy one of the
N �N positions, as may the evader. However, they cannot both have
the same initial position. The objective of the pursuer is to drive the
evader to the pen, (0, 0) position, in minimum expected time.

The state vector at timek,xxx(k), is determined by the position of the
evader and the pursuer, i.e.

xxx(k) = [xe(k) ye(k) xp(k) yp(k)]
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Fig. 1. N �N pursuer–evader problem grid.

where
xe(k) x coordinate of the evader at timek;
ye(k) y coordinate of the evader at timek;
xp(k) x coordinate of the pursuer at timek;
yp(k) y coordinate of the pursuer at timek.

Therefore, at any timek, we havexp 2 f0; 1; 2 � � �Ng, yp 2
f0; 1; 2 � � �Ng, xe 2 f0; 1; 2; . . .Ng, andye 2 f0; 1; 2; . . .Ng.
However, based on the dynamics, as will be illustrated later, if the
pursuer and the evader are not in the same initial position, they will
never be in the same location in the future. A cost of one unit is
assigned for each step (horizontal, vertical, or diagonal) for the pursuer
as well as the evader. Fig. 1 illustrates theN � N spatial grid of the
pursuer–evader problem.

The following are some definitions we use to help simplify the de-
scription of the system.

Definition 1: Positive Successor Function:Positive successor func-
tion is given by

PS(Z(k)) =
Z(k); if Z(k) = N

Z(k) + 1; if 0 � Z(k) < N
(1)

whereZ(k) is thex or y coordinate of either the pursuer or the evader.
Thus,PS( : ): Z = f0; 1; 2; . . .Ng ! Z � f0g.
Definition 2: Negative Successor Function:Negative successor

function is given by

NS(Z(k)) =
Z(k); if Z(k) = 0

Z(k)� 1; if 0 < Z(k) � N
: (2)

Thus,NS( : ): Z = f0; 1; 2; . . .Ng ! Z � fNg.
Definition 3: Equilibrium State of the Evader:The evader is said to

be in an equilibrium state when given a time instantT the following
condition is satisfied:

8 k � T

if

xp(k) =xp(T ) and yp(k) = yp(T )

then

xe(k) =xe(T ) and ye(k) = ye(T ):

Definition 4: Final Equilibrium State of the Evader:The evader is in
final equilibrium state at time instantT , when the following condition
is satisfied:

8 k > T

if

xp(k) =xp(T ) and yp(k) = yp(T )

then

xe(k) = 0 and ye(k) = 0:

Fig. 2. Pursuer movements with the system in equilibrium state, case 1.

Fig. 3. Pursuer movements with the system in equilibrium state, case 2.

The following rules generate the pursuer-controlling movements and
assign probabilities to the evader transitions based on the evader loca-
tion with respect to the pursuer:

i) 8 k, xp(k), yp(k), xe(k), andye(k) 2 f0; 1; 2; . . .Ng.
ii) The pursuer moves when the system is at equilibrium state only

excluding the final equilibrium.
iii) The pursuer can move one step at a time, depending on its po-

sition in the grid, and its relative location with respect to the
evader position. In terms of distance between the evader and the
pursuer, we have two cases where the system is in equilibrium
state. In case 1, the distance between the pursuer (D) and the
evader (S) is greater than or equal two steps, as shown in Fig. 2.

