UNIVERSITY LIBRARIES

Publications (YM)

Yucca Mountain

10-2003

Longbase laser strainmeter measurements from the South Ramp of the Yucca Mountain facility

Frank K. Wyatt University of California - San Diego

Duncan C. Agnew University of California - San Diego

James N. Brune University of Nevada, Reno, brune@seismo.unr.edu

Amy J. Smiecinski University of Nevada, Las Vegas, smiecins@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/yucca_mtn_pubs

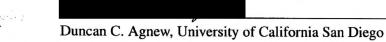
Part of the Geology Commons, Geophysics and Seismology Commons, and the Tectonics and Structure Commons

Repository Citation

Wyatt, F. K., Agnew, D. C., Brune, J. N., Smiecinski, A. J. (2003). Longbase laser strainmeter measurements from the South Ramp of the Yucca Mountain facility. Available at: https://digitalscholarship.unlv.edu/yucca_mtn_pubs/83

This Technical Report is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Technical Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself.

This Technical Report has been accepted for inclusion in Publications (YM) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.


Longbase Laser Strainmeter Measurements from the South Ramp of the Yucca Mountain Facility

Prepared for the U.S. DOE/UCCSN Cooperative Agreement Number DE-FC28-98NV12081,

Task 7: Establishment of a Long-Baseline Laser Strainmeter in the **Exploratory Studies Facility**

Document ID: TR-03-008

Originators:

Frank K. Wyatt, University of California San Diego

Approvals:

Duncan C. Agnew, UCSD Principal Investigator

<u>17 Oct 2003</u> Date <u>20 oct 2003</u>

Date

10-28-03

Date

Amy Smiecinski, QA Manager, UCCSN

James N. Brune, Technical Reviewer

TABLE OF CONTENTS

3
3
5
)
2
3
ŀ
8
3
;
)
ŀ
,

LIST OF FIGURES

1.	Plan view of site, showing faults	4
2.	Block diagram of site construction steps	
3.	Plan view of installation	
4.	Alcove and end-building design	
5.	Optics table	
6.	Datalogger front-panel/control panel	
7.	Signal processing flow-chart	
8.	Little Skull Mountain earthquake	
9.	Colima earthquake	
10.	Secular strain: 2002:330 to 2003:130	
11.	Recent results: 2003:234 to 2003:251	

LIST OF TABLES

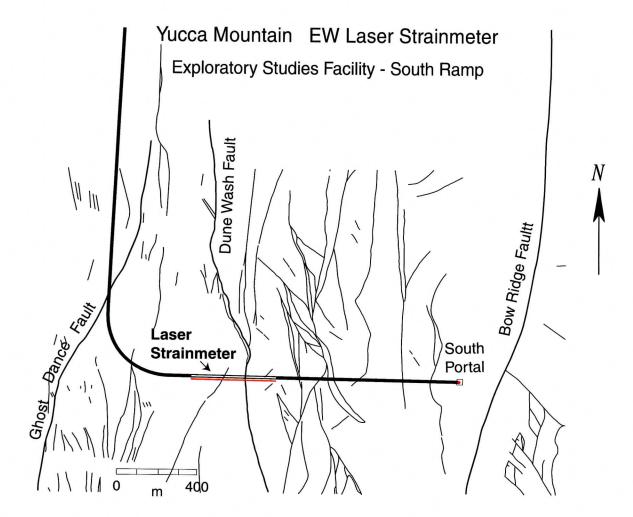
1.	Strainmeter dimensions and coordinates	6
2.	Optical anchor depths	
3.	Calibrated equipment	
	Data recorder and instrument control	
5.	Datalogger software versions	
	Strainmeter data channels	

1. Abstract

Under subcontract (DOE/UCCSN DE-FC28-98NV12081, Task 7) from the Seismological Laboratory of the University of Nevada-Reno, the University of California, San Diego (UCSD), has designed, installed, and operated a laser strainmeter (LSM) in the Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada. This instrument provides precise deformation monitoring of the (proposed) repository block. This document describes the history of the installation, outlines the principles of operation of the system, documents the integral recording and control system and file formats used, and provides information on how QA has been implemented, with the aim of being a self-contained description which could be used (in conjunction with the data files at the TDMS) to understand the measurements made by the LSM. Appendix A gives the unique digital signatures for all data files submitted to the TDMS.

