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1. Project Summary 
A wide variety of fuel concepts are considered for advanced reactor technology 

including metals, metal oxides or metal nitrides as solid solutions or composite materials.  
Nitride fuels have appropriate properties for advanced fuels including high thermal 
conductivity, thermal stability, solid-state solubility of actinides, fissile metal density, and 
suitable neutronic properties.  A drawback of nitride fuels involves their synthesis.  A key 
parameter for preparing oxide fuels is the precipitation step in the sol-gel process.  For 
nitride fuels, the current synthetic route is carbothermic reduction from the oxide to the 
nitride.  This process step is based on solid phase reactions and for nitride fuel involves a 
stepwise process from the metal oxide, to the carbide, and finally the nitride.  This high 
temperature, solid-phase approach is plagued by impurities in the final nitride product 
and difficulties in the synthesis and fabrication steps.  If the nitride could be synthesized 
directly by a solution route then the impurities and other synthetic problems could be 
eliminated or at least minimized. The proposed solution route to nitride would also have 
the added benefit of providing several adjustable parameters that would allow control of 
the properties of the final solid product (fuel).  

The objective of the proposed project is to develop solution phase synthetic routes for 
actinide nitrides for use in nuclear fuels.  In the 1970s, a proposed synthesis for actinide 
nitrides was proposed based on the reaction of plutonium triiodide (PuI3) and uranium 
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tetraiodide (UI4) with sodium metal in liquid ammonia giving PuN and UN, respectively, 
as the reaction products.  More recent work by the LANL collaborators investigated 
amido reactions in non-aqueous solvents where the reaction is: 

 
AnI3(solv)4 + 3 NaNR2  An(NR2)3  +  3 NaI  +  solv 

 
From this result, a plausible route for the synthesis of nitride fuels is: 
 

AnN)An(NH)(NHAnIAnI 3

23

2NH∆,
323NaNH433(l)NH3  → → → −  

 
where An is uranium, neptunium, plutonium or americium.   

To achieve the solution synthesis of actinide nitrides the fundamental chemical 
coordination and speciation involved in the above reaction will be examined.  The 
reaction will be performed with all the actinides listed.  The non-aqueous synthetic route 
based on amido chemistry potentially provides property control over the nitride product 
similar to the sol-gel methods for actinide oxides.  The resulting nitride product should be 
free of the impurities inherent in the carbothermic reduction technique.  The experiments 
will be performed by a joint research team from UNLV and LANL, with actinide 
experiments performed at both laboratories and special emphasis on student participation 
in the project research.  This collaboration will be strongly facilitated by the presence of 
LANL team member Al Sattelberger at UNLV as a visiting professor.  The UNLV 
participants are already involved in actinide chemistry studies including the synthesis and 
characterization actinide-containing fuels.  The LANL participants are experts in 
synthetic actinide chemistry including non-aqueous chemistry and materials science.  The 
team members will collaborate in the education of graduate students and post-doctoral 
researchers.  In addition to developing novel routes for the direct synthesis of nitride 
fuels, the project will also help train the next generation of radiochemists and actinide 
scientists with expertise in research areas crucial to the DOE and the country.  
 

2. Project Narrative 

2.1. Project Objectives 
Nitride fuels are the proposed fuel matrix for a number of advanced reactor designs 

and are an attractive option for the transmutation of Pu and other minor actinides in 
advanced reactors.  The current synthesis route for actinide nitrides involves the 
conversion of actinide oxides to carbides and finally nitrides.  Unfortunately, the 
synthesis can carry significant levels of impurities into the final products as shown in the 
reaction below: 

 

)N,C,O(U)CO(UC2UO 2N,
x1x

2CO,
2  → →+ ∆

−
−∆  

 
The presence of these impurities limits the utility of nitride fuels in advanced fuel cycles.  
The presence of oxygen and other impurities in nitride fuels can lead to the formation of 
phases with different properties from the bulk material including the formation of 
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secondary phases [1].  Oxygen present in the nitride can form oxides with fission 
products, altering the expected behavior of the fission products.  This limits the ability to 
fully develop nitride fuels for advanced reactors.  Even small amount of oxygen in the 
nitride fuel can reduce thermal conductivity by 10 % [2].  To avoid the entrainment of 
carbides and oxides in the final actinide nitride product a non-aqueous solution phase 
route is proposed.   

