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CHAPTER 26

ST OF HYDROELECTRIC DAMS TO CONTROL EVAPORATION
AND SALINITY IN THE COLORADO RIVER SYSTEM

L. J. Paulson
Lake Mead Limnological Research Center
University of Nevada, Las Vegas

INTRODUCTION

The main stem reservoirs on the Colorado River comprise
one of the largest and most heavily used freshwater bodies
in the nation. These reservoirs (Lake Powell, Lake Mead,
Lake Mohave and Lake Havasu) can store up to 53,590,400
acre-feet (66 x 10°m3) of water at their maximum capacities.
Nonetheless, local water shortages still exist in some areas
of the Colorado River Basin. There is also concern that salt
concentrations are approaching levels that could severely
affect municipal and agricultural uses [1]. Water shortages
will become even more acute as demands for water increase
with continued urban and agricultural development in the
basin. .

Water conservation and salinity control programs have
already been adopted, or are under investigation, in most
states using Colorado River water. Reductions in consumptive
water uses through more efficient irrigation practices, pow-
er plant cooling and wastewater reuse will, to some extent,
help alleviate future water shortages. However, this will
not offset the rising demands, and basin-wide shortages
could occur by the year 2000 t2]. Similarly, recent esti-
mates indicate that salt concentrations in the river at
Imperial Dam will rise to 1150 mg/1 as a result of flow de-
pletions projected to occur during this century [1,3]. Con-
struction of salinity control projects approved by Congress
under PL 9%-320 will significantly reduce salinity, but im-
plementation of these projects will be costly and time con-
suming [3].

Water shortages and salinity control in the Colorado
River system have thus far been addressed from the stand-
point of reducing water uses and controlling point source
salt inputs. Little attention has been given to investigat-
ing methods of reducing evaporation from the reservoirs, but
studies conducted in 1952 and 1953 [4] showed that it was a
major water loss from the Colorado River system. Moreover,
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high evaporation directly influences salinity because it operated from
increases the concentration of salts in the reservoirs.
Although various schemes have been offered for reducing
evaporation from Lake Mead, it has usually been viewed as ap
uncontrollable water loss. However, during the mid-1960s,
U.S. Geological Survey and Bureau of Reclamation scientists
estimated that cold-water discharges from Glen Canyon Dam
would reduce evaporation in Lake Mead. The estimates were
never published in report form but did appear in internal
government memoranda and newspaper articles (Arizona Repub-
lic, May 19, 1966; Phoenix Gazette, July 28, 1966). Our v
analysis of historical evaporation data, and recent inves- ™
tigations in Lake Mead [5] indicate that evaporation did ]
indeed decrease after Lake Powell was formed in 1963.
Advective energy (heat) inputs (Colorado River inflow)
and outputs (Hoover Dam discharge) have a significant influ-
ence on the heat budget of Lake Mead [4,6]. Historically,
the Colorado River inflow contributed large quantities of
heat to the reservoir during the spring and early summer.
However, the construction of Glen Canyon Dam and formation
of Lake Powell in 1963 altered the natural temperature and i vi
flow cycles of the river [7]. Discharges of cold water from .
the hypolimnion (230 ft, 70 m) of Lake Powell have signifi-
cantly reduced energy inputs to Lake Mead. Similarly, it
appears that heat losses from the reservoir could be in-
creased if Hoover Dam were operated from a surface, rather v Figure 1. Map
than deep-water, discharge. The combined effects of a cold- . i Lak
water discharge from Glen Canyon Dam and a surface discharge e
from Hoover Dam could reduce evaporation from Lake Mead by ; The Color
over 200,000 acre-feet (2.47 x 10%°m®)/yr and result in con- i prior to 1963
siderable decreases in salinity. The purpose of this paper g E451 km) upstr
is to present data in support of these conclusions and to B 8,354,000 acr
describe how the hydroelectric dams can be operated to min- ﬁf ; discharge peak
imize evaporative water losses from Lake Mead and reduce i i/ charges from G
salinity in the Colorado River. i _nion (230 ft,
Ut from 7.5-13.5°
STUDY AREA rom Lake Powe
, : . The remainder
Lake Mead was formed in 1935 by construction of Hoover % ‘which discharg
Dam. Tt extends 114 miles (18% km) from the mouth of Grand ‘which discharg
Canyon to Black Canyon, the site of Hoover Dam (Figure 1). ‘ Vegas Bay (Fig
Lake Mead is one of the largest reservoirs in the country
with a surface area of 163,088 acres (660 kmz) and a volume
of 29,185,245 acre-feet (36 x 10°m®), at the maximum operat- 1
ing level of 1227 ft (374 m) [8]. Tt is separated into two Wit Historica
large basins by Boulder Canyon, located midway through the Uil data for Grand
reservoir (Figure 1). The area above Boulder Canyon is re- ' o he United Sta
ferred to as the Upper Basin and that below as the Lower ‘pers, Part 9,
Basin. Hoover Dam is equipped with intake gates at 1045 ft ‘ i temperature da
(319 m) and 895 ft (273 m) elevations. The dam has been o ¢ ived from the
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Figure 1.
Lake Powell).

