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Surface structure of +3X +3R 30 Cl/Ni(111) determined using
low-temperature angle-resolved photoemission extended fine structure

Li-Qiong Wang, Z. Hussain, Z. Q. Huang, A. E. Schach von Wittenau, D. W. Lindle, and D. A. Shirley
Department of Chemistry, Uniuersity of California, Berkeley, California 94720

and Materials and Chemical Sciences Division, Laurence Berkeley Laboratory, I Cyclotron Road,
Berkeley, California 94720
(Received 23 April 1991)

A surface structural study of the &3X&3R30 Cl/Ni(111) adsorbate system was made using low-
temperature angle-resolved photoemission extended fine structure. The experiments were performed
along two emission directions, [111]and [110],and at two temperatures, 120 and 300 K. The multiple-
scattering spherical-wave analysis determined that the Cl atom adsorbs in the fcc threefold hollow site,
1.837(8) A above the first nickel layer, with a Cl—Ni bond length of 2.332{6)A, and an approximate 5%
contraction between the first and the second nickel layers (the errors in parentheses are statistical stan-
dard deviations only).

I. INTRODUCTION

Adsorbed atoms or molecules frequently cause relaxa-
tions of substrate surfaces. However, the understanding
of adsorbate-induced substrate surface relaxation requires
accurate and detailed surface and near-surface structural
information. Angle-resolved photoemission extended fine
structure (ARPEFS) (Refs. 1 —5) has proven to be a
powerful tool in this regard.

ARPEFS is the angle-resolved and energy-dependent
form of photoelectron diffraction due to the final-state in-
terference between the direct and the scattered photoelec-
tron waves. Fourier transformation of the extended fine
structure provides direct and qualitative structural infor-
mation. However, the more quantitative structural
analysis requires multiple-scattering spherical-wave
(MSSW) theory. With a MSSW level analysis, effects as
subtle as small corrugation and relaxation near the sub-
strate surface can be characterized. Because thermal
effects (larger mean-square-relative atomic displacements)
reduce the amount of structural information present in
the fine structure, cooling the lattice effectively extends
the range of ARPEFS to deeper layers. Recent studies '

have shown that the adsorbate geometry and the sub-
strate relaxation can be determined more accurately by
using low-temperature ARPEFS. In this paper, we em-
ploy low-temperature ARPEFS to study the
&3 X &3R 30' Cl/Ni(111) system.

There are several published reports of structural stud-
ies of halogen atoms on metal surfaces. For example, the
c(2X2) Cl/Cu(001) system has been studied by several
groups. ' " However, there are few studies of halogen
atoms on fcc (111)surfaces. In a surface-extended x-ray-
absorption fine structure (SEXAFS) study of
&3 X &3R 30' Cl/Cu(111), Woodruff et al. ' were unable
to obtain accurate distances beyond the first-nearest

neighbors, or to distinguish the two different threefold
hollow adsorption sites of the fcc (111) surface. Howev-
er, these two inequivalent hollow sites were distinguished
in their photoelectron diffraction study, where only the
distance from Cl to the first substrate layer was given.
Since ARPEFS has high directional sensitivity, the
different substrate atoms can be emphasized by choosing
different emission geometries. Thus, ARPEFS can clear-
ly distinguish between two kinds of threefold adsorption
sites. In our study, we use low-temperature ARPEFS to
determine the adsorption site as well as to obtain an accu-
rate distance to the second substrate layer for the
+3 X+3R 30' Cl/Ni(111) system. Interestingly, Kuroda
et al. ' recently reported a study of the same Cl/Ni(111)
system using a combination of SEXAFS and the x-ray
standing-wave method. They found no substrate surface
relaxations in the &3Xv'3R30 Cl/Ni(111), as opposed
to the p(2X2) S/Ni(111) (Ref. 14), where a significant
contraction of 15% was observed with respect to the bulk
spacing. Thus, their study offers an opportunity to com-
pare the structural results obtained from different tech-
niques.