The objective of the project is to investigate and develop a solution based synthetic 
route for actinide nitrides.  A non-aqueous solution route for the synthesis of plutonium 
nitride (PuN) has been described that involves the reaction of plutonium triiodide (PuI3) 
with sodium metal in liquid ammonia [3, 4, 5].  More recent efforts by proposal team 
members at LANL have investigated amido reactions with actinides to produce An(NR2)3 
complexes [6,7,8], where An = U, Np, Pu.  These results suggest that the amido 
complexes could provide a non-aqueous solution method for the synthesis of nitrides.  As 
an example, UN can be synthesized based on the following reaction scheme: 

 

UN)NH(U)NH(UIUI 3NH2,
322NaNH3433)l(3NH3  → → → −∆  

 
This scheme should also be applicable for the preparation of nitrides of Np, Pu and Am.  
In addition to the formation of pure UN, the solution synthesis should provide control of 
particle size and other physical properties similar to those observed in actinide oxides 
when using sol-gel methods. 

The objectives will be realized though a collaborative experimental project between 
UNLV and LANL with actinide experiments performed at both laboratories.  The 
emphasis at UNLV will be scoping experiments with uranium.  The LANL effort will 
focus on the later actinides starting with neptunium.  However, experiments with Np will 
also be performed at UNLV.  The PI has previously performed synthesis involving 
milligram quantities of Np in a university setting.  The fundamental coordination 
chemistry and speciation in the amido synthesis will be evaluated using different 
spectroscopic methods.  Nitride formation from the amido species will be systematically 
examined to determine key parameters for the product synthesis.  The final product will 
be investigated with microscopic and X-ray methods already employed by the UNLV 
partner in the evaluation of fuels, including nitrides.  The project results can be compared 
with existing methods of nitride fuel synthesis that are performed at Los Alamos for the 
AFCI program.  

In addition to the research within the project, the team members will collaborate in 
educational efforts.  Members of the LANL team will participate as mentors and 
instructors for undergraduate and graduate students, and post-doctoral researchers from 
UNLV.  Furthermore, the young researchers from UNLV will have opportunities to 
perform research at LANL, helping train the next generation of radiochemists and 
actinide scientists with experience in DOE laboratories and an understanding of DOE and 
national needs.   
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2.2. Background 

2.2.1. Nitride Fuels 
At present, a wide variety of fuel concepts are under consideration for the advanced 

fuel cycle.  The fundamental compositions include metals, oxides and nitrides.  These can 
be in form of solid solutions or composition material.  The compositions comprise 
CERCER (ceramic-ceramic), CERMET (ceramic-metal) or METMET (metal-metal).  
Nitrides are considered as potential fuels since they have high solid phase solubilities for 
the early actinides and excellent thermal characteristics.  A comparison of properties for 
the oxide, carbide, and nitride of a mixed uranium and plutonium composition are 
provided below [9].  Of the ceramic fuel matrices, the nitride fuels have the highest 
theoretical density, metal density, and melting point.  The metal fraction of the nitride is 
only slightly lower than the carbide.  The thermal conductivity is slightly lower than the 
carbide but significantly higher than the oxide.  These data indicate the suitability of 
nitrides as fuels. 