Fig. 3 illustrates those equilibrium states (case 2) where the
distance between the pursuer and the evader equals one. Here,
besides the physical boundary conditions limitations, the current
location of the evader disallows the pursuer from taking one of
the actions that cause their locations to be identical.

iv) The evader transition probabilities depend on its position with
respect to that of the pursuer. These transition probabilities are
compactly represented in the following if–then statements.

a) Far Condition:

If

xe(k) < NS(xp(k)) or xe(k) > PS(xp(k))

or

ye(k) < NS(yp(k)) or ye(k) > PS(yp(k))

then

xe(k + 1) = xp(k) & ye(k + 1) = yp(k):

b) Top-Left Corner Pursuer Right Condition:

If

xe(k) = 0 & xp(k) = PS(xe(k)) & ye(k) = yp(k) = N

then

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on April 05,2010 at 16:11:00 EDT from IEEE Xplore.  Restrictions apply. 
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Pfxe(k + 1) = xe(k) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = p

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p):

c) Top-Left Corner Pursuer Down Condition:

If

xe(k) = xp(k) = 0 & yp(k) = NS(ye(k)) & ye(k) = N

then

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p):

d) Top-Right Corner Pursuer Left Condition:

If

xe(k) = N & xp(k) = NS(xe(k)) & ye(k) = yp(k) = N

then

Pfxe(k + 1) = xe(k) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p):

e) Top-Right Corner Pursuer Down Condition:

If

xe(k) = xp(k) = N & yp(k) = NS(ye(k))

then

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p):

f) Bottom-Left Corner Pursuer Right Condition:

If

xe(k) = 0 & xp(k) = PS(xe(k)) & yp(k) = ye(k) = 0

then

Pfxe(k + 1) = xe(k) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = p

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p):

g) Bottom-Left Corner Pursuer Up Condition:

If

xe(k) = xp(k) = 0 & yp(k) = PS(ye(k))

then

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p):

h) Bottom-Right Corner Pursuer Left Condition:

If

xe(k) = N & xp(k) = NS(xe(k)) & yp(k) = ye(k) = 0

then

Pfxe(k + 1) = xe(k) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p):

i) Bottom-Right Corner Pursuer Up Condition:

If

xe(k) = xp(k) = N & ye(k) = 0 & yp(k) = PS(ye(k))

then

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p):

There are some conditions that were not represented in the above
rules. These are given below under “other conditions” category. These
include situations such as the following.

Other Conditions: If a) to i) are not satisfied and;

i) xp(k) = NS(xe(k)) & yp(k) = PS(ye(k)) then

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = NS(ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = xe(k) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = (1� p)=2:

ii) xp(k) = xe(k) & yp(k) = PS(ye(k)) then

Pfxe(k + 1) = xe(k) & ye(k + 1) = NS(ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p)=2:

iii) xp(k) = PS(xe(k)) & yp(k) = PS(ye(k)) then

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = NS(ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = xe(k) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = (1� p)=2:

iv) xp(k) = PS(xe(k)) & yp(k) = ye(k) then

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p)=2:

v) xp(k) = PS(xe(k)) & yp(k) = NS(ye(k)) then

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = PS(ye(k)jxp(k)

& yp(k)g = p
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Pfxe(k + 1) = xe(k) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = (1� p)=2:

vi) xp(k) = xe(k) & yp(k) = NS(ye(k)) then

Pfxe(k + 1) = xe(k)) & ye(k + 1) = PS(ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = NS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p)=2:

vii) xp(k) = NS(xe(k)) & yp(k) = NS(ye(k)) then

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = PS(ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = xe(k) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = (1� p)=2:

viii) xp(k) = xe(k) & yp(k) = NS(ye(k)) then

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = ye(k)jxp(k)

& yp(k)g = p

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = NS(ye(k))jxp(k)

& yp(k)g = (1� p)=2

Pfxe(k + 1) = PS(xe(k)) & ye(k + 1) = PS(ye(k))jxp(k)

& yp(k)g = (1� p)=2:

III. PROPERTIES OF THESTOCHASTIC DIGRAPH ASSOCIATEDWITH

THE PURSUER–EVADER PROBLEM

The following paragraph presents the characteristic properties of the
stochastic digraph associated with the pursuer–evader problem.

a) The number of states of the system is finite.
b) The system is stationary, which means that the probability distri-

bution of transition between states, the instantaneous cost, and
the system dynamics are independent of the states.

