Aug 3rd, 9:00 AM - 12:00 PM

Phylogenetic studies of newly isolated freshwater Magnetospirilla using cbb and mam genes

Nathan Viloria
University of Nevada, Las Vegas

Christopher T. Lefevre
University of Nevada, Las Vegas

Dennis A. Bazylinski
University of Nevada, Las Vegas

Repository Citation

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Phylogenetic Studies of Newly Isolated Freshwater Magnetospirilla Using \textit{cbb} and \textit{mam} Genes

Nathan Viloria, Christopher T. Leleve, Dennis A. Bazylnski; School of Life Science

Abstract

The phylogeny and relatedness of prototrophs is determined by comparison of \textit{cbb} and \textit{mam} gene sequences. Comparisons between other gene sequences have been used for this purpose and some have been used for \textit{cbb} and \textit{mam} gene sequences (Jolley, 2010). However, \textit{cbb} and \textit{mam} gene sequences have not been used in this way. The purpose of this study was to determine phylogenetic relatedness of a large number of newly isolated freshwater magnetospirilla using sequences from \textit{cbb} and \textit{mam} genes and \textit{cbb} and \textit{mam} gene sequences to compare these results to those from sequence analysis of the \textit{cbb}, \textit{cbb}, and \textit{mam} genes.

Methods

Isolation of new strains of magnetospirilla. Magnetically purified MTB from various water samples were inoculated into a semi-solid D-glucose enrichment medium similar to that described by Bazylnski et al. (2004) except that the medium was designed for non-aerobic \textit{Gammaproteobacteria}. Differentiation of the resulting bacterial colonies was used to identify 13 \textit{Magnetospirillum} and \textit{Magnetotacticum} strains. Phylogenetic relatedness of the \textit{cbb} and \textit{mam} gene sequences was determined using the BioEdit sequence alignment editor. The phylogeny of

Results (cont.)

Table 2. Presence of \textit{cbb}, \textit{cbb}, \textit{mam}, and \textit{mam} genes in strains of magnetospirilla as determined by PCR. A negative result does not mean the gene is necessarily absent; it could mean that the sequence of the gene is different enough that the degenerate primers used are not effective. ISS-2 and BW-2 are \textit{Gambacottiacoccus} MTB used as positive PCR control for \textit{cbb} and \textit{mam} genes.

Table 1. Degenerate PCR primers used for the amplification of 16S \textit{RNA}, \textit{cbb}, \textit{cbb}, \textit{mam}, and \textit{mam} genes.

Table 3. Phylogenetic tree of magnetospirilla based on \textit{cbb} and \textit{mam} gene sequences. Red = new \textit{cbb} and \textit{mam} genes; black = \textit{Magnetotacticum} species; orange = \textit{MTB} and blue = magnetospirilla. Bootstrap values at nodes are percentages of 1,000 replicates. Bar represents 5% sequence divergence.

Discussion

Phylogeny and relatedness of magnetospirilla based on \textit{16S} rRNA \textit{gene} sequences. The current standard method for determining phylogenetic relatedness of prototrophs is by comparison of \textit{16S} rRNA \textit{gene} sequences. This analysis was performed on a number of newly isolated MTB with the \textit{ ENTEROBACTERIACEAE} and \textit{Gammaproteobacteria}. The results of the analysis show that most of the strains belong in the \textit{Magnetospiron} family, either as new strains of existing species (sequence identity >97%) or a new species (97% to 96%). When the data is taken in its entirety, magnetospirilla appear to be phylogenetically more related to each other than either to an \textit{MTB} or \textit{MTB}. This may be due to the presence of an \textit{MTB} in each strain. The data also show that the \textit{MTB} should be reclassified and included in \textit{MTB}

Future Directions for Research

In this study, we have shown some interesting genetic trends. However, before major conclusions can be drawn from the data, some additional \textit{PCR} and sequencing reactions must be completed. Because it is unlikely that magnetospirilla lack \textit{16S} rRNA \textit{gene} sequences, this may be due to the presence of \textit{MTB} in each strain. The data also show that the \textit{MTB} should be reclassified and included in \textit{MTB}.

Acknowledgements

Research in the Bazylnski Lab is made possible by the National Science Foundation (NSF) Grant Number 1513806, Graduate Research Fellowship Program, and Undergraduate (REU) Grant Number 0964287.

References