The instrument was installed along the south wall of the tunnel, between 69+46 m and 65+41 m (tunnel coordinates). The resulting azimuth (91°) provides good sensitivity to the posited long-term strains from geologic sources. Designing an instrument for the tunnel was a challenge, as was installing it, given the usual, strict local operating procedures; these two elements combined to increase substantially the overall time to completion, though the experience gained has put us in a good position for further work in this setting. We have fully documented (SN) all aspects of the installation, and have complete engineering plans of the LSM available (Appendix B).

The instrument began operating to QA standards on 2002:233 (August 21, 2002), and has recorded strain since that time, though with interruptions caused by the very strong shaking from the mining trains, which both caused sizeable gaps in the series and caused the lasers to degrade much more rapidly: both problems have been dealt with successfully. The instrument is producing quality records. Preliminary results from the laser strainmeter suggest that seismic waves and tides cause strains with no obvious anomalous response or nonlinearity; and that air-pressure changes can cause significant strains, with a response that depends on the spatial pattern of pressure applied. With the data so far available, we can constrain the long-term strain rate to be less than 0.2 $\mu \epsilon/yr$. A longer-term record should greatly improve this constraint.

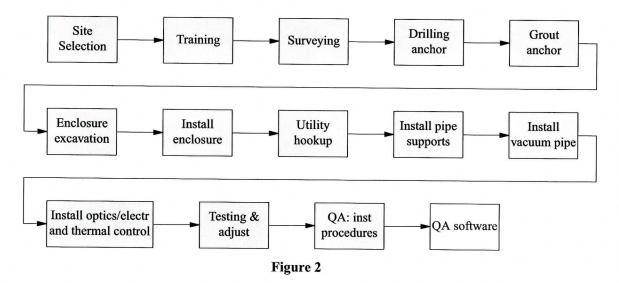

2. Introduction

This report describes work done by the University of California, San Diego (UCSD), under subcontract to the Seismological Laboratory of the University of Nevada-Reno, to install and operate a laser strainmeter (LSM) in the Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada (DOE/UCCSN DE-FC28-98NV12081, Task 7). UCSD has designed and installed an LSM for deformation monitoring at Yucca Mountain, specifically in the south ramp of the ESF (**Figure 1**).

The value of this measurement to the Yucca Mountain Project is that the LSM is critical for understanding the short-term and long-term stability of the site; precise deformation monitoring is essential for understanding the hazard posed by the local tectonic environment, for helping to guide the engineering requirements for constructing a safe site, and for providing a baseline against which to observe warning signals from any significant future changes in tectonic, volcanic, or rock conditions. The LSM continuously monitors the repository-scale strains from all sources, complementing regional geodetic surveys at the facility by providing an independent check and much lower noise over a wide frequency range.

The strainmeter monitors the following:

• The baseline strain rate in the ESF; measuring this, and possible future changes, will provide a powerful check for strain-rate variations that might be associated with possible tectonic or volcanic events or potential repository activities. Continuous recording of strain thus provides


Figure 1

important data relevant to establishing performance compliance of the repository. The East-West LSM is installed with an orientation to provide good resolution of possible long-term strains.

- Strains associated with seismic waves, earth tides, and atmospheric pressure variations; analysis of these provides unique information on the bulk rock properties (e.g., elastic modulus) of the potential repository block, and any changes in them.
- Any strains from earthquakes (either from static deformations caused by (future) local earthquakes, or by triggered slip along nearby faults) or from volcanic activity (e.g., in Crater Flat); any such strains would be important in judging the integrity of the repository after such events.

3. Project History

For background we first provide a summary of how the project was originally organized, and the progress of the work; **Figure 2** shows (primarily) the steps at the site, though of course even more effort was spent on construction, testing, and assembly in our lab. The filled boxes are tasks completed. Note that while we have not yet completed the task of QA'ing our analysis software, this does not affect the data collected to this point, which does, in its raw form, satisfy QA, and can be retrospectively analyzed once the software qualification is complete.

3.1. Phase I

This was the preparatory work, including site training, surveying, and instrument site-selection, Quality Assurance training, and (based on all this information) the main part of the instrument design and engineering.