The Colorado River inflow to Lake Mead was unregulated
prior to 1963 when Glen Canyon Dam was constructed 280 miles
451 km) upstream (Figure 1). Annual discharges are high
E8,354,000 acre-feet (10.3 x 10°m®) in 1978], and seasonal
discharge peaks usually occur during winter and summer. Dis-
charges from Glen Canyon Dam are withdrawn from the hypolim-
nion (230 ft, 70 m) of Lake Powell and temperatures range
from 7.5-13.5°C. The Colorado River inflow, via discharges

v from Lake Powell, comprises 98% of the inflow to Lake Mead.

. The remainder is derived from the Virgin and Muddy Rivers,
which discharge into the Overton Arm, and Las Vegas Wash,
which discharges secondary-treated sewage effluents into lLas

DATA SOURCES AND METHODS

Historical evaporation data for Lake Mead and discharge
data for Grand Canyon were obtained from "Surface Waters of l
¢ the United States," U.S. Geological Survey Water-Supply Pa- i
pers, Part 9, Colorado River Basin, until 1967. Grand Caﬁ?gh
temperature data and salinity data for Lake Mead were de-

4 rived from the "Quality of Surface Waters in the United

Map of the Colorado River System (Lake Mead and f:




States,"” U.S. Geological Survey Water-Supply Paper, Part 9, -

Colorado River Basin. After 1967, these data were obtained
from 'Water Resources Data for Nevada" or "Water Resources
Data for Arizona" of the U.S. Geological Survey Water-Data

annual reports.
Net advective energy was computed for Lake Mead from

monthly data collected during October, 1977 - September,
1978, using BEquation 1.

a4 (Ti - Tr) - qO(TO - Tr)

e ———

A

o =erll, (1)

net advected energy (cal/cmz-month)
monthly discharge in Grand Canyon (m®/month)
monthly discharge from Hoover Dam (m®/month)
inflow temperature (°c) computed from Harbeck et
al. (4] equation of (T,. * 5.6°) - (.04 T_.)
- 2.1 x 10°° x q., where TgC and q4 are th%
average monthly emperature and discharge
(fts/sec) in Grand Canyon
outflow temperature (°C) measured at the lower
intake gates 295 ft (90 m) near Hoover Dam from
Paulson et al. [5
reference temperature of 4.4°C
average monthly surface area in Lake Mead
(cm?) from Lara and Sanders 8]

ki = unit conversion factors

FEstimates of net advective energy for a surface dis-
charge at Hoover Dam were computed by Equation 1 with T =
monthly surface temperature (°C) near Hoover Dam from

Paulson et al. [5].
pifferences in evaporation rates from Lake Mead for a

surface and hypolimnion discharge on Hoover Dam were com-
puted from Equation 2 [6].