c) There are(N � N � 3) final equilibrium states of theN � N
stochastic pursuer–evader problem.

d) The cost value of the final equilibrium states is zero.
e) At any time instancet, (xe; ye) 6= (xp; yp) if at t = t0

(xe; ye) 6= (xp; yp).
f) The di-graph representing the stochastic pursuer–evader model is

pseudostochastic, which means that the transition between states
is stochastic when the evader has to move. However, when the
pursuer has to move, the transition between states is deterministic
since the pursuer is allowed to go to certain locations based on the
dynamics. In other words, the probability of pursuer transitions
is always 1.

g) The estimated cost associated with each edge in the pseudos-
tochastic pursuer–evader di-graph is equal to 1 [4].

IV. PROBLEM STATEMENT

The problem statement we propose can be solved in terms of a value
function. The value function gives a performance measure, the opti-
mization of which provides us with desired solution. The following is
the definition of the value function.

Given:

1) A finite state spaceS = f1; 2 � � �Ng with transition probability
between states,pij(u), given by

pij(u) = P (sk+1 = jjsk = i; uk = u)

whereuk = u 2 U(i), the control set, is finite at each statei.
2) The instantaneous costc(i; u) of a statei incurred when the

controlu 2 U(i) is selected to be

c(i; u) =

n

j=1

pij(u)~c(i; u; j) (3)

where~c(i; u; j) is the estimated cost to move from statei using
controlu to go to statej, then, the value function of each state
is given by

J(i) = c(i; u) +

n

j=1

pij(u)J(j) i = 1; 2; . . . ; n: (4)

Our objective is to find the set of optimal control policyU� that
gives minimum expected cost value for the pursuer to drive the evader
to the pen, i.e.

J�(i) = min
u2U

E g(i; u) +

n

j=1

pij(u)J(j) ; i = 1; . . . ; n:

(5)

V. METHODS OFSOLUTION

Solving the problem outlined above mainly depends on calculating
the cost function values. Although it may look like that the problem
simplifies down to solving a set of(N � N)2 linear algebraic equa-
tions, in fact this is not the case since the policy is based on the cost
function values that are yet to be determined.1 Once this policy is deter-
mined, then the problem may be considered as that of solving a system
of linear equations possibly even of order less that(N � N)2. The
following describe three techniques for solving the cost value function
while searching for the optimum control policy.

A. Admissible Policy Search Technique

Let us denoteJ� as a vector of the optimal cost values of associated
with all states of the system. Also, we useP to denote theprobability
state transition matrix (PSTM). Solving forJ� mainly depends on the
characteristics of the PSTM,P. Close examination of the PSTM shows
that if the transition between states results from pursuer movements,
the entities of the corresponding row for the current state are either 0,
where there is no path to go to the corresponding state, or 1, which cor-
responds to the next state, the pursuer can drive the system to. However,
if the transition results from the evader’s movement, the corresponding
entry of the PSTM is either equal to 0, or the probability of the system
to go the corresponding state due to evader movement. It can be no-
ticed that there is no control action for the evader’s movements and
therefore, the minimization process is over only a single value. On the

1The power ofN�N is 2 here because the number of players is 2; otherwise
the power should be replaced by the number of players.
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other hand, there are multiple possible control actions of the pursuer for
those states in which the pursuer is allowed to move. For those states,
the minimization is done over all the possible actions. In other words,
for each action of the pursuer, at each state, (5) can be written as

J
� = I� ~P

�1

SC (6)

whereS is theN �N state transition matrix;C is theN � 1 instanta-
neous cost matrix; and~P is theN � N modified PSTM. This matrix
~P is obtained fromP by picking the only “1” that corresponds to the
state that results in the minimum cost value and replacing all the other
ones by zeros. Therefore, the problem now condenses to finding~P .

This can be accomplished by searching over all the possible combi-
nations of ones in the PSTM till we obtain the pattern that results in the
minimum value ofJ.

