Alzheimer’s in America: Effective Physical Activity Methods for Brain Health Reviewed

Royale Cannon, McNair Scholar, Psychology
Dr. Laurel M. Pritchard, Mentor, Psychology

INTRODUCTION

The alarming rise in rates of Alzheimer’s disease indicates that there is an immediate need for a solution. According to the Centers for Disease Control and Prevention (2014) Alzheimer’s is currently the sixth leading cause of death in the United States. Over 400,000 new cases are diagnosed each year and these numbers are only expected to rise (Centers for Disease Control, [CDC] 2014). One out of nine people are living with the disease and 84,000 people succumb to this disease every year in America; currently there is no cure or direct treatment plan for the disease (Alzheimer’s Association, [AA] 2010; National Institute on Aging, [NIH] 2015). These numbers are very significant; almost a quarter of the population diagnosed dies every year. Being that Alzheimer’s is a leading cause of death, its presence cannot be ignored. The lack of a cure encourages researchers to seek out protective interventions in order to decrease the risk of developing the disease in later life. The purpose of this study will be to assess the effect of physical activity in middle adulthood on delaying the onset of Alzheimer’s disease. This study will identify trends in ongoing physical lifestyle activities that reduce the entire population’s chance of developing the disease in later life. This will contribute to previous research by focusing on prevention to reduce risk of cognitive decline and implementing a suggested intervention for middle-aged adults that will decrease the likelihood of Alzheimer’s being developed and help to delay the progression.

METHODS

A systematic review study design was used to evaluate previous study data which met the inclusion criteria. The process included searching studies that included the terms Alzheimer’s disease, dementia, cognitive decline, physical activity, exercise, middle adulthood, and late adulthood. A variety of scholarly studies were selected from three databases, Web of Science, PubMed and PsychINFO, as well as websites and reference lists with a direct relation to physical activity participation and some form of cognitive decline. Prospective cohort and case control studies were included that measured physical activity as an independent variable and cognitive function as an outcome. The data extracted from the articles included both odds and risk ratios among the outcome variables. Studies were included that examined physical activity at a baseline of mid-life (ages 40-60), and late life cognitive impairment. Studies examining cognitive or mental activities, dietary interventions, or interventions other than physical activity were excluded. Physical activity performed throughout life was evaluated on moderate/frequency and intensity, and the impact it has on cognitive decline. Keywords: Alzheimer’s disease (AD), Cognitive decline (CD), Physical activity (PA), Dementia, Physical Exercise (PE).

DATA ANALYSIS

Data was collected using inclusion criteria from longitudinal cohort studies and statistically analyzed in alignment with PRISMA review standards. Our original search yielded a total of 24 articles, four of these articles met the inclusion criteria and were included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis. The other 20 articles that did not meet the criteria were excluded; due to not measuring cognitive function, not studying the target mid-age included in the data analysis.

RESULTS

Table 1

<table>
<thead>
<tr>
<th>First Author</th>
<th>Outcome</th>
<th>Age (Mean) Baseline/Follow up</th>
<th>PA/PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulmala, J</td>
<td>Dementia</td>
<td>65/77</td>
<td>PA: Active, Moderate, Sedentary/Sleeplessness and Socializing</td>
</tr>
<tr>
<td>Tolppanen, A</td>
<td>AD</td>
<td>60/67.4</td>
<td>PA: 20-30 min per session/Low, Moderate, High (Sleeplessness and Socializing)</td>
</tr>
<tr>
<td>Tripathi, M</td>
<td>Dementia</td>
<td>65/75</td>
<td>PE: 30+ minutes/week, 10 years (Brick Walking)</td>
</tr>
</tbody>
</table>

Table 1 includes means and standard deviations from the four studies for low, moderate and high activity levels.

Table 2.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Ratio Low Act. (95% CI)</th>
<th>Ratio Med Act. (95% CI)</th>
<th>Ratio High Act. (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulmala, J</td>
<td>2.20 (1.10-4.40)</td>
<td>1.30 (0.80-2.20)</td>
<td>1</td>
</tr>
<tr>
<td>Tolppanen, A</td>
<td>1.40 (1.00-1.95)</td>
<td>1.46 (1.08-1.46)</td>
<td>1</td>
</tr>
<tr>
<td>Tripathi, M</td>
<td>2.05 (1.34-3.04)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2 includes ratios from the four studies included in the data analysis. Ratios are represented above by Author, Outcome, Age at baseline and follow up, and Physical Activity or Exercise.

CONCLUSIONS

According to our data it has been shown that physical activity done early and consistently throughout life can be conducive for reducing the chance of developing Alzheimer’s disease, dementia and other related cognitive impairment. Participating in vigorous level physical activity for thirty minutes or more, three or more times a week can protect cognitive function. Research in this area needs to be regulated in order to measure the type of activity, frequency, intensity and duration of time needed to be effective in protecting cognitive function. Also standardizing cognitive tests inventories, like the STROOP or WAIS will make it easier to analyze the data amongst different studies. Incorporating these ideas into future population based, longitudinal studies can help us gather useful data to pinpoint positive protective factors that will preserve cognitive function and help relieve the stress and burden incurred by families and communities when dealing with cognitive impairment.

REFERENCES


ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to the McNair Scholars Institute for support, and the opportunity to partake in this research program. I cannot express enough gratitude to my mentor Laurel M. Pritchard, PhD, for the invaluable guidance that she provided through this extensive research process.