Un ~ Qe

k,---k
L(1+R) = B
- annual evaporation rate (em/yrT)
average net advective energy for the
nypolimnion discharge (cal/cmz'day)
average net advective energy for a surface
discharge (cal/cmz.day)
latent heat of vaporization (585 cal/cma)
average Bowen Ratio as estimated for Lake
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, Part 9, Mead by Anderson and Pritchard [6] and
obtained Harbeck et al. [4] using monthly data
esources from October 1977 - September 1978
ter-Data k, = unit conversion factors
ad. 1 Total evaporative water loss from Lake Mead was then I
€N Dy determined by extrapolation from volume curves [8].
Using USGS data collected during the period from Octo- '
ber 1977-September 1978 as initial model conditions (Table
1), the effects of decreased evaporation on salinity in Lake i
Mead were determined by Equation 3. ’
g (1)
Ss + (Si o - So,) .
t-1 [ = t B
Sc, = k,---k (3) £
'1()nt}1) t V + Bv 1 n j ‘ " ¥
nonth) t & | g
farbeck et where Sc = salt concentration in Lake Mead (mg/1) :;
4 Tgc) Ss = salt storage in Lake Mead (kg) 1 §
: the Si = salt inputs to Lake Mead (kg) fi

rge a = salt retention coefficient ! fé‘
So = salt output at Hoover Dam (kg) )
he lower V = Lake Mead volume (m®) i
Dam from Ev = evaporation reductions (m?) §
t = time interval (yr) ? (1
k., = unit conversion factors §
ead . ;
Table I. Parameters and Data Used in the Salinity Model for g
Lake Mead. Data Collected Oct. 1977 - Sept. 1978.
‘ace dis- Parameter Symbol Average Units
with T = {
from Lake Mead Volume v 25.48 m® x 10° It
Colorado River Inflow I 10.43 m® x 10° !U
leaw__or a Hoover Dam Discharge 0 9.48 mn® x 10° i
vere com- Salt Input Si 73.714 kg x 10°
Salt Retention a 0.8693 -
Salt Storage Ss 172.76 kg x 10° ,
Salt Output So Variable kg x 10° :
Evaporation Ev il
(2) Reduction Minimum 1.48 m® x 10° e
Maximum 2.63 m® x 10° I
Evaporation reductions of 120,000 acre-feet (1.48 x
10°n®) and 21%,000 acre-feet (2.63 x 10°m®) were used in the
salinity model. These evaporation reductions were added to
urface the 1978 water year average volume in Lake Mead (25.48 x
. 10%m3) during the first year of modeling. In subsequent Lf
/em™) Years, these evaporation reductions were added to the annual 3“
- Lake discharges from Hoover Dam, using the 1978 water year (9.48 b
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be 109m3) as the initial discharge rate. Salinity decreases
projected to occur from the Las Vegas Wash, Nevada and Grand
Valley, Colorado Salinity Control Projects [3] were also in-
corporated in the salinity model.

RESULTS AND DISCUSSION

Temperature and Discharge Cycles

The construction of Glen Canyon Dam in 1963 drastically
altered the seasonal temperature and discharge cycles in the
Colorado River (Figure 2). River temperatures have increased
by nearly 5°C during the late fall and winter but decreased
by 10°C during the rest of the year. These temperature
changes were caused by cold-water releases from Glen Canyon
Dam. Water is withdrawn from the hypolimnion of Lake Powell,
and discharge temperatures average about 8°C throughout the
year. In the summer, river temperatures increase to 10-11°C
at Grand Canyon and 15-16°C at Pierce Ferry, where the river
enters Lake Mead. However, river temperatures are still
nearly 10°C colder than for comparable spring and summer

periods prior to 1963.

DISCHARGE

m 3 month™! x 108

TEMPERATURE

1944-62 -}~

-1

1963 -77

i — ¥
F----t-

o] T T Bi T T T T T T T

OCT. NOV. DEC. JAN. FEB. MAR. APR. MAY JUNE JuLy AUG. SEPT.