This paper is organized as follows. Section II gives the
experimental details and the procedures of data collection
and reduction. Section III describes two types of
analysis: Fourier and multiple-scattering analysis, and
present results. Section IV discusses and compares the
results. A summary and conclusions are given in Sec. V.

II. EXPERIMENT

The experiments were performed on Beamline X24A
(Ref. 15) at the National Synchrotron Light Source at
Brookhaven using a Ge(111) double-crystal monochro-
mator. The Cl 1s photoemission spectra were taken in
the kinetic-energy range from 50 to 550 eV, with photon
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energies from 2870 to 3370 eV. The resolution of the
double-crystal monochromator was approximately 1 eV
through this photon energy range. Data were collected
with a rotatable hemispherical electrostatic analyzer'
which has the energy resolution of —1 eV full width at
half maximum (FWHM) under the operating conditions
of 160-eV pass energy, and the angular resolution of the
input lens of +3'. The experimental chamber was
equipped with a four-grid combined low-energy-
electron-diffraction (LEED) and Auger system, an ion
gun, and an effusive beam doser for introducing chlorine
gas.

A nickel single crystal was cut, oriented to within 1'
of the (111)direction as determined by Laue backscatter-
ing, then mechanically polished and chemically etched.
Since the fcc (111) crystal lacks twofold symmetry, it is
hard to tell the crystal azimuthal orientation from the
p (1 X 1) LEED pattern. Thus, several Laue pictures
were taken at different x-ray incident directions along the
fixed crystal axis to define the azimuthal orientation of
the crystal. The final finished crystal was attached to a
Ta sample plate mounted on a high-precision manipula-
tor with a liquid-nitrogen cooling system. Sample heat-
ing was accomplished by electron bombardment from a
tungsten filament located behind the sample plate. The
temperatures were measured by a chromel-alumel ther-
mocouple attached to the sample plate next to the sam-
ple. The nickel crystal was cleaned by repeated cycles of
Ar+-ion sputtering and annealing to about 880 K. This
procedure was sufhcient to remove all impurities except
carbon. Carbon was then removed by heating the crystal
to 770 K after exposure to 1 X 10 Torr of oxygen for
several minutes. The crystal was taken as clean when
Auger electron spectroscopy (AES) showed no detectable
traces of carbon, nitrogen, oxygen, or sulfur contamina-
tion and a sharp p (1 X 1) LEED pattern was observed.
The chamber pressure was about 3X10 ' Torr during
measurements. Because chlorine exposure to a clean
Ni(111) surface produces a sequence of LEED patterns
with superstructures, and a sharp V 3 X +3R 30' LEED
pattern is stable within a relatively small exposure range
corresponding to -0.2 L, the &3 X &3R 30' Cl overlayer
preparation was done carefully in several steps. A sharp
+3X&3R30' Cl overlayer LEED pattern was produced
by dosing C12 through an eft'usive beam doser at room
temperature for a total of 4—5 min with the main
chamber pressure at —1 X 10 Torr. This was followed
by 350-K annealing for 2 min to dissociate C12 completely
into atomic Cl.

The experiments were carried out along two emission
directions, [111] and [110], and at two temperatures,
120+5 K and 300 K. These four set of ARPEFS data
were taken on separately prepared samples. The sample
was Gashed to about 350 K every 6—9 h during data col-
lection, and more often for the low-temperature measure-
ments. The crystal orientation angle for each geometry
was determined by a He-Ne laser autocollimation
through the experimental chamber viewports with an ac-
curacy of +2'. The experimental geometries are shown in
Fig. 1. For the normal [111] geometry, photoelectrons
were collected along the surface normal with the photon

g 3 x~3 R30' Cl/Ni(111)

[110j
A p,
~[1111' [1101

FIG. 1. A view of the &3X&3R30' overlayer of chlorine
{shaded atoms) on the {111)face of a nickel single crystal. The
emission directions are labeled [111]and [110],while the photon
polarization vectors associated with each geometry are labeled

c[ l l I J
and c~ »Oj, respectively.

polarization vector 35' from the surface normal toward
the [112] direction, while for the off-normal [110]
geometry, the emission direction and photon polarization
vector are collinear along the [110]direction. These two
geometries were chosen to highlight nearby backscatter-
ing atoms, utilizing the directional sensitivity of AR-
PEFS. The [111] geometry can determine interlayer
spacings effectively, while the [110] geometry was select-
ed to emphasize the nearest neighbors along the [110]
direction.