Our introduction to the Exploratory Studies Facility was in 1999, with the objective of selecting a candidate instrument location. The basic instrument consists of a low powered laser projected through a several-hundred-meter long evacuated pipe, which is used to measure the displacements between two anchored end points. Extensive discussions and side-wall surveys led, in November 1999, to the selection of the South ramp as the best location (**Figure 1**). It is straight (save for one jog in a badly fractured area near 71+30 m), generally not heavily used, has large spans of sound rock, and is free of the complications of sidewall-supporting steel-sets, allowing the pipe to be mounted near the tunnel wall. We selected the longest straight section available toward the back of the South ramp (just before the tunnel begins its

sweeping curve to the north). Over this section, the sidewalls are straight to within 5-7 cm. The pipe is centered 27 cm from the sidewall, and 1.4 m above the tunnel floor, well away from the traveled area. We had hoped to construct an instrument at least 300 m in length, and were able to achieve 405 m. In selecting the specific anchoring end-points we were guided both by onsite inspection and by the available (and extensive) geological mapping, from which we extrapolated the exposed geology back into the rock where the anchors were to be seated. For the east end of the instrument, at 69+46 m, we were limited by the fracturing tens of meters to the east and a contact surface below (and generally more extensive geologic variations to the east; see **Figure 1**); for the west end, at 65+41 m, by the greater density of small voids in the material going to the west, and by joints and contacts. The instrument does span one well mapped fault: the Dune Wash fault, at 67+88 m, with 52 meters of offset. The accepted view is that such minor faults are generally locked, and need not be considered as different from the surrounding material unless there is faulting on them. We do not expect any complicating signals from this fault.

Table 1: Strainmeter Dimensions and Coordinates

Location:	South Ramp of Exploratory Studies Facility South sidewall	
East-end anchor:	69+46 m (tunnel coordinates)	
West-end anchor:	65+41 m	
Length:	405 m long	
Slope:	2.6% (1.5°) down-to-west	
Azimuth:	91.0° east of north	
Coordinates:	36.828° N ; -116.449° E	
Elevation:	1120 m (above mean sea level)	

During this stage we also developed, working with the UCCSN QA staff, a basic outline for the QA aspects of the project:

- A. The non-QA component: fabrication of the instrument.
- B. A calibration period for verification of the installation.
- C. Operating the instrument (requiring a Scientific Notebook, and eventually IP's)
- D. Data processing, requiring QA'd software.

3.2. Phase II

This phase included fabrication of the bulk of the LSM instrument components, and all substantial site preparation work (site construction), which was carried out by YMP contract crews ("Crafts"), including the critical optical-anchor borehole work and alcove excavation (**Figure 3**). Borehole drilling for the LSM optical anchors began in December 1999, and was completed in January 2000. Two pairs of holes were drilled for "anchoring" each end of the 405 m-long instrument. Late in March 2000, we were provided with alignment-survey results for the candidate "anchoring" holes (each 15 m deep) and these results showed that the holes were curved beyond the specified tolerances. This led to an extensive effort (ultimately successful) to rework the downhole assemblies to make utilization of the holes possible; this is discussed further below.

Before we were familiar with the ESF we thought we could forego our normal end-structure enclosures, and hence did not identify them as a substantial element of the project. Most tunnel environments are exceptionally benign (e.g., very stable temperature), but because of the high activity level in the tunnel the environment there is as harsh as outdoors (except for rains). We thus felt obligated to propose sizable end-enclosures, which required tunnel excavation. Clearly, modifying the tunnel is not a minor DOE/UCCSN DE-FC08-98NV12081