MONTH

Figure 2. Historical Temperature and Discharge Data (iSD)
in Grand Canyon for Pre-and Post-Lake Powell
Periods [USGS Data]. From [7].
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Discharges from Glen Canyon Dam are regulated for power
generation and flood control purposes. This has eliminated
the spring discharge pulse that occurred historically due to
runoff from the upper Colorado River drainage system (Figure
2). Monthly discharges are now subject to much less varia-
tion and peak discharges usually occur in summer when power

demands are greatest.

Energy Advection

The alterations in temperature and discharge cycles in
the Colorado River have had a significant influence on ener-
gy advection into Lake Mead. Investigations conducted in
1948 by Anderson and Pritchard [6] and in 1952-5% by Harbeck
et al. 4] showed that large quantities of energy were ad-
vected into Lake Mead during spring and early summer (Figure
3). Advection contributed 300-400 cal/cmz-day of heat to the
reservoir during these periods. This was nearly half that
derived from solar radiation. In contrast to pre-Lake Powell
periods, advection now contributes minimal heat to Lake Mead
(Figure %3). Cold-water discharges from Glen Canyon Dam re-
sulted in a net heat gain of only 9.04 cal/cmz-day during
1977-1978. This has had a marked influence on evaporation

rates from the reservoir.

Mar Aar May Jun Jul

Nov Dec Jan Feb
Month

Net Advective Energy in Lake Mead During
1948 [6], 1952-53 [4] and in 1977-78
[This Study].




Evaporation from Lake Mead

the U.S. Geological Survey, averaged 85.2 inches (216 cm)/yr
prior to the construction of Glen Canyon Dam (Figure 4).
Evaporation rates decreased significantly after 1964 when
Lake Powell was filled to operating levels and discharges
were increased to normal. In the period from 1965-1970,
evaporation rates decreased to about 74 inches (188 cm)/yr
which reflects the changes in energy advection caused by
cold-water discharges from Glen Canyon Dam.: Advection was

! elevations in Lake Mead and relatively high discharges from
i Glen Canyon Dam (Figure 5). Annual discharges were 65% of
‘ the Lake Mead volume in 1965 and averaged nearly 50%

throughout the period.

Annual evaporation rates from Lake Mead, as reported by

especially pronounced during this period because of low lake

(Figure 4) w
or reservoir
variations w
evaporation.

10

X
n
(o]

Feet
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Acre
@
\

Annual Evaporation Rate

Figure 5.

Annual Water Loss

Acre Feet X 103

Ir
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[ 5356 58 60 62 64 66 & To T i e
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o
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Historical Rates of Annual Evaporation and
Total Evaporative Water Losses from Lake
Mead [USGS Data].

Figure 4.

1974, but river discharges remained fairly constant after
the reservoir heat budget, and evaporation rates increased

tion rates in 1975-76 and subsequent decreases in 1977-78
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The volume of Lake Mead rose steadily from 1964 through
1965 (Figure 5). This lessened the influence of advection on ;:
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(7igure 4) were not related to changes in river discharges
or reservoir volumes (Figure 5). Rather, it appears these
variations were caused by changes in methods of estimating

evaporation.

Lake Mead

25

\
| \
12 ,I \\ I N Colorado River 15
\ Inflow L
! 1 Il \\,.. /.-—‘_****-‘\—‘\‘\%_
h - ‘TIO

“r DM v T— T | R SR Somes AREE SR SN L MRS R /.

54 56 ' 58 60 62 64 66 68 70 72 74 76 78
Water Year

Average Annual Volumes for Lake Mead and

Figure 5.
Inflows from Grand Canyon [USGS Data].