 

Table 1.   Comparison on actinide oxide, carbide, and nitride properties 

 
 

Uranium oxides are generally the starting point for UN as well as UC synthesis.  
Oxides are fabricated using a precipitation method. An example of a precipitation process 
consists of dissolving and mixing the chloride or nitrate salts in purified water and then 
creating a precipitate with NH4OH or oxalic acid.  The precipitate is washed with acetone 
and purified water, milled, and dried at 90 ºC.  The dried precipitate is milled again and 
redried at 150 ºC for 2-3 hours. It is milled again and then calcined at 750 ºC for 1 hour. 
The calcined powder is milled and then cold pressed into 13 or 7 mm diameter pellets for 
2 minutes before being sintered under a mixture of argon and 4% hydrogen for four hours 



 5

at 1500 ºC.  Nitride ceramics are produced using the carbothermic reduction process [10].  
In this process carbon is added in excess to actinide oxides.  Heating under an inert gas 
such as Ar will form carbides. If the carbon/ AnO2 mixtures are heated in the range of 
1500 °C under a stream of N2 gas, N2-H2 or NH3-Ar then carbon dioxide is liberated and 
the intermediate actinide carbide is converted to the nitride.  The carbon dioxide 
concentration in the outgas is used to monitor the extent of the reaction.   

The UNLV team is already evaluating nitrides with researchers from the Nuclear 
Materials Technology (NMT) division at LANL.  In studies performed by UNLV, 
evaluation of ZrN and CeN ceramics synthesized by a carbothermic reduction method at 
LANL shows the presence of oxides in the nitrides (Figure 1).  In this figure the oxygen 
content is shown in the top left panel as the bright areas.  As evident from this figure, the 
levels of oxygen are low but present in the evaluated ZrN.  Compared to Zr (top right 
panel) and N (bottom left panel) the distribution of oxygen is localized in the nitride.  
This oxide formation is also evident with UN fuels, where surface coating by UO2 occurs.  
The proposed solution phase synthesis along with removal of oxides in the furnace 
material should eliminate the impurities in the nitride product. 

Figure 1.  Microprobe analysis of ZrN showing the presence of oxides 
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2.2.2. Actinide Amido Syntheses 
 

 The synthetic chemistry of trivalent actinide complexes was advanced greatly with 
the discovery of efficient routes to soluble iodide starting materials of the type AnI3L4, 
where An = U, Np, Pu, and L = tetrahydofuran (thf), pyridine, dimethylsulfoxide, etc. at 
Los Alamos [6-8].  We have not synthesized UI3 or the other actinide iodides in liquid 
ammonia but note that PuI3 is soluble in ammonia, presumably as its ammonia adduct 
PuI3(NH3)4 [3]. 
 

An +  1.5 I2  +  xs L  ----------->  AnI3L4 
 
These molecular species, generated from actinide metals and molecular iodine in 
coordinating solvents, are readily soluble in other organic solvents, and serve as 
convenient precursors to a variety of other trivalent actinide species including homoleptic 
tris amido complexes as shown below [11,12,13].  
 
 thf 

AnI3(thf)4  +  3 NaNR2  ----------->  An(NR2)3  +  3 NaI 
 

The parent amides, An(NH2)3, have not been described in the literature and it is likely 
that these will be polymeric materials insoluble in liquid ammonia [14].  However, 
sodium iodide is readily soluble in liquid ammonia and can easily be separated from the 
insoluble actinide product.  Alternatively, we can envision reacting the pure An(NR2)3 
compounds with NH3 at elevated temperatures to yield the secondary amine HNR2 and 
either An(NH2)3 or AnN. 
 
 ∆ 

An(NR2)3  +  xs NH3  ----------->  An(NH2)3  +  3 HNR2 
 ∆ 

An(NH2)3   ----------->  AnN  +  2 NH3 
 

 
The ammonolysis route is attractive for efficient labeling of the final nitride with 
nitrogen-15.  For nitride fuels, enrichment is an option to prevent the formation of 14C 
from the 14N(n,p) reaction. The recovery of enriched nitrogen from UN has been 
investigated elsewhere [15].  In this work the dissolution of spent nitride fuel with an 
oxidizing agent in molten salt was examined.  Most of nitrogen is recovered as N2 gas 
resulting from the reaction of uranium nitrides above 550 ºC.  The recovered N2 gas, 
enriched in 15N, can be converted to ammonia and recycled into the above reaction. 