For each emission geometry at a given temperature, a
series of photoemission spectra was collected over a
50—550-eV kinetic-energy range in equal electron wave-
number increments of 0.08 A '. Each photoemission
spectrum was centered on the Cl 1s photoelectron peak,
with an energy window 25 —30 eV. The experimental
background consisted of three photoemission scans cov-
ering the kinetic-energy range of 40—560 eV. Each scan
was taken at a diAerent photon energy so that the Cl 1s
photoemission peak lay about 10 eV below the lowest ki-
netic energy in each spectrum. This experimentally mea-
sured background was used in the least-squares fitting for
the normalization of each photoemission spectrum to
compensate for the inhornogeneous photon Aux and the
electron analyzer transmission function. The photoemis-
sion intensity was extracted by least-squares fitting of
each photoemission spectrum with three functions: a
Voigt function to model the core-level photoelectron
peak, a Gaussian convoluted with a step function (G step)
to describe the inelastically scattered electrons associated
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with the photoelectron peak, and an experimentally mea-
sured background to account for other inelastic-
scattering processes. The detailed procedures have been
described previously.

In analogy to EXAFS, the total normalized photoemis-
sion intensity I(E) as a function of kinetic energy E is
composed of a slowly varying atomiclike portion and a
rapidly oscillating contribution due to the interference
effects of electron scattering from neighboring ion cores.
I(E) can be described as

I (E)= [y(E)+ 1]Io(E),

where Io(E) is a slowly varying atomiclike function and
y(E) is the oscillatory interference function, which can be
determined by removing the slowly varying function
Io(E) from the total photoemission intensity I (E):

I(E)—Io(E)
IQ(E)

(2)

C]/N 1(1 1 1)

0.5

—0.5—
I

0.5

—0.5—
100

I

300
I

400
I

500
Kinetic Energy E(eV)

FICx. 2. Experimental y(kl curves for the [111]and the [110]
geometries. The curve with solid dots is y(k) at 300 K, and the
heavier curve is g(k) at 120 K.

The experimental y(E) curves are shown in Fig. 2 for
the [111]and [110]data at two temperatures, 120 and 300
K, respectively. Io(E) was fitted with simple low-order
polynomials for constructing y(E) curves. We can see
from Fig. 2 that the oscillation amplitudes of y(E) at the
lower temperature are enhanced as compared with those
at room temperature. The oscillation patterns are
matched well at the two temperatures.

For Fourier data analysis, it is necessary to convert
g(E) to g(k). The photoelectron kinetic energy E mea-
sured outside the solid is related to the wave number k of

the photoelectron inside the solid by the de Broglie rela-
tion

k =inst''+2m, (E+ V ), (3)

where rn, is the electron rest mass and Vo the inner po-
tential of the solid. The value of Vo is typically about 10
eV, but the exact value is unknown. The Vo is therefore
treated as an adjustable parameter in the fits.

III. ANALYSIS AND RESULTS

Structural information can be extracted from the ex-
perimental y(k) curves in two ways: by Fourier analysis
and by multiple-scattering spherical-wave (MSSW)
analysis. We first treat the data by Fourier analysis to
obtain qualitative structural information such as adsorp-
tion site and approximate geometric parameters. MSSW
calculations are then required to obtain quantitative
structural information.

A. Fourier analysis

Using the single-scattering model of ARPEFS, the ex-
pression for y(k) can be written as

cosP, lf(~, )l aR /k —(r (I —-cos. g.. )ky(k)=2+ ' ' e
cosy R.