Evaporation rates in Lake Mead have historically been
estimated with the mass transfer method using equations
developed by Harbeck et al. [4]. Evaporation rates were
routinely adjusted for changes in energy advection and stor-
' age. This was discontinued in October, 1974, and evaporation
rates rose sharply in 1975 and 1976. The mass transfer meth-
od was still used to estimate evaporation, but, in February
‘'of 1976, the coefficient in the equation was changed, and

i evaporation rates immediately decreased. This indicates that
‘the abnormally high evaporation rates for 1975 and 1976 were
caused by failures to adequately compensate for advection.
:Although evaporation rates for 1977 and 1978 appear reason-
iable in comparison to other post-Lake Powell years, recent
data collected in limnological studies of Lake Mead [5]
indicate that evaporation rates are still being overesti-
mated.

W Temperatures in the Upper Basin of Lake Mead are gener-
ally colder than in the Lower Basin [5]. In 1980, surface
ﬁemperatures in Virgin Basin were often 1-2°C colder than in




This was especially evident during
and only on a few occasions did
A Basin exceed those in Boulder

Basin. Although these temperature differences could reflect
regional variations in climatology over the reservoir, they
are most likely due to advection from the Colorado River
inflow. The circulation patterns in Lake Mead are such that
the Colorado River inflow is confined primarily to the Upper
Basin [5]. The river forms a density current that extends to
Virgin Basin and into the Overton Arm. The Virgin Basin
appears to act like a large "mixing bowl" [6] and only when
river discharges are high does the density current extend
into the Lower Basin [5 . This usually occurs during late-
summer after periods of prolonged, high discharges from Glen

Canyon Dam.

Boulder Basin (Figure 6).
the spring and early summer,
surface temperatures in Virgi

°C
N o
(o] o

i

o

L

- 221

-

o

L 4

p~ | 8

a y

E | 41 a—a Virgin Basin
| o 4 e—o Boulder Basin

0 v v v T T T v v v T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

surface Temperatures in Boulder Basin and
Virgin Basin During 1980 [Lake Mead
Limnological Research Center Data].

Figure 6.

Historically, adjustments to evaporation rates for
changes in energy storage in Lake Mead have been based on
temperature measurements made at Hoover Dam intake towers
[4]. This decision was reached on the basis of data collect
ed in 1952-195%, which showed that temperature differences
between the Upper and Lower Basins were minimal. This is no
longer the case with cold-water discharge
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pam. The Hoover Dam intake towers, being located at the dis-
tant end of the reservoir, would be one of the last areas in
1ake Mead to be influenced by cold-water discharges. Temper-
atures at the dam could be considerably higher than else-
where in the reservoir, particularly in comparison to the
Upper Basin. Estimates of reservoir-wide evaporation based
on data from the Hoover Dam intake towers could, therefore,
also be higher than actual evaporation. Hydrologists at the
pureau of Reclamation have consistently observed an overall
gain of water in Lake Mead. Based on a ten-year average dur-
ing 1960-1970, the measured Lake Mead contents exceeded wa-
ter budget estimates by approximately 230,000 acre-feet
(2.84 x 10°m?)/yr (USBR data). This could, in part, be due
to an overestimate of evaporation from the reservoir since
196% when advection was altered by construction of Glen
Canyon Dam.

Although measured evaporation rates may be somewhat too
high in the period after 1963, it is still evident that
cold-water discharges from Glen Canyon Dam have significant-
ly reduced evaporation from Lake Mead. If we exclude the
1975 and 1976 values, which are clearly too high, pre- and
post-Lake Powell evaporation rates average 85.2 inches (216
em)/yr and 76.8 inches (195 cm)/yr. This is equivalent to a
reduction in annual water loss of at least 9%,376 acre-feet
(1.2 X 1OBm3), which is very similar to predictions made
during the mid-1960s. Government scientists reported that
cold-water discharges would reduce evaporation by about
100,000 acre-feet (1.2% x 10®°m®)/yr. Operation of Glen Can-
yon Dam from a deep discharge is thus an extremely effective
method of reducing evaporation from Lake Mead.
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It has long been known that reservoirs operated from a
deep discharge store heat, whereas, those operated from a
surface discharge dissipate heat [9]. The principle here is
‘quite simple and depends only on the formation of thermal
‘gradients in the reservoir. In Lake Mead, surface tempera-
tures exceed hypolimnion temperatures during all periods of
he year, except winter when the reservoir is completely
«mixed and isothermal. The temperature gradient is particu-