Task 7

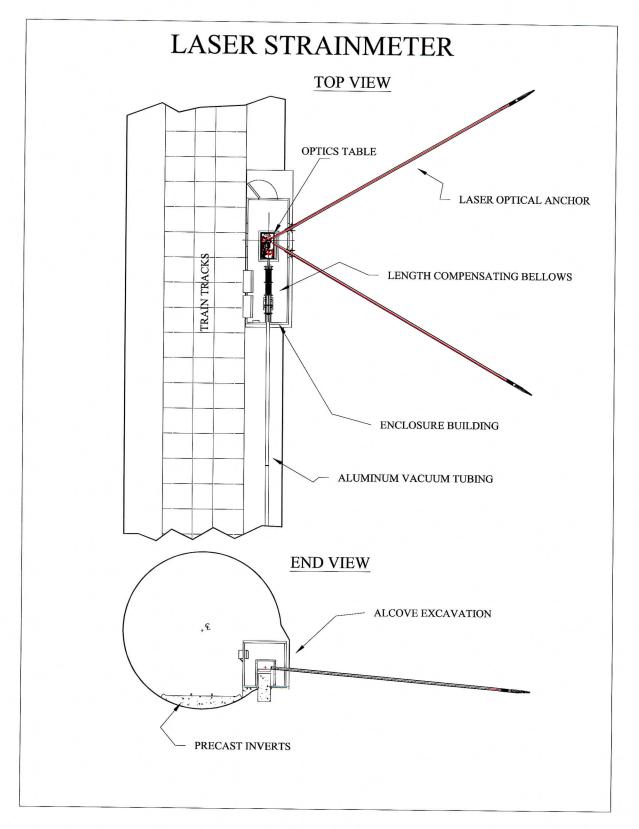


Figure 3

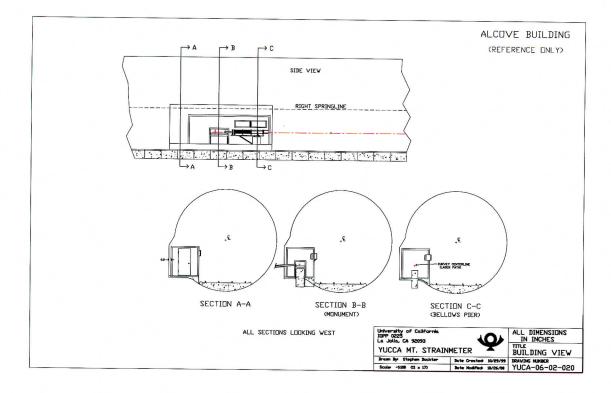
proposition. Our design work on both alcoves and buildings began early in 2000; this was an iterative exercise, as many of the constraints became clear only as plans were developed (**Figure 4**). Mining of the alcoves, which had to be rescheduled several times, began in October and was completed in November 2000. Concrete forming for the pads and end-monuments was completed in January 2001. Design and ordering of the specially-fabricated end-enclosures (built of allowable material, dimensioned for the pads, and highly insulated) was completed in May 2001, and the components for the buildings were delivered to the ESF site in July 2001.

Vacuum pipe supports (adjustable stanchions and rollers) were designed, fabricated by us, and installed by YMP personnel in the tunnel walls in March 2001. The vacuum pipe for the main strainmeter vacuum system (405 m long) was fabricated and delivered to our lab in San Diego for testing, ready for transportation to the site. Final assembly of the vacuum system was done in early 2002.

All of the electronic circuitry for the instrument was committed to printed circuit boards, with the aim of greatly improved reliability and ease of replacement (though this has been problematic).

3.3. Phase III

This was the instrument installation phase, including assembly of the instrument components at the ESF, and the initial operation and shake-down period.


The most technically challenging aspect of the instrument field installation was the cementing of the casing and optical-anchor canisters into the boreholes. Preparing for this took over a month and the actual field work required two week-long visits by a crew of four (plus considerable skilled support by YMP Crafts). This work was completed in April 2001.

Between July and September 2001, special steel sleeves were installed to protect the strainmeter's four end-point anchoring holes. The two (large) instrument end-enclosures were installed—custom fit; these hold all of the electronics and the delicate motion-sensing equipment. Power wiring was extended to and connected into the enclosures' circuitry, with plans for communication lines. We delivered the main vacuum tubing to the site. We also completed the design and ordering for all the major internal components. The manufacturer of the main sensing laser was having trouble achieving the specified frequency stability (earlier lasers did) and we worked with them on this. We completed the design-specification on the data-logging system for the strainmeter, and found (through UNR) a programmer to work on this.

In November 2001 we made two multiday field-trips to the site to lay out the end-to-end signal cabling, to install the Optical Anchor vacuum pipes (with their optics) into the four anchoring boreholes, and to install the vacuum-tube end-bellows and to begin the staging of the main 405-m of vacuum tubing—over most of its length, the most conspicuous part of the instrument. Because of its length, and the thermal expansion coefficient of the metal tubing, the vacuum-tube—secured only in the middle requires length-absorbing bellows at each end. Without these, the ends would move as much as 5 cm and affect the observations. We continued to build the electronics and the optics-table components. We also continued to address noise problems with the state-of-the-art laser system, and work with the programmer on a data-logging system.