Despite its accuracy in calculating the values of the cost function,
this technique is very time consuming since it searches over the entire
space of admissible control policies.

B. Value Iteration Technique

Value iteration technique converges to the solution if certain condi-
tion on the problem is satisfied [8], [9]. Our system satisfies that con-
dition and therefore we expect the convergence of the solution.

Based on that assumption, an iterative technique can be used to cal-
culate the cost value of each state beginning form any initial values
J0(1) � � � J0(n). This iterative algorithm is given by

Jk+1(i) = min
u2U(i)

c(i; u) +

n

j=1

pij(u)Jk(j) : (7)

Equation (7) is referred to as the stochastic form of the Bellman’s
equation [10].

The sequenceJk+1(i) will converge to the optimal cost,J�k+1(i)
given by Bellman’s equation, after finite number of iterations.

C. Policy Iteration Technique

This technique depends on searching the admissible policy subspace
in a steepest decent way, beginning from any initial admissible policy.
This algorithm involves four steps.

Step 1) Initialization Step:Start with one of the admissible policies,
u0.

Step 2) Policy Evaluation Step:Solve the linear system of equations
given by (6) to get the cost values for this policy,Ju (i),
i = 1; 2; . . .n. However, it might be nontrivial to solve
this set of linear equations in many situations. For example,
when the matrix given by(I� ~P) is singular. In such cases,
the value iteration algorithm can be used to calculate the
correspondingJ.

Step 3) Policy Improvement Step:In this step, we compute a new
policy uk+1 that minimizes the expected cost calculated in
Step 2), i.e.

u
k+1(i) = arg min

u2U(i)
c(i; u) +

n

j=1

pij(u)Ju (j) : (8)

Step 4) IfJu (i) = Ju (i), i = 1; 2; . . .n, terminates or set
Ju (i) = Ju (i) and go to Step 1).

Notice that this algorithm terminates in a finite number of steps
simply because there are finite number of control policies. However,
since value iteration may be used to solve forJ in some cases, this
may lead to infinite number of iterations.

TABLE I
COST FUNCTION VALUES

VI. SIMULATION RESULTS

Simulating our system begins by computing the value of the cost
function of each state using one of the techniques mentioned above.
Table I, shows the values of the cost function obtained by using value
iteration,Vv , and policy iteration,Vp, techniques for a 3� 3 grid, and
interstate transition probability of 0.8.

As shown from the results, both techniques converge to exactly
the same cost function value. The state number corresponds to every
possible combination of thex andy coordinates of the pursuer and
evader positions. The evader movements are controlled by random
number generators according to which, the evader can move randomly
according to the dynamics defined in . The pursuer makes its tran-
sitions based on the cost function value of the adjacent states to the
current state of the system.

The pursuer moves to the state of the lowest cost of all adjacent
states, then it checks whether the system is at equilibrium or not to
make its next move. This process continues till the system reaches one
of the final equilibrium states defined in .

A graphical user interface, designed using MATLAB 5.3, is used
to simulate the system where the user is to choose the grid sizeN

from a drop box. The initial position of the pursuer and the evader is
supplied to the simulation program using an edit box. The probabilityp

of transition is set using a slider. Finally, the technique used to calculate
the cost of each state is chosen using a check box and then simulation
starts by pressing theSTARTbutton.

Figs. 4 and 5 show the used graphical user interface provided to sim-
ulate the system. Fig. 4 shows a single run with initial position of the
pursuer at (0, 0), the initial position of the evader at (4, 4) and the prob-
ability of transition is 0.8 where the cost values are calculated using
value iteration technique. Meanwhile, Fig. 5 illustrates another simula-
tion with the same initial condition and the same probability of tran-
sition system, but the cost value is calculated using policy iteration
technique. It should be noticed that the differences between the two
systems, although having the same initial states, comes from the sto-
chastic motion of the evader. It can be also noticed that the pursuer’s
movements are the same from the initial state till the state where the
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Fig. 4. Graphical user interface model with cost values calculated by value
iteration technique.