 

2.3. Tasks 
To achieve the project objectives research will be performed on the non-aqueous 

synthesis of trivalent amido complexes, decomposition of the amido complexes to the 
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corresponding nitrides, characterization of the nitride products, and sintering of the 
nitrides into fuel pellets.  The description of each task is below. 

2.3.1. Task 1: Non-aqueous coordination experiments  
Initial efforts on this task will begin with uranium experiments at UNLV.  The 

experiments will evaluate the optimal conditions (concentrations of reagents, time, 
temperature, etc.) for the formation of the uranium(III) amide, U(NH2)3, from UI3 and 
NaNH2 in liquid ammonia.  These experiments will initially be conducted at ca. -34°C 
under nitrogen in ordinary glassware to observe color changes and the solubility 
characteristics of UI3(NH3)4 and U(NH2)3.  The reactions can easily be done at room 
temperature or above using stainless steel Parr pressure vessels. In parallel, we will 
examine the gas-solid reactions of ammonia and isolated uranium(III) amide complexes 
under flow conditions to establish the temperature at which U(NR2)3 is converted to 
U(NH2)3 and ultimately to UN.  Once the uranium experimental conditions are identified 
and optimized, experiments will proceed on neptunium and the heavier actinides at 
LANL.  The facilities at LANL will be exploited to examine and evaluate amido 
complexes of the transuranic elements.    

2.3.2. Task 2:  Formation and characterization of nitrides 
In this task the formation of the nitride species and subsequent characterization of the 

resulting species will be performed for all the actinide nitrides examined.  Based on the 
proposed synthetic route, the nitride will be formed from the amido actinide species 
under heat with the liberation of ammonia.  The parameters to be examined in this task 
include heating temperature, time, and atmosphere.  The kinetic variation in the nitrate 
formation as a function of the differing parameters will be evaluated.  The nitride species 
will be evaluated by microscopic, XRD, thermal methods, and spectroscopic methods.  
The UNLV team is already employing microscopic and XRD methods for evaluation 
nitride species.  Information on elemental composition and phases are expected with 
these methods.  The spectroscopy method will be mainly XAFS, consisting of EXAFS 
and XANES.  These methods provide information on bond distances, coordination, and 
oxidation state.  The UNLV team is currently performing XAFS experiments with 
collaborators from SRNL.  These efforts may be supplemented by the XAFS capabilities 
of the LANL team.  The thermal methods will be TGA and DSC.  These methods will 
provide information on the properties of the resulting nitrides for comparison with 
nitrides formed from other synthetic routes.  The methods described above are available 
at both UNLV and LANL.  

2.3.3. Task 3:  Development of methods for the synthesis of nitrides 
The results from Task 1 and 2 will be used to develop the optimal conditions for the 

synthesis of actinide nitrides.  While it is expected the methods will be similar, some 
difference between the different actinide elements may be observed.  For the formation of 
mixed actinide nitride solid-solutions, different routes may be needed that incorporate 
suitable elements of the composite actinide elements.  If required, studies on the 
formation of mixed actinide nitride solid-solutions will be performed in this task using 
the methods from Task 2.  The necessity of performing these studies will be evident from 
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results in Task 1 that identify differences in the formation of amido species for the 
evaluated actinide elements.   

2.4. Experimental methods 
The experimental methods for the synthesis of the amido actinide species relies upon 

the use of inert atmosphere and elevated pressure.  These conditions can be reached with 
the use of Schlenk lines, pressure vessels, or glove boxes.  A combination of these 
techniques will be utilized in the project.  Characterization of the resulting amido species 
will primarily utilize X-ray diffraction employing methods and equipment already 
developed by the LANL partner.   