Between January and March 2002 we made three multiday trips to Yucca Mountain. The first trip was to complete the physical parts of the installation, most notably the vacuum system (both the main strainmeter tube and the four borehole tubes). This system, the largest and most complicated physical part of the strainmeter, worked as wanted, holding a good vacuum. The second trip focused on putting in the stages for the optical systems, and the third trip was to be assembly and alignment of the optics and

DOE/UCCSN DE-FC08-98NV12081

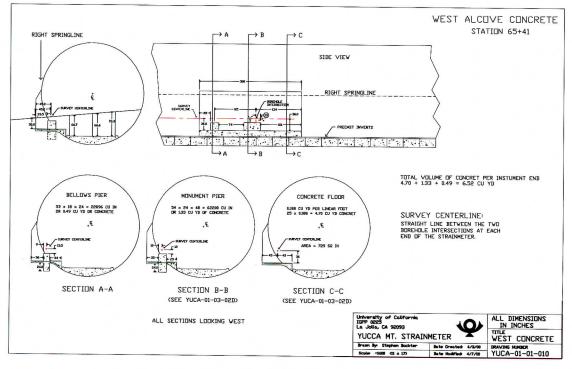


Figure 4

test-bed operation of electronics. Both the second and third trips were severely impacted by tunnel working-practices. For the third trip, for which we had gathered our entire team at the site with the aim of preliminary instrument assembly and initial instrument operation, all personnel were required to quit the tunnel for an ESF safety stand-down, which then lasted for several weeks. Ultimately we had to undo and retrieve almost all of what we had brought, to carry out the assembly work in San Diego. In this period, work on the recording system progressed to the point of having a prototype data-logger ready for trial-use. We were also in contact with Ken Smith of UNR, who was working on providing precise time within the tunnel, and telemetry out of it [though this approach was ultimately dropped].

Between April and July 2002 we completed the installation of the laser strainmeter and began instrument shake-down and testing. In the first of three trips we introduced the optics (Figure 5) and established alignment of the laser systems; the second was for permanent cementing of the key optical elements and trials of the electronics; and the third trip to align the optics, connect the monitor-and-control electronics, and introduce the recording system. We worked extensively on the electronics and software, to see that it would meet the requirements of the system at Yucca Mountain. This included work on the recording-and-control system (Section 4.3.2 and Section 5).

Assembly of the instrument and the initial test period was completed in July, 2002.

3.4. Phase IV

This phase includes (A) the long-term operation of, and (B) ongoing analysis of the data from this strainmeter installation. Of course, this is currently in progress; while the transition from testing to routine operation of a new system in an unusual setting is not always clear-cut, since 2002:233 recordings of the ESF's deformation have been collected to QA standards. In order to meet contract requirements we have submitted qualified raw data (**DID 007DA.001**, August 20, 2003) from then through 2003:099 to the Technical Data Archive Technical and Electronic Data Specialist. The strainmeter is continuing to operate and to monitor Yucca Mountain.

4. Principles of Strainmeter Operation

In this section we outline the principles of strainmeter operation, simplified from a detailed guide (Agnew and Wyatt, 2003) to long-base strainmeter design, data, and results, archived on the Web. Briefly, the strainmeter measures changes in distance between the two ends using an optical interferometer; at each end other interferometers, "optical anchors," secondarily measure the motions of the ends relative to points deep in the rock, away from the tunnel wall. These results then need further correction for variations in the optical path length, including any vacuum-pressure changes in the evacuated pipe which extends between the two ends, and any variation in the laser frequency.

The optical system used in the long-base strainmeters is a Michelson interferometer. A beam of light is sent to a beamsplitter where it is divided equally and goes to two reflectors, one local and one remote (in this case 405 m away); the returned beams meet and interfere at the beamsplitter, the interfered energy going (in part) to a detector. The intensity at the detector will vary with the path-length difference; measuring light to dark transitions (fringes) allows detection of movements of either arm of the interferometer. For the long-base strainmeter, the local arm is fixed on an optics table; the length-change measurement is thus made over the longer remote arm. Unless the interferometer arms are nearly equal in length, the light source must have an unusually narrow bandwidth (that is, a long coherence length). This means using a rather special kind of laser as a light source. For the optical anchor system the path lengths of the two arms are essentially equal, so the lasers for these can have a shorter coherence length, and much less stability.