Fig. 5. Graphical user interface model with cost values calculated by policy
iteration technique.

evader makes its first move. This is due to the deterministic nature of
the pursuer’s motion.

VII. CONCLUSION

In this correspondence, we studied a stochastic class of pursuit eva-
sion problems that is different than the traditional problems in that the
aim of the pursuer is to force the evader into a pen. We introduced three
techniques for optimal solution and showed one of them to be so time
consuming compared to the other two. On the other hand, the other two
iterative techniques converged to the same optimal cost value functions,
which is used as our performance index. We also presented a graphical
user interface package that has been developed to experiment with the
problem.

REFERENCES

[1] Y. Yavin and M. Pachter, Eds.,Pursuit–Evasion Differential
Games. New York: Pergamon, 1987.

[2] R. Isaacs,Differential Games: A Mathematical Theory With Applica-
tions to Warfare and Pursuit, Control and Optimization. New York:
Dover, 1965.

[3] Basar, Tamer, Olsder, and G. Jan,Dynamic Noncooperative Game
Theory, 2nd ed. New York: Academic, 1982, ch. 8.

[4] P. Kachrooet al., “Dynamic programming solution for a class of pursuit
evasion problems: The herding problem,”IEEE Trans. Syst., Man, Cy-
bern. C, vol. 31, pp. 35–41, Feb. 2001.

[5] P. Bernhard, A. L. Colomb, and G. P. Papavassilopoloulos, “Rabbit and
hunter game: Two discrete stochastic formulations,”Comput. Math. Ap-
plicat., vol. 13, no. 1–3, pp. 205–225, 1987.

[6] D. P. Bertesekas,Linear Network Optimization: Algorithms and
Codes. Cambridge, MA: MIT Press, 1991.

[7] , “The auction algorithms for shortest paths,”SIAM J. Optim., vol.
1, pp. 425–447, 1991.

[8] , Dynamic Programming and Optimal Control. Belmont, MA:
Athena, 1995, vol. 2.

[9] , Dynamic Programming. Englewood Cliffs, NJ: Prentice-Hall,
1987.

[10] R. E. Bellman,Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1969.

Spectral Fuzzy Classification: An Application

Ana del Amo, Javier Montero, Angeles Fernández, Marina López,
José Manuel Tordesillas, and Greg Biging

Abstract—Geographical information (including remotely sensed data)
is usually imprecise, meaning that the boundaries between different phe-
nomena are fuzzy. In fact, many classes in nature show internal gradual
differences in species, health, age, moisture, as well other factors. If our
classification model does not acknowledge that those classes are hetero-
geneous, and crisp classes are artificially imposed, a final careful analysis
should always search for the consequences of such an unrealistic assump-
tion. In this correspondence, we consider the unsupervised algorithm pre-
sented in [3], and its application to a real image in Sevilla province (south
Spain). Results are compared with those obtained from theERDAS ISO-
DATA classification program on the same image, showing the accuracy of
our fuzzy approach. As a conclusion, it is pointed out that whenever real
classes are natural fuzzy classes, with gradual transition between classes,
then its fuzzy representation will be more easily understood—and therefore
accepted—by users.

Index Terms—Fuzzy classification, outranking models, remote sensing.

I. INTRODUCTION

Classification of land cover by means of remote sensing implies
a search for a formal definition for class. From a traditional remote
sensing point of view, our theoretical aim is a partition of the image
into homogeneoussectors, each one of them hopefully corresponding
to a class. As long as our precision increases, we can continue parti-
tioning the image, and therefore new classes should be defined. In fact,
the number of classes should be as big as possible, provided we can
interpret them. However, quite often we realize that an image is based
upon a fewnatural classes, with the picture full of transition zones.
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