High-resolution photoelectron spectrometry study of conjugate shakeup processes in the Li 1s threshold region

B. Langer
Western Michigan University, Kalamazoo

J. Viehau
Fritz-Haber-Institut der Max-Planck-Gesellschaft

Oliver Hemmers
University of Nevada, Las Vegas, Oliver.Hemmers@unlv.edu

A. Menzel
Fritz-Haber-Institut de Max-Planck-Gesellschaft

U. Becker
Fritz-Haber-Institut der Max-Planck-Gesellschaft

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_fac_articles

Part of the Atomic, Molecular and Optical Physics Commons, and the Physical Chemistry Commons

Citation Information

This Article is brought to you for free and open access by the Harry Reid Center for Environmental Studies at Digital Scholarship@UNLV. It has been accepted for inclusion in Environmental Studies Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
High-resolution photoelectron spectrometry study of conjugate shakeup processes in the Li 1s threshold region

B. Langer, J. Viehaus, O. Hemmers, A. Menzel, and R. Wehlitz

Institut für Strahlungs- und Kernphysik, Technische Universität Berlin, D-1000 Berlin 12, Federal Republic of Germany

U. Becker
Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-1000 Berlin 33, Federal Republic of Germany
(Received 7 September 1990)

Partial cross sections and angular-distribution asymmetry parameters of diagram and satellite lines associated with Li 1s photoionization were measured using synchrotron-radiation excitation. Special emphasis was given to a high-resolution study of the 1P and 3P conjugate shakeup satellite lines testing qualitative predictions of the conjugate shakeup model: increasing α and decreasing β values towards threshold, both being verified. Comparison with recent relaxed Hartree-Fock calculations shows good agreement for the 1P satellite, but also demonstrates that the present theory does not seem to be able to describe the cross-section behavior of the 3P satellite correctly.

The interest in atomic and molecular photoionization has moved continuously towards a deeper understanding of the role and importance of correlation effects in photoionization.1,2 More specifically this has been accomplished in most cases by critical comparison between theoretical results, which include correlation effects, and improved and extended sets of experimental data. However, these effects can be more directly studied via multielectron processes such as photoelectron satellites and shakeoff electrons, particularly near threshold and on resonances. From a purely phenomenological point of view, satellites reflect the probability of the target system to remain after ionization in an excited ionic state rather than in the ionic ground state or, more generally, in a one-hole final state as expected on the basis of the one-electron model. The study of the energy dependent behavior of such satellite lines in photoelectron and Auger spectra brings out specific information about the underlying electron correlations.3 The He$^+$ ($n=2$) satellite behavior was one of the first examples where the controversy between the results of two different theoretical approaches,4–6 was conclusively resolved on the basis of the near-threshold behavior, in this case of the angular-distribution asymmetry parameter β.7,8

In a similar sense to helium being the simplest closed-shell atom, lithium is the simplest open-shell atomic system besides hydrogen. This makes Li an excellent choice to study, particularly because the effects of electron correlation on the photoionization process can be quite large due to this simplicity: One third of the electrons leave the atom. The principal core photoionization processes in atomic Li split into three different classes, the main line or diagram photoionization, the “shakeup” transitions and the “conjugate shakeup” transitions, the latter representing a process in which the valence electron exchanges angular momentum in addition to energy with the photoelectron. These processes may be written as follows:

\[
\begin{align*}
1s^22s(^2S) &\rightarrow 1s3s(^1S)sp(^2P) \\
&\rightarrow 1s3s(^3S)sp(^2P) \\
&\rightarrow 1snp(^1P)es(^2P) \\
&\rightarrow 1snp(^3P)es(^2P).
\end{align*}
\]

The Li 1s main lines are represented by processes (1a) and (1b) for $n=2$. For $n>2$ the same events represent shakeup transitions, whereas the conjugate shakeup processes are described by events (1c) and (1d). Figure 1 shows a schematic description of these processes in terms of shake theory separating the transition matrix element in a dipole and monopole part, the latter representing basically the overlap matrix element between the relaxed and unrelaxed orbitals.

Due to the Pauli principle and spin conservation in the dipole excitation, triplet and singlet coupled states origi-
nate from different conjugate shakeup processes with the triplet state being populated only via a \(1s|e\rangle\) monopole transition. Therefore there was considerable theoretical interest in a measurement where all components of the Li \(1s\) spectrum are clearly resolved. Up to now this requirement was only partially fulfilled; the interesting \(3P\) conjugate shakeup component was barely resolved from the \(1S\) main line.\(^{9-11}\)

In this Rapid Communication we report on the Li \(1s\) photoelectron spectrometry experiment succeeding in resolving all spectral components and following their fractional intensity and angular-distribution asymmetry parameter from the sudden limit to the near-threshold region. The experiment was performed to test two predictions based on the conjugate shakeup model along with angular momentum transfer theory in the near-threshold region. (i) The satellite to the main-line branching ratio increases towards threshold because of increasing overlap between bound and continuum states near threshold. (ii) In the conjugate shakeup process the angular momentum of the photon is taken over by the excitation in the ionic core. Therefore, without interchannel coupling, the photoelectron carries no angular momentum, resulting in isotropic emission for a \(1s\) electron which corresponds to a \(\beta\) value of zero. Assuming in the sudden limit a considerable fraction of configuration mixing, but assuming near threshold that most of the satellite intensity is due to conjugate shakeup and most of the higher \(l\) contributions due to interchannel coupling being suppressed,\(^{12}\) one would expect decreasing \(\beta\) behavior from 2 to 0 on approaching threshold from higher energies. Both qualitative predictions are well confirmed by the present data. Testing the capability of present theory to handle the many electron conjugate shakeup problem, we compare our results with the first \emph{ab initio} calculations based upon relaxed Hartree-Fock functions.\(^{13}\)