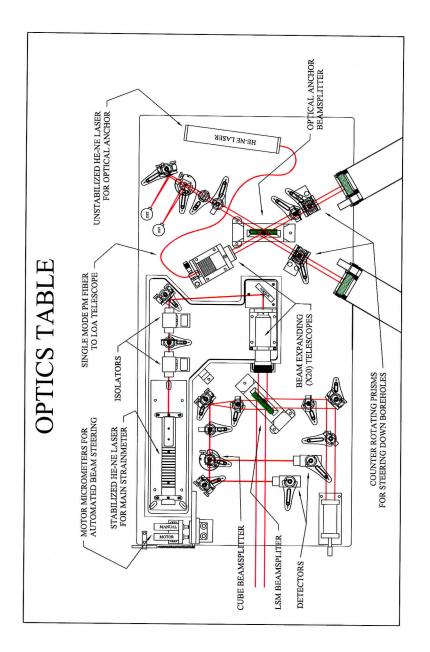


Figure 5

The strainmeter electronics converts the intensity changes at the detector into a recorded change in strain. The first step is actually taken in the optical system: one half of the beam sent to the local reflector has its phase retarded by 90°, so that half of the combined beam is in quadrature (90° phaseshifted) with the other half. Each half is then sent to a separate photodetector so that the available input is two intensity signals, separated by 90°. These can be thought of as the in-phase and quadrature part of a single complex-valued intensity. When displayed as x and y coordinates of a plot, the result of changes in length is to trace out a circle, a Lissajous pattern, with the direction of rotation determining if the path length to the remote mirror is increasing or decreasing. A complete rotation of the signal by 360° around the origin corresponds to a full-fringe change ($\lambda = 633.0$ nm, where λ is the wavelength of light) in optical round-trip path length. (In practice, because of differing depths of modulations of the two beams and imperfect phase retardation, this Lissajous pattern is not an exact circle; but unless it is badly distorted its rotation can still be measured.)

Because these in-phase and quadrature signals can vary with a high frequency (see the next section) they each are simply digitized with a single-bit system: a pair of comparators, whose four possible outputs then define, four quadrants of the complex intensity; at this level, the signal has been digitized to the nearest quarter-fringe. For this $\lambda/4 \div 2L$, with L = 405 m, gives $0.1954 \times 10^{-9} \Delta l/l$, or 0.1954 nanostrain per count. The fringe counting electronics is capable of operating at frequencies up to several MHz, but for digital recording at reasonable speeds some filtering of the signal is necessary to avoid aliasing. The output of the fringe counter therefore is used to drive a digital-to-analog voltage converter, whose output is passed through a single-pole lowpass filter and then redigitized. The standard "tectonic" recording system uses a filter with a time constant of 500 seconds; we also operate channels with shorter time constants, and different gains, for recording seismic waves: the gain is just a function of which bits from the counter are fed to the A-to-D, and the time constant just depends on the filter.

The system actually measures changes in the *optical* path lengths; if light travels through a medium of refractive index n, this is n times the physical length. To minimize the effect of varying n, the light path is kept evacuated; the system is pumped down to very low pressure routinely and permitted to gradually increase (with outgassing of the materials) to slightly higher pressures. This pressure variation is monitored and used as the input for a correction-series when processing the data. For temperatures typical in the tunnel the coefficient relating the vacuum pressure p (in Pascals) to the index of refraction is 2. $73 \times 10^{-9} \Delta n/\Delta p$, and hence for apparent strain (given the instrument sensitivity per count, as listed above) 14 counts per Pa. The pressure is maintained below 10 Pa, such that corrections are limited to less than 140 counts, or strains of 27 nanostrains (approximately the level of the ever present earth tides).

For a Michelson interferometer with one much shorter arm, strain in the other arm (the long arm) and fractional changes in wavelength (or frequency) of the light used are indistinguishable so wavelength stability must be better than any deformation rates we hope to monitor. An objective for this installation is a wavelength stability of $1 \times 10^{-8} \Delta \lambda / \lambda \text{ yr}^{-1}$ or better. Stability is usually given in frequency, and for a helium-neon laser a 1 MHz frequency change corresponds to a fractional frequency change (and apparent change in strain) of 2. 1×10^{-9} . We currently use a polarization-stabilized laser which has proven to be stable enough and reasonably reliable; we employ an Iodine absorption-cell system for occasional checks of the stability of these systems.