For the solid phase characterization the methods will be the same as those already 
employed by UNLV for nitride materials.  X-ray powder diffraction (XRD) in 
combination with Rietveld structure refinement to refine or to determine actinide 
occupancies within the crystal lattices of the fuels will be used.  Additionally high 
resolution electron microscopy (transmission electron microscopy) in combination with, 
nano probe X-ray spectrometry (EDS), parallel energy loss spectroscopy (PEELS), 
energy-filter electron microscopy, electron beam microprobe analysis (EMPA) and 
scanning transmission electron microscopy will also be used to evaluate the actinide 
nitrides.  The state-of-the-art analytical instrumentation on X-ray diffraction is a 
PANalytical X-Pert Pro with X’Celarator solid state detector and Bruker AXS Topas2 
Rietveld structure refinement software.  The high resolution electron microscopy used a 
Tecnai F 30 STEM with a FEG field emission gun, scanning option, PEELS, EDS, 
Energy-Filter, 300 kV acceleration, and a point resolution of 2.2 Å.  This project can 
utilize two fully equipped sample preparation laboratories, one specifically for the 
preparation of radioactive specimens.  X-ray absorption fine structure spectroscopy 
(XAFS) will also be used in analysis.  XAFS includes EXAFS (extended x-ray absorption 
fine structure spectroscopy) and XANES (x-ray absorption near edge spectroscopy). 
EXAFS is an atom-specific local structure probe used to determine the molecular 
structure of a species. Data can yield information including average interatomic distances 
and the number and chemical identities of neighbors within 5 to 6 Å of a selected atom 
species. XANES data contains information on bound state electronic transitions and is 
used to determine the oxidation state of the species.  The XAFS experiments can be 
performed at ANL with SRNL collaborators from other projects or in conjunction with 
LANL.  Thermal analysis (DTA-DSC) can also be performed at UNLV. 

2.5. Merit Review Criterion Discussion 

2.5.1. Technical approach of proposed research  
This project will address the current deficiencies in the synthesis of nitride fuels by 

developing a solution based synthesis.  This project will bring experts and expertise in 
non-aqueous actinide chemistry to the field of nuclear fuel synthesis.  This field places 
emphasis on coordination chemistry and reaction routes in the formation of novel and 
unique complexes.  The addition of the knowledge and methodologies that are the basis 
of non-aqueous coordination chemistry will generate an improved understanding of the 
fundamental chemical pathways for the direct formation of nitride species.  The synthesis 
will be combined with state-of-the-art x-ray and microscopic analysis for the 



 9

characterization of the final nitride product.  These methods will identify phase, species, 
and coordination environments of the nitride products. 

The technical approach will also include the formation of transuranic actinide species.  
This effort will be based on initial studies with uranium.  The uranium amido synthesis 
will be examined by two main routes, one involving sodium metal and the other 
developed by LANL team members to produce An(NR2)3 complexes.  The conditions for 
these synthesis will be systematically evaluated to determine the best methods for 
producing uranium amide species then subsequently the nitride species.  Once these 
conditions are determined for uranium they can be applied to neptunium, plutonium, and 
americium.  This methodology will also be applied to the synthesis of mixed actinide 
solid-solutions.  The X-ray and microscopy characterization techniques will provide 
information on the phases in the solid-solutions.   

2.5.2. Significance and Impact  
A major difficulty in the potential utilization of nitride fuels in advanced fuel cycles is 

production of the materials.  The physical properties of nitride fuels have advantages in 
advanced reactors and therefore an improvement in the material synthesis can enhance 
future options.  The proposed non-aqueous solution synthetic route for actinide nitrides is 
based on existing amido coordination chemistry results.  The control on product physical 
properties inherent in solution phase synthesis as observed in the sol-gel method for 
oxides can be can be applied to actinide nitrides.  The successful completion of this 
project will provide a method of the elimination of impurities inherent in the 
carbothermic reduction method currently employed for nitride fuel synthesis. This will 
result in methods for reliable material synthesis.  Furthermore, if enriched nitrogen is 
used, recycling can be incorporated into the synthetic route. The recovery of enriched 
nitrogen from UN has been investigated [15] and the method incorporated into the 
synthesis of actinide nitrides.  In this work the dissolution of spent nitride fuel with an 
oxidizing agent in molten salt was examined.  The benefits can be realized if the 
fundamental chemistry germane to the non-aqueous amido chemistry and formation of 
the nitride actinides is understood.   
 