The high-resolution Li experiment was performed at the Hamburger Synchrotronstrahlungslabor (HASYLAB) at DESY in Hamburg and in part at the Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY) in Berlin by angle-resolved photoelectron spectroscopy using synchrotron radiation. Two time-of-flight spectrometers are used to measure partial cross sections, angular distribution, and asymmetry parameters simultaneously. A rotatable vacuum chamber allows the calibration of the degree of polarization of the incoming radiation and offers, in addition, determination of angular distributions more accurately by measuring time-of-flight spectra under various angles. A more complete description is given in former publications.\(^{14,15}\) A particular concern of this experiment besides the combined electron energy and photon energy resolution, was the control and stabilization of the atomic beam oven. We used a power controlled resistively heated oven with a 2-mm-diam nozzle heated slightly above crucible temperature (970 K) to avoid sticking of the nozzle. The high photon resolution necessary for the success of the experiment was achieved for the 5-m toroidal grating monochromator at HASYLAB using a new 1500 lines/mm grating, and at the new undulator beam line at BESSY also equipped with a toroidal grating monochromator. Both systems are described elsewhere.\(^{16,17}\)

![FIG. 2. Li 1s photoelectron spectrum taken at \(h\nu=75.5\) eV together with the corresponding energy level diagram.](image)

![FIG. 3. Branching ratios of (a) main-line components \(\sigma^{(1S)}/\sigma^{(1S)}\), (b) satellite to main-line \(\sigma^{(1P)}/\sigma^{(1S)}\), and (c) \(\sigma^{(1P)}/\sigma^{(1S)}\). The lozenges are from Ref. 9 as cited in Ref. 11. The curves represent theoretical results by the relaxed Hartree-Fock (RHF) method from Ref. 13, as described in the text.](image)
However, first consider contributing to the explanation of the Li 1s conjugate shakeup problem. This condition results from the orthogonality requirement imposed on the 1s\(^2\)(1S)2p\(^2\)P optical final state and the 1s2s\(^1\)S ep \(^2\)P continuum state
\[
\langle 1s^2(1S)2p^2P|1s2s(1S)ep^2P\rangle = 0
\]
giving no intensity to the \(^2\)P state in first order. Only if one takes final-state configuration mixing with the strong \(^3\)S state into account will the \(^2\)P state gain some intensity. The partial cross section resulting from this intensity borrowing process is displayed in Fig. 3(c) as a dashed line. Even this improved result is in poor agreement with the experimental data. This satellite line, therefore, still represents an important future challenge for the theoretical explanation of the Li 1s conjugate shakeup problem; many-body perturbation theory or close-coupling calculations may be necessary to adequately describe continuum configuration interaction in the final state in helium.

Figure 4 shows our results for the angular-distribution asymmetry parameter \(\beta\). Here neither experimental nor theoretical data are available for comparison. However, conclusions drawn from simple application of angular-momentum transfer theory to the conjugate shakeup model as outlined above predict decreasing \(\beta\) behavior from 2 to 0 by approaching threshold from higher energies. This behavior, also seen for photoionization of helium leaving the He\(^+\) ion in a 2p state,\(^5\) is strongly substantiated by our experimental data. Regarding the alignment of the remaining ion, an increasing alignment towards threshold is expected as already observed for helium 1s and beryllium 1s photoionization by Jiménez-Mier, Caldwell, and Ederer\(^8\) and Krause and Caldwell.\(^9\) Considering both, the behavior of \(\sigma\) and \(\beta\), the particular disagreement observed for the fractional intensity of the Li\(^2\)P conjugate shakeup state seems to be of special character.

In summary, in contrast to previous investigations we have reported a high-resolution Li 1s photoelectron spectroscopy experiment separating all diagram and satellite components from each other. Our measurements provide both fractional intensities and angular-distribution asymmetry parameters of conjugate shakeup lines, allowing us to compare them unambiguously with different theoretical predictions particularly concerning their threshold behavior. Qualitative predictions on \(\sigma\) and \(\beta\) based on general arguments in this energy regime could be clearly confirmed. However, quantitative comparison with \textit{ab initio} calculations based on relaxed Hartree-Fock orbitals leads only to partially good agreement; a theoretical reevaluation of the Li K-shell photoionization problem taking interchannel coupling adequately into account seems to be required.

The authors would like to thank Professor Sonntag and the members of his research group for their assistance and continuing interest. We also gratefully acknowledge very helpful discussions with Professor Larkins. One of us is indebted to the Deutsche Forschungsgemeinschaft for a research grant. This work was supported by the Bundesminister für Forschung und Technologie under Contract No. 05414CAB7.

12This suppression may be explained within a one-electron picture due to centrifugal barrier effects [J. W. Cooper, Phys. Rev. Lett. 13, 762 (1964)]; but a more appropriate description regarding interchannel coupling would rely on interference effects between different dipole representation channels [P. C. Ojha, J. Phys. B 17, 1807 (1984)], rather than on the general influence of an effective potential.