Xcos[kR (1—coso )+P~] . (4)

The summation is over all atoms near the adsorbed
"source" atom from which core-level photoemission orig-
inates. Here, P~ is the angle between the photon polariza-
tion vector and the vector connecting the emitting atom
and the jth scattering atom, R is the distance from the
photoemitter to the jth scattering atom, and y is the an-
gle between the emission direction and the photon polar-
ization vector. The k-dependent complex scattering fac-
tor f(8 ) for a given scattering angle 8& can be divided
into the magnitude f(8 )l and the phase P . The
emission-angle-dependent path-length difference is given
by b,R =R (1 —cosO ). The temperature effect is intro-
duced as a Debye-Wailer factor, where o. is the mean-
square relative displacement (MSRD) between the pho-
toemitter and the jth scattering atom, projected on the
photoelectron momentum change direction. Inelastic
losses due to excitation of plasmons and electron-hole
pairs by the energetic photoelectron are incorporated in
an electron mean free path X.

The cosinusoidal dependence of the y(k) function per-
mits a Fourier transformation, yielding an amplitude
spectrum peaked near various scattering path-length
differences. Fourier spectra for the [111]and [110] data
at the two temperatures are given in Fig. 3. A Vo value
of 10 eV was used. Forward (8.=0') and backward
(OJ = 180') scatterings give the strongest signals: the
strong feature at a path-length difference -4.6 A in the
[110]direction arises from a nearest-neighbor Ni atom lo-
cated directly behind Cl along the [110] direction, at a
Cl—Ni bond length of -2.3 A. Atop and bridge adsorp-
tion sites are excluded because they have no backscatter-
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made due to uncertainties of the low-frequency portion of
the data. All subsequent comparisons of theory with ex-
periment were done with the filtered data, 2.0—10.0 A
for the [111]data and 1.8 —10.0 A for the [110]data. The
MSSW calculations were performed with the same path-
length difference cutoffs.

The fcc threefold adso~rtion site had already been
determined for the &3 X &3R 30 Cl/Ni(111) system from
the Fourier analysis above. Comparisons of the MSSW
calculations with the experimental data confirm this re-
sult. The y(k) curves for two dift'erent threefold adsorp-
tion geometries (fcc and hcp) were calculated using the
bulk Ni spacing (2.03 A) with a Cl—Ni bond length of
2.3 A estimated from the Fourier analysis. Figure 5
shows the comparison of the calculated y(k) curves with
the experimental data for the [111]and [110] directions
at 120 K, respectively. By visual inspection, the calculat-
ed curve in the [110]direction for the fcc site unambigu-
ously resembles the experimental data more than that for
the hcp site, while in the [111]direction, it is not clear
which calculated y(k) more closely resembles the experi-
mental data. Since there is a backscattering atom near
the photoemitter for the fcc site, but not for the hcp site
in the [110] direction, the calculated y(k) curve for the
hcp site has rather different features and weaker ampli-
tude as compared with that for the fcc site. Thus, MSSW
calculations provide strong evidence to support the fcc
threefold site, consistent with the Fourier analysis. How-
ever, there are still large differences between the experi-
mental g(k) curve and the calculations for the fcc site us-
ing nonoptimized geometrical parameters. This suggests
possible substrate surface relaxation in the V 3 X &3R 30
Cl/Ni(111) system.

To derive a detailed quantitative structure, we opti-
mized both structural and nonstructural parameters to
achieve the best agreement between the theory and the
experiment. An R factor (reliability factor) was used as a
quantitative measure of the fit between the experiment
and the theory. The optimum geometrical parameters
were obtained when a minimal R factor defined by

f [y~(k) —yT(k)] dk

f [yT(k)] dk

Cl/Ni(111) site determination
[111] [110]

hcpr
II I I I

I I
I

I I
r
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/
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FICx. 5. Adsorption site determination for the [111]and the
[110]geometries at 120 K. The experimental curves (solid lines)
are compared to the MSSW calculated curves (dashed lines) for
two kinds of unreconstructed threefold hollow adsorption
geometries (fcc and hcp).

was reached. Here, E and T denote experiment and
theory. The R factors were calculated over the k range
5.2 —11.2 A

