Aug 3rd, 9:00 AM - 12:00 PM

High pressure studies of titanium hydride up to 50 GPa with synchrotron x-ray diffraction

Greg Harding
Harvey Mudd College

Patricia Kalita
University of Nevada, Las Vegas

Stanislav Sinogeikin
Carnegie Institute of Washington

Andrew Cornelius
University of Nevada, Las Vegas

Repository Citation

Greg Harding, Patricia Kalita, Stanislav Sinogeikin, and Andrew Cornelius, "High pressure studies of titanium hydride up to 50 GPa with synchrotron x-ray diffraction" (August 3, 2010). *Undergraduate Research Opportunities Program (UROP)*. Paper 14.

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
High Pressure Studies of Titanium Hydride Up to 50 GPa with Synchrotron X-ray Diffraction
Greg Harding¹, Patricia Kalita², Stanislav Sinogeikin³, Andrew Cornelius²
¹Harvey Mudd College; ²HiPSEC, Department of Physics and Astronomy, UNLV; ³Carnegie Institute of Washington

Abstract
Titanium dihydride has the potential to play an important role in the efficiency of high density hydrogen storage. The structural instability of TiH₂ at high pressures makes an accurate characterization of its structure a vital part of understanding its behavior. A sample of TiH₂ was placed in a diamond anvil cell and studied from ambient pressure up to 53 GPa using in situ synchrotron x-ray diffraction at the Advanced Photon Source (APS) of Argonne National Laboratory (Sector 16, HPCAT). From data of the evolution of the structure with pressure, an equation of state was obtained to model the behavior of the unit cell of TiH₂ between 0 and 51 GPa.

Introduction
- Crystals change structure as pressure increases
- Change in structure results in new properties
- Diamond anvil cell (DAC) allows for high pressure in situ x-ray diffraction
- X-ray diffraction reveals information about the structure of the material
- Synchrotron x-rays allow for smaller samples to be studied due to high flux

Methods
Diamond Anvil Cell
- Rhenium gasket indented between two diamond culets
- Electric Discharge Machine (EDM) used to drill hole through center of indentation
- Sample placed on diamond culet in gasket hole

Synchrotron XRD
- DAC placed in x-ray beam
- Pressure increased in 1-2 GPa steps
- Diffraction patterns recorded for each step

Synchrotron Facility at Argonne National Laboratory

Data Analysis
- Circular pattern integrated to generate linear model using Fit2D
- Peak fitting used to find spacing between atoms
- Structure inferred from spacing

Results
- Peak splitting on diffraction pattern confirms phase change in material
- TiH₂ undergoes a structure change from face-centered cubic (fcc) to body-centered tetragonal (bct) before 1.3 GPa
- Remains bct up through 53.3 GPa

Conclusions
- TiH₂ transitions from fcc to bct between ambient pressure and 1.3 GPa and remains bct through 53 GPa
- Titanium hydride has a relatively high bulk modulus of 136 ± 3 GPa

Acknowledgements
- This work was performed at HPCAT (Sector 16, beam line IDB), Advanced Photon Source, Argonne National Laboratory. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA (CDAC), NSF, DOD-TACOM, and the W.M. Keck Foundation. Use of the APS was supported by DOE-BES, under Contract No. DE-AC02-06CH11357.
- Support from the REU program of the National Science Foundation under grant DMR-1005247 is gratefully acknowledged.
- The authors thank GSECARS, at the Advanced Photon Source, Argonne National Laboratory, for the use of their gas loading setup.