2.5.3. Principal Investigator  
The PI, Professor Ken Czerwinski, is the director of the Radiochemistry Ph.D. 

program at UNLV, a member of the chemistry department faculty, and a researcher in the 
Harry Reid Center.  His educational efforts are centered on providing world-class 
radiochemistry experience to undergraduate and graduate students.  These efforts include 
laboratory experience as well as classroom instruction.  Research is centered on 
determining the chemical kinetics and thermodynamics of radionuclides with an 
emphasis on actinide elements.  Data obtained in the laboratory are incorporated into 
models to evaluated systems containing actinides.  The results are compared to actual 
systems to assess the validity of the data and models.  Within this broad area research is 
performed on the speciation of actinides in the environment, actinide separations in the 
nuclear fuel cycle, and actinide chemical forms in solids.  The group has experience with 
DOE programs in EMSP, NERI, and the Advanced Fuel Cycle Initiative.  The programs 
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include nuclear fuel development, chemical and physical separations of actinides and 
fission products, and environmental behavior of actinides.  

At UNLV the team has access to transuranic chemistry laboratories for performing 
experiments with gram quantity of radionuclides and actinides.  The laboratories contain 
hood space and glove boxes for performing these experiments.  Common experimental 
methods performed in these laboratories include spectroscopy and separation/detection.  
Separation/Detection experiments divide species based on size, charge, or a combination 
of the two.  The amount of each species is quantified by radiation detection or analytical 
techniques.  A separate counting laboratory is maintained by the group in conjunction 
with the UNLV Health Physics Department.  The counting laboratory provides gamma 
counters, alpha counters, gas proportional counters, and scintillation counters.  
Spectroscopic methods include IR, UV-Visible, NMR, and laser spectroscopy.   

Specific methods already used by the UNLV team of importance to the project 
include XRD, X-ray spectroscopy, and microscopy.  In XRD, X-rays are used to probe 
crystalline structure and to determine far ordered structure units with highest precision 
possible.  X-ray diffraction is used in two ways: determination of the crystalline phase 
constitution using the PDF data base for powder diffraction, and the refinement of the 
individual crystal structures by Rietveld structure refinement using the ICSD data base 
for inorganic single crystal data. Since XRD is basically a structure sensitive technique, 
the XRD pattern is characterized by the structure-type of the crystalline solids present. 
Beside the structure-type sensitive characteristic X-ray powder pattern ("fingerprint") the 
UNLV team is using least square lattice parameter refinement and Rietveld structure 
refinement to clearly identify each individual crystalline phase. Rietveld refinement will 
confirm and modify the crystal structure of each phase present based on published X-ray 
single crystal data (ICSD). The crystal structure information provides data on interatomic 
distances and the coordination polyhedron of the actinide cations within the far-ordered 
structure to high special resolution.   

Other x-ray synchrotron methods are XAFS, including EXAFS (extended x-ray 
absorption fine structure spectroscopy) and XANES (x-ray absorption near edge 
spectroscopy). EXAFS is an atom-specific local structure probe used to determine the 
molecular structure of a species. Data can yield information including average 
interatomic distances and the number and chemical identities of neighbors within 5 to 6 Å 
of a selected atom species [16].  These experiments have been performed by the UNLV 
team members on nuclear fuel [17], environmental samples [18], and recently on 
separation systems.   

At UNLV high resolution electron microscopy (transmission electron microscopy) in 
combination with nano probe X-ray spectrometry (EDS) and parallel electron energy loss 
spectroscopy (PEELS), energy-filter electron microscopy, and scanning transmission 
electron microscopy can be performed with radionuclide containing samples. UNLV’s 
instrumentation, a  Tecnai F 30 STEM,  is clearly a state-of-the-art tool for high 
resolution electron microscopy. The Tecnai F 30 provides highest possible resolution at 
300 kV by operation with a FEG field emission gun. It can be operated under scanning 
and energy-filtered mode and provides PEELS and EDS spectroscopy with sub-micron 
spatial resolution (nano-probe). The point resolution is 0.2 nm. Two fully equipped 
sample preparation laboratories, one for the preparation of surrogate sample, one for the 
preparation of radioactive containing specimens can be used.  The analytical work scope 
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as proposed will promote the Harry Reid Center for Environmental Studies of UNLV as 
the top academic institution in the U.S. for analyzing radioactive samples to highest 
spatial resolution. 

The Los Alamos partners are recognized world leaders in actinide science.  One team 
member, Dr. Al Sattelberger, will be a visiting professor in the chemistry department at 
UNLV beginning fall 2005.  His efforts will include development of the educational and 
research components of the Radiochemistry Ph.D. program, including incorporating 
LANL researchers into the UNLV education and research program.  The extensive 
facilities and instrumentation for characterization of actinide compounds and materials 
within the NMT and C Divisions at Los Alamos will be available for use on the project..  
In addition, LANL participants have particular expertise and facilities for the non-
aqueous synthesis and characterization of transuranic nitrides using a  wide variety of 
physical techniques, including XAFS at SSRL. 

2.6. Project Timetable 
The project is divided into 3 tasks (see section 2.3).  The timetable for the tasks is 

provided below. 
Task 1:  Non-aqueous coordination chemistry 

 Development of amido coordination with uranium (Months 0-12) 
 Development of amido coordination with neptunium (Months 10-22) 
 Development of amido coordination with transneptunium actinides (Months 

20-32) 
Task 2:  Nitride formation and characterization 

 Formation and characterization of uranium nitride from amido species 
(Months 8-14) 

 Formation and characterization of neptunium nitride from amido species 
(Months 15-27) 

 Formation and characterization of transneptunium nitrides from amido species 
(Months 25-34) 

Task 3:  Development of methods for the synthesis of actinide nitrides 
 Identification of crucial parameter of the solution based synthesis of uranium 

nitride (Months 12-15) 
 Identification of crucial parameter of the solution based synthesis of 

neptunium nitride (Months 12-15) 
 Comparison of solution synthesis for uranium and neptunium nitride and 

initial identification of required methods for solid-solution synthesis (Months 
15-17) 

 Experiments on the synthesis of uranium-neptunium solid solutions if large 
variations are identified (Months 20-30) 

 Identification of crucial parameter of the solution based synthesis of 
transneptunium nitride (Months 28-33) 

 Comparison of solution synthesis for actinide nitride and identification of 
required methods for solid-solution synthesis with different actinides (Months 
30-36) 
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2.7. Evaluation Phase 
The success of the project is predicated on the actinide amido non-aqueous synthesis, 
conversion of the amido species to the nitride, and development of methods for using 
the project resulting in the synthesis of nitride fuels.   The plan and metrics for 
evaluating the project follow these areas.  The follow metrics will be evaluated to 
ascertain the direction of the project 

 Progress on uranium amido species synthesis (Month 7) 
 Synthesis of uranium amido species (Month 13) 
 Synthesis of uranium nitride from the amido species (Month 15) 
 Progress on neptunium amido species (Month 22) 
 Progress on identification of conditions for mixed actinide solid solution 

synthesis (Month 26) 
 Synthesis of neptunium amido species (Month 28) 
 Synthesis of neptunium nitride from the amido species (Month 31) 
 Conditions for mixed actinide solid solution synthesis (Month 32) 
 Synthesis of transneptunium nitrides (Month 36)  

 

3. References 
                                                 
1.  R. Agarwal, V. Venugopal, and D.D. Sood:  Calculation of thermodynamic 

parameters of U-Pu-N system with carbon and oxygen impurities. J. Nucl. Mat. 1999, 
270(3), 301-308.   

2.  Y. Arai, M. Morihira, and T.  Ohmichi:  The effect of oxygen impurity on the 
characteristics of uranium and uranium-plutonium mixed nitride fuels. J. Nucl. Mat. 
1993, 202(1-2), 70-8.   

3.  J. M. Cleveland, G. H. Bryan, C. R. Heple, and R. J. Sironen, J. Am. Chem. Soc., 
1974, 96, 2285. 

4.  J. M. Cleveland, G. H. Bryan, C. R. Heple, and R. J. Sironen, Nuclear Technology 
1975, 25, 541. 

5.  G. H. Bryan, J. M. Cleveland, and C. R. Heple, Actinide Nitrides, US Patent 3923959 
(1975). 

6.  D. L. Clark, and A. P. Sattelberger, Inorg. Chem. 1989, 28, 1771.  
7.  L. R. Avens, S. G. Bott, D. L. Clark, A. P. Sattelberger, J. G. Watkins, and B. Zwick, 

Inorg. Chem. 1994 33, 2248. 
8.  D. L. Clark,  and A. P. Sattelberger, Inorg. Synth. 1997, 31, 307. 
9. Ganguly C. and Hedge, P.V.:  Sol-Gel Microsphere Pelletisation Process for 

Fabrication of (U,Pu)O2, (U,Pu)C and (U,Pu)N Fuel Pellets for Prototype Fast 
Breeder Reactor in India, J. Sol-Gel Sci Tech, 1997, 9, 285-294. 

10. Greenhalgh, W. O:   Kinetic measurements for the carbothermic synthesis of uranium 
nitride, plutonium nitride, and (uranium, plutonium) nitride. J. Amer. Cer. Soc. 1973, 
56(11), 553-7.  

11. R. A. Andersen, Inorg. Chem. 1979, 18, 1507. 
12. J. C. Berthet and M. Ephritikhine, Coord. Chem. Rev. 1998, 178-180, 83. 
13. A. L. Odom, P. L. Arnold, and C. C. Cummins, J. Am. Chem. Soc. 1998, 120, 5836. 



 13

                                                                                                                                                 
14. Chromium(III) amide, Cr(NH2)3, is apparently polymeric in the solid state and 

insoluble in liquid ammonia.  See: O. Schmitz-Dumont, J. Pilzecker, and H. F. 
Piepenbrink, Z. Anorg. Allg. Chem. 1941, 248, 175.  

15. Hayashi, Hirokazu; Kobayashi, Fumiaki; Ogawa, Toru; Minato, Kazuo:   Dissolution 
of uranium nitrides in LiCl-KCl eutectic melt. Journal of Nuclear Science and 
Technology, 2002, (Suppl. 3), 624-627. 

16. Brown, Gordon E. Jr.; Waychunas G. A. X-ray Absorion  Spectroscopy: Introduction 
to Experimental Procedures. Stanford Synchrotron Radiation Laboratory XAS 
Procedures, 3/11/99 

17. Curran, Gini; Sevestre, Y.; Rattray, Wendy; Allen, Patrick; Czerwinski, K. R., 
Characterization of zirconia-thoria-urania ceramics by X-ray and electron interactions, J. 
Nucl. Mat. 2003, 323(1), 41-48. 

18. J. Plaue and K.R. Czerwinski, Actinide Speciation in Environmental Remediation, J. 
Nucl. Sci. 2002, Supp 3, 461-465. 


	Solution-Based Synthesis of Nitride Fuels
	Repository Citation

	Microsoft Word - Task 34 proposal.doc