In recent ARPEFS studies„' an automatic routine was
successfully used to search many parameters simultane-
ously with a reasonable number of iterations. The de-
tailed procedure of this routine has been described previ-
ously. No lateral substrate relaxation and no corrugation
of the second substrate layer were considered because of
the &3X&3R30' structure of the Cl/Ni(111) system.
The experimental data were fitted with two structural pa-
rameters dc~ N;(, ~, the vertical distance of Cl to the first
Ni layer, and dc& N;[2), the ver&'" 1 distance of Cl to the

0
TABLE I. Summary of the structural results (in A) determined from MSSW analysis. The statistical errors associated with each

parameter for the four data sets are given in parentheses (Ref. 5). The structural parameter values in the upper panel are derived
directly from fits of the data, while those in the lower panel were derived by subtracting two corresponding values above the line.

Parameter [ 1 1 1 ],20 K [111]3OO„ [110h20 K [110]300K Avg' {stat) Avg" (scat) This work'

d Cl-Ni(1)

d Cl-Ni(2)

1.831(8)
3.767(10)

1.828(10)
3.763(13)

1.848(9)
3.754(14)

1.844(16)
3.761(40)

1.837(5)
3.763(7)

1.838(8)
3.761(5)

1.837(8)
3.763(7)

Cl—Ni (bond length)

Ni(1)-Ni(2)

2.332(4)
1.926(10)

2.333(6)
1.923(9)

2.332(6)
1.926(11)

'Statistical errors only: Standard deviation.
"Standard deviation from the scatter of results.
'Final adopted values, with standard deviation taken as the higher of a and b above. Not included in these values and error estimate
are any possible ofFset due to (unknown) systematic error.



13 716 LI-QIONG WANG et al.

second Ni layer, while other nonstructural parameters
such as electron emission angles, adsorbate and substrate
surface Debye temperatures, the experimental tempera-
ture, and the inner potential were treated as adjustable
parameters with reasonable initial guesses and bounds.
The emission angles were found to be (3 from the ex-
pected values for all the data sets. The inner potential for
the optimum geometry was 10+2 eV, and the experimen-
tal temperature was optimized to be 120+5 K. R-factor
minima lay in the small range R =0.05 —0. 13 in the vari-
ous calculations.

The structural parameters determined from the best
fits are listed in Table I, with statistical errors in
parentheses. The error associated with each parameter
was estimated as described in our previous study. The
best fits of the MSSW calculations to the filtered (10.0 A)
experimental g(k) curves are shown in Figs. 6 and 7 for
the [111]and [110] geometries at the two temperatures,
respectively. Agreements between the theoretical and ex-
perimental curves are excellent. From Table I, we can
see that the structural parameters obtained from the four
data sets were consistent, especially for the data at
diAerent temperatures with a given geometry. There are
larger errors for the dc& N;~z1 parameter in the [110]direc-
tion than those in the [111]direction, showing dilferent
sensitivity of a given data set to each structural parame-
ter due to the directional sensitivity of ARPEFS.

Figure 8 shows R-factor plots for the [111]and [110]
geometries at the two temperatures, calculated by vary-
ing the dc' N;[i] and dc]-N ~z] distances, respectively, while
other parameters were fixed in their optimum values.
The R-factor curvature for the dc, N;~2] distance in the

MSStht Best Fit
[111]

MSSW Best Fit
[110]

0.5

0.0

0.5—
300 K

0.0

—0.5—

8 9
k (A-')

10 11

FIG. 7. The best fits of the MSSW calculations (dashed
curves) to the filtered (10.0 A) ARPEFS data (solid curves) for
the [110]geometry at two temperatures, 120 and 300 K.