4.1. Optical Anchor

The largest source of noise in any good deformation-measuring instrument is from the mechanism by which it is attached to the earth: a difficult problem, which we reduce with "optical anchors". At each end, a secondary interferometer is used to tie the end points on the tunnel wall to points deeper in the rock. Each interferometer measures along two equally angled boreholes, both lying in the same horizontal plane as the anchored strainmeter and intersecting at a common end point. We measure from this intersection point to retroreflectors cemented at the end of each 10 to 15 m deep hole; these, and a beamsplitter at the tunnel wall, form a Michelson interferometer (and, effectively, a shear strainmeter.) Because the interferometer arms in the optical anchor are of nearly equal length, an unstabilized multimode laser can be used as the source. The fringe-counting system is the same as for the main interferometer.

The long-term stability of the anchor depends on, primarily, the coupling of the anchor to the earth, which is controlled both by the quality of the installation and the integrity of the local geology (generally very good at locations away from surface/weathering exposed areas). We cement the remote reflectors in with expansive grout, but in the end, the stability is best indicated by the stability of the final results—quite good for YMP (Section 7).

The physical layout of the optical anchor is, at each end of the instrument, two boreholes, angled at 30° from the perpendicular to the wall, both in the plane aligned with the strainmeter axis (see, again, **Figure 3**). These holes need to intersect at a point directly in-line with the main strainmeter beam, and as close as possible to the main beam-splitter (or retroreflector). Each of the boreholes is cased with PVC pipe, with a 1.2 m stainless steel anchoring assembly threaded onto the end of the casing. The assemblies are cemented into place using non-shrink grout. Compliant material is attached to the bottom of the anchors to reduce axial loading caused by borehole rebound and deformation of the cement. The cementing grout is pumped through check valves in the bottom of the stainless steel assemblies and up the outside of the PVC casings until it reaches the surface.

Within the stainless steel anchoring assembly, a tapered and threaded insert serves as the mating surface to guide and secure the retroreflector housing. This housing is attached, by stainless steel bellows, to the end of a long stainless steel vacuum pipe. The bellows are required both to isolate the reflector housing from the vacuum pipe mechanically and to allow compensating pressure on both sides of the reflector. The last stage of assembly involves lowering the vacuum-pipe assembly into place and twisting it until the downhole reflector housing is secure.

4.2. Unanticipated Problems

As discussed above (Section 3.2), reworking of the overall physical layout of the strainmeter installation was one of the major problems we faced early on; in this, and for many other issues, we were challenged by the unfamiliar constraints on what could be allowed in the tunnel—though we are now more comfortable with them. Delays from auxiliary construction (one for over six months), and restricted tunnel access have also caused difficulties. This was offset by the high quality of help provided by the Test Coordination Office and by the work crews (Crafts). Their efforts contributed substantially to what has turned out to be a quality installation.

Perhaps the most challenging technical problem arose from the four optical-anchoring boreholes being less straight than expected. For a light beam to reach the hole bottom there must be a clear pathway; we faced both curved holes (3.8 cm out-of-line as opposed to the specified design-tolerance of 1.9 cm) and smaller holes than planned for. By redesigning the (many) downhole components, close surveying of the holes to optimize the fit of the equipment, and reselecting the anchoring points to shallower (but still adequate) depths, we were able to overcome this problem. The final selection of the anchoring depths was also influenced by logging of the holes, which showed areas of poor geology (extensive fracturing). **Table 2** lists the final depths.

	East	End	West	t End
Hole	#1	#2	#3	#4
Drilled to:	15.3	15.3	15.2	15.5
Accessible:	14.5	15.4	15.2	14.4
Anchoring:	14.091	14.091	11.492	11.492

Table 2: Optical Anchor Depths (in meters)

The major operational issue, which we have worked on but still face, has been the shaking caused by the mining trains as they pass immediately by the instrument end-structures (the track-support "inverts" come up to the instrument pad). Even before becoming familiar with the tunnel we expected that the passage of the trains would introduce transient signals, which could be smoothed over in the course of processing the data; but having witnessed the magnitude of the shaking on an alignment laser we became concerned that the passage of individual trains might actually cause instrument miscounting, with the ground deformed so much that the laser beam would become misaligned, no longer pointing accurately at the far end. This has indeed been so, and means that for each train passage (typically lasting less than a few tens of seconds) the record is disturbed and requires editing. Even with many train passages in a day, this (by itself) is manageable.

The trains, however, have caused an even greater problem, namely injury to and degradation of the laser; only recently have we found a way to circumvent this. The shaking is so severe as the train passes the main instrument enclosure that it seems to be stressing the laser. We are now