' larly sharp during summer when surface temperatures reach
27-30°C, compared to 11-12°C in the hypolimnion. In the
'period from October, 1977 - September, 1978, operation of
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~Hoover Dam from the deep discharge resulted in an average,
net advective heat gain of 9.04 cal/cm’-day (Table IT).
However, this would have decreased to -29.55 cal/cmz-day if
he dam had been operated from a surface discharge over this
.Period. The net difference in advection between surface and
‘deep discharge would be -38.59 cal/cm?-day (Table II). Using




Equation 2, with L = 585 cal/cm3 and a Bowen Ratio (R) of
-0.108, this would be equivalent to a decrease in reservoir
evaporation rates of -0.07395 cm/day or -26.99 cm/yr (-10.6
inches/yr). At the average lake elevations for 1977-78 (1186
ft), this would result in an annual reduction in water loss
of 119,779 acre-feet (1.48 x 10%°m®). The approach used to
derive this estimate is very simplified in that other varia-
bles in the heat budget were not included in the calcula-
tions. It was assumed that solar radiation, net radiation
and change in energy storage would be similar regardless of
discharge depth. As was pointed out by U.S. Bureau of Recla-
mation scientists in their review of a previous report [10],
these assumptions may not be entirely valid. Extensive stud-
ies will be required to determine how other variables in the
heat budget will change with discharge depth. Nonetheless,
the estimate appears to be a reasonable approximation of
water loss savings based on conclusions from earlier studies
on Lake Mead. Harbeck et al. [4] made similar estimates with
data collected in 1952-5% and concluded that a surface dis-

charge would reduce evaporation in Lake Mead by 72,000 acre-
feet (8.9 x 10’m®)/yr at lake elevations of 1174 ft (358 m).
This is similar to the present estimate if differences in
lake elevations are taken into consideration.

Net Advective Energy Estimates in Lake Mead
For a Surface and Hypolimnion Discharge at
Hoover Dam [5].

Table TIT.

Colorado River Hoover Dam Lake Read

Honth Inflow! Discharge Energy'  Hypolim.2  Epilim.2 Oischarge Hypollmn.% Surface" Surface  Mypolimn. Discharge Epilima. Discharge

Temp. Olscharge  Discharge Olscharge  Discharge Area  Net Advect. fnergy  Net Advect. Energy

Tenp. Temg. Energy Energy

€0 (a0d) (eatnio'®)  (o0) ) @108)  (catxl0'®) (catxi0'®) (ca?a10'?)  (coleca2-day-h) (cal-cn"2.day"1)
%t 77 13.0 5.2 0.447 12.0 2.3 5.3 0.403 0.949 5.34 +2.66 -30.30
lov 77 1243 W8 0.384 12.0 20.5 5.6 0.426 0.902 5.31 -2.64 Yo,
dec 771 115 9.5 0.675 12.03 16.63 5.9 0.448 0.720 5.35 “13.69 ERll
Jan 78 109 10.9 0.709 12.0 12.7 2.9 0.220 0.241 5.46 +28.89 +2.65
Fab 78 11,0 7 0.469 12.0 2.5 5.3 0.403 0.429 5.50 +h.29 +2.60
ar 78 12,03 9.3 0.707 121 16.4 9.1 0.701 1.092 5.55 +0.35 -22.38
Apr 78 13.0 5.9 0.507 1n.7 150 na 0.810 1.188 5.46 -18.50 “41.57
ay 78 12,00 6.9 0.524 12.0 19.3 10.6 0.806 1.579 5.46 -16.66 -62.33
Jun 78 11,0 9.3 0.614 12.3 2.0 6.1 0.640 1.426 5.h6 -1.59 -k9.57
Jul 73158 9.4 1.072 12.0 27.0 10.3 0.783 2.328 5.36 +17.39 -15.59
Aug 78 147 1.2 1.360 12.0 2.8 1.0 0.836 2,244 5.37 31,48 -53.10
Sep 78 14.] 1.5 1.288 12.3 2.5 6.2 0.490 a2 5.4 49,1/ 41920
+9.04" -29.55°

Average

Vinfiow temperature = (T + 2.69C) - 0.04 (1) = (2.1 x 1075 x q) 20ischarge temperatures are the Lake Mead temperatures at each depth

of discharge near the Hoover Dam intake towers. Lake Mead surface
Where T and q are Grand Canyon temperature and hypolimion (90 m) temperatures from UNLY data.
in 9C and mean discharge in CFS (Marbeck
et al. 1958). Grand Canyon temperature
from USGS data.

JAverage of preceding and following months. MAdvected energy computed reference b 4oC.
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: (2) of - . ' ) It thus appears that the ideal strategy for reducing
- =eservoir . b evaporation from Lake Mead would be to continue operating
: = (-10.6 . ' Glen Canyon Dam from a deep discharge and shift Hoover Dam
s~r_g (1186 : to a surface discharge. This could result in a combined
vz=ter loss b reduction in water loss of 213,155 acre-feet (2.6% x
no to ' j 1Oem3)/yr, at the 1977-78 lake levels. Such reductions in
sTrSeevaria- ... ! water loss would constitute one of the best water conser-

'cula- . ' . vation programs available for the Colorado River.

ztion

Influences on Reservoir Salinity

Reductions in evaporative water losses from Lake Mead
would result in significant decreases in salinity of the
reservoir. Inflows of cold water from Glen Canyon Dam are
probably already causing reductions in salt concentrations
in the Upper Basin of Lake Mead, although data are not
available to estimate the magnitude. Water loss reductions
derived from operating Hoover Dam with a surface discharge

A would act to further decrease salinity, especially in the
”Z,OOO acre- ] Lower Basin.
t (358 m). ! Dissolved solids concentrations at the Hoover Dam
rences in intake towers in Lake Mead averaged 676 mg/l during water
year 1978. Evaporation reductions of 120,000 acre-feet (1.48
b'e 10%m ), achieved with a surface discharge at Hoover Dam;
or 213,000 acre-feet (2.63 x 10%m 3), achieved with a cold-
water discharge on Glen Canyon Dam and a surface discharge
on Hoover Dam, would reduce salinity in Lake Mead by 9 mg/1
and 16 mg/1, respectively (Figure 7). These salinity reduc-
tions would occur within a five-year period and are compar-
e able to those which will be achieved by the Las Vegas Wash,
S e il S ; Nevada (8 mg/l) and Grand Valley, Colorado (19 mg/l) Salin-
it e ity Control Projects (Figure 7) f}]. This would serve to
effectively augment salinity control projects on the Colo-

-30.30 gy rado River.
~32.52

. l) (cal-cm 2.day"1)

{

-2

g Feasibility of Operating Hoover Dam from a Surface Discharge
+2.60
28y There are several potential problems associated with
::: operation of Hoover Dam from a surface discharge [4]. First,
ag A : this would require modifying the intake structures. Hoover
155 @l Dam is currently equipped with intake gates at 895 ft (273
5310 # m) (lower gates) and 1045 ft (319 m) (upper gates) eleva-
ozt tions. At the 1978 lake elevations of 1186 ft (361 m), oper-
ation from the upper gates would still result in withdrawal
of cold, hypolimnion waters [12]. Intake gates would have to
smoeratures ot euch depth 'ﬁbe installed at higher elevations to permit withdrawal of
e warm water. Engineering studies would have to be done to
‘evaluate the feasibility and cost-effectiveness of such
odifications. Hydraulic studies should also be conducted to
nsure that the intake structures would indeed withdraw sur-
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Control Projects.

Figure 7.

A second problem that needs to be considered relates to
the impacts of warm-water discharges on downstream uses. The
Black Canyon area below Hoover Dam supports a popular cold-
water trout fishery that could be adversely influenced by
warm-water discharges from Hoover Dam. Recent studies, how-
ever, have shown that warm-water discharges could benefit
reproduction of aquatic insect populations that comprise an
important food resource for trout [13]. Aquatic insects re-
quire seasonal temperature cycles, 1ike those that existed
historically, to complete their life cycle [14]. Discharge
temperatures from Hoover Dam are now virtually constant at
12-1%°C throughout the year and appear to be the cause for
declines in aquatic insect populations in Black Canyon. Op-
eration of Hoover Dam from a surface discharge would re-
store seasonal temperature cycles in the river and perhaps
enhance production of aquatic insects. This, combined with
stocking of warm-water tolerant rainbow trout, could insure
that a viable trout fishery was still preserved in Rlack

Canyon.
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Warm-water discharges from Yoover Dam could also result
in increased evaporation from Lake Mohave and Lake Havasu,
the downstream reservoirs. The temperature structure in
upver Lake Mohave is currently influenced by cold-water
discharges from Hoover Dam t54- However, the river forms an
underflow in Lake Mohave and mixing is not sufficient to
advectively cool the entire reservoir. Surface temperatures
in Lake Mohave frequently exceed those in Lake Mead, and
discharges of warm water from Hoover Dam will probably not
contribute more heat to the reservoir than it currently
assimilates from solar radiation. Temperature data are too
limited to allow for speculations on how evaporation could
be altered in Lake Havasu. However, the surface area of Lake
Mohave and Lake Havasu are each roughly one-third that of
Lake Mead. Net water losses and salinity in the river would
probably still be reduced, even if warm-water releases did
increase evaporation rates in these reservoirs.

Finally, operation of Hoover Dam from a surface dis-
charge would alter the nutrient budget for Lake Mead. Total
nitrogen retention in Lake Mead would increase by 66% and
total phosphorus by 60% with a surface discharge on Hoover
Dam [11]. This, in turn, would elevate productivity in the
reservoir, particularly in the Lower Basin where wastewater
inflows from Las Vegas Wash contribute large amounts of
phosphorus to the reservoir [15]. However, this could be
beneficial to the largemouth bass population which has
undergone a serious decline in Lake Mead. This decline
appears to be related to a decrease in reservoir fertility
that occurred after Glen Canyon Dam was constructed in 1963
[16,17]. High nutrient losses from the deep-water discharge
at Hoover Dam have further contributed to this decline in
fertility. A surface discharge could help sustain greater
fertility in Lake Mead, and perhaps provide a better food
base for the bass populations [11?

The environmental and engineering problems associated
with operation of Hoover Dam from a surface discharge do not
appear to be insurmountable. Some of the environmental ques-
tions are being addressed in limnological studies currently
being conducted for the Office of Water Research and Tech-
nology, or in fisheries investigations being conducted by
the regional fisheries biologists and the U.S. Fish and
Wildlife Service. The engineering problems, however, will
clearly require additional investigations to determine
whether the existing intake structures can be modified to
cost-effectively withdraw surface waters from Lake Mead.

In addition, further limnological studies should be
done in Lake Mead to determine if the present methods of
estimating evaporation are accurate, evaluate estimates of
water loss savings made in this paper, and better assess the
relationship of salinity to evaporation in the reservoir.

453




5. Paulson, L.J., J.
limnological stat
present and futur

! Lake Mead Limnolo

e Univ. Nev., Las V

This should be accompanied by similar investigations in Lake
Mohave and Lake Havasu to evaluate how evaporation rates and
salinity in those reservoirs would change with a surface
discharge on Hoover Dam. The operation of the proposed pump-
storage units (Spring Canyon and Rifle Range sites) should
be included in these investigations since it is likely they
can be used to further reduce evaporation in the reservoirs.
If water were withdrawn from the hypolimnion of the reser-

{ voir with the pump-storage units and released via a diffus-
j er into the epilimnion, it could result in significant

i@ cooling of the surface waters. '
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