2.0

[111]direction is steeper than that in the [110]direction,
giving smaller error bars for the dc& N;~2] distance in the
[111] geometry. Moreover, the R-factor minima were
smaller for a given geometry at the lower temperature,
due to the increased signal-to-noise ratio. The interlayer
spacing between the first and the second Ni layers can
thus be determined more accurately from the analysis of

0.5—
1.5 d Cl-Ni(2)

0.0 1.0 1.0
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FIG. 6. The best fits of the MSSW calculations (dashed
curves) to the filtered (10.0 A) ARPEFS data (solid curves) for
the [111]geometry at two temperatures, 120 and 300 K.
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FIG. 8. R-factor plots for the [111]and the [110]geometries
at two temperatures, 120 and 300 K, calculated by varying the
dcl N;[1) and the dcl N;[2) distances, respectively, while other pa-
rameters were fixed in their optimum values.
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the low-temperature [111]data.
The top and side views of the &3X &3R 30' Cl/Ni(111)

structure are shown in Fig. 4. From Table I, the dc] Nj(i)
distance of 1.837(8) A gives a Cl—Ni bond length of
2.332(6) A. The dc& N;~z~ distance of 3.763(7) A then
yields interlayer spacing between the first and the second
Ni layers dc&N;~2~ of 1.926(11) A, showing an approxi-
mate 5%%uo contraction from the bulk value of 2.03 A.

0.5—

0.0

MSSW Fit
unreconstructed geometry

IV. DISCUSSION —0.5—

The vertical distance of Cl to the first Ni layer dc& N [~)
of 1.837(8) A obtained from this study is 0.08 A smaller
than the recent SEXAFS study' by Kuroda et al. This
difference is beyond the standard error of each of the two
techniques. However, studies on the p (2 X 2) S/Ni(111)
system using several different techniques also showed
rather different results for the vertical distance of S to the
first Ni layer ds N;~, ), ranging from 1.40 to 1.66 A. '"'
For example, a SEXAFS study' by the same group gave
the ds N;~, ~

distance at 1.66 A, while a LEED study' bp.

Mitchell et al. showed a distance of 1.50 A, a 0.16-A
difference. Furthermore, a recent low-temperature AR-
PEFS study on the same system found the S-Ni(1) dis-
tance of 1.54 A, which is closer to the LEED study. We
can see that the distances of adsorbate to the first sub-
strate layer from SEXAFS studies on both p (2 X 2)
S/Ni(111) and &3 X &3R 30' Cl/Ni(111) systems tend to
be larger than the results obtained from LEED and AR-
PEFS studies. This suggests some sort of unknown sys-
tematic errors among these techniques. With recent im-
provements in the quality of data and analysis, it now ap-
pears that ARPEFS, LEED, and SEXAFS may be in-
herently capable of yielding structural parameters of high
precision: +0.01—0.02 A in the case of ARPEFS, for ex-
ample. If the remaining discrepancies among the three
methods arise from systematic errors, the resolution of
those errors is important.

The current ARPEFS study found a 0.104-A for 5%
contraction of the topmost Ni interlayer spacing as com-
pared with that of the bulk for the V'3 X +3R 30'
Cl/Ni(111) system by analyzing structural information
from the first and the second Ni layers. However, Kuro-
da et al. reported no relaxation in the same Cl/Ni(111)
system, in contrast to a significant contraction of 15% in
the p (2 X 2) S/Ni(111) system using their SEXAFS re-
sults combined with those from the x-ray standing-wave
method. Figure 9 shows the comparisons of the experi-
mental data for both the [111]and the [110]geometries at
120 K with the calculated g(k) curves based on the bulk
Ni spacing (2.03 A), while other parameters were kept
fixed at their optimum values. By visual inspection, the
agreements for both geometries are very poor, indicating
that the substrate surface relaxation is required to obtain
the fits between the experiment and the theory shown in
Figs. 6 and 7. Although a combination of x-ray
standing-wave and SEXAFS studies provides direct infor-
mation about the relaxation of the first substrate layer
relative to the bulk position, the information about the
topmost interlayer spacing is indirect, as it requires the
second substrate layer to remain in the bulk position.

0.5

0.0

—0.5—
I

8
k (4')

9 10 11

FIG. 9. Comparisons of the filtered (10.0 A) ARPEFS data
(solid curves) to the MSSW calculations (dashed curves) for the
[111]and [110]geometries at 120 K. The MSSW curves are cal-
culated with the bulk Ni spacing (2.03 A), while all the other
parameters are kept fixed at their optimum values.

Low-temperature ARPEFS itself, however, can obtain
the topmost interlayer spacing directly for the
&3X&3R30' Cl/Ni(111) system, due to its ability to
probe the second substrate layer.

Studies on the clean Cu(111) surface showed a
(0.7+0.5)% contraction of the topmost interlayer spac-
ing, smaller than the contractions on more open (001) and
(110) surfaces. If the clean Ni(111) surface also has little
contraction in the topmost interlayer spacing, a 5% con-
traction in the &3 X v'3R30 Cl/Ni(111) system is much
larger than that of the clean Ni(111) surface, indicating
the adsorbate-induced contraction. In contrast to the
Cl/Ni(111) system, studies of adsorbates on fcc (001) sur-
faces such as S- and Cl-covered Ni(001) and Cu(001) have
shown expansions of the topmost interlayer spac-
ing, ' ' " ' which has been attributed to metal-metal
bond weakening induced by adsorption. The mechanism
for contraction is not clear in the +3 X +3R 30
Cl/Ni(111) system.

The previous low-temperature ARPEFS study on the
Cl/Cu(001) system showed that cooling the lattice
effectively extends the range of ARPEFS to the fourth
substrate layer. However, in this study, we could only
obtain the distances from Cl to the first and to the second
layers. In Fig. 2, we note consistent high-frequency oscil-
lations in the experimental y(k) curves at two tempera-
tures, as compared with the filtered (10-A) curves shown
in Figs. 6 and 7, suggesting the existence of real signals at
large path-length differences () 10 A). Figure 10 shows
the experimental Fourier spectrum in the [111]direction
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[1») Ci/Ni(111) the overall intensity of the pattern of four peaks, but not
with respect to their exact positions or detailed intensity
pattern. We therefore conclude that the single-scattering
calculation omits important (multiple-scattering) effects
which show up in the experimental curve, and the
multiple-scattering theory, as we have applied it, does not
model these effects accurately.

0
4

I I I

5 ro I5 20 25
0

pat. h —lengt. h difference (A)

FIG. 10. Comparison among the Fourier spectra for the
[111]geometry at 120 K: experimental Fourier spectrum with
those spectra obtained from single- and multiple-scattering cal-
culations based on the optimized parameters.

at 120 K, with the Fourier spectra obtained from single-
and multiple-scattering calculations based on the opti-
mized parameters. The agreement among these three
Fourier transform spectra in the range 10—25 A is not
good enough to permit a quantitative structural interpre-
tation, but it is intriguing. The single-scattering curve
shows peaks spaced at 4-A intervals, consistent with
backscattering from the Ni(111) planes spaced at 2.03 A.
In fact, weak peaks near 20 and 24 A, consistent with
scattering from the fifth and sixth layers, appear in all
three curves. However, for intermediate path-length

0
differences 10—18 A, single scattering yields only two
peaks, while both multiple scattering and experiment
show four. The latter two curves agree only in regard to

V. CONCLUSION

%"e have presented a low-temperature ARPEFS study
of the &3 X V'3R 30 Cl/Ni(111) system. The surface was
determined by two methods: Fourier analysis, . which
gives qualitative structural information, and the
multiple-scattering spherical-wave (MSSW) analysis,
which yields more quantitative results. This ARPEFS
study provided a clear distinction between the two ine-
quivalent threefold hollow sites using directional sensi-
tivity of ARPEFS and found that the fcc threefold hollow
site is favored for the +3Xv'3R30' Cl/Ni(111) system.
Low-temperature ARPEFS allows us to determine
structural parameters more accurately due to the in-
creased signal-to-noise ratio. MSSW analysis found the
Cl atom adsorbed in the fcc threefold hollow site,
1.837(8) A above the first nickel layer with a Cl—Ni bond
length of 2.332(6) A and an approximate 5% contraction
between the first and the second nickel layers, in disagree-
ment with a recent study' by Kuroda et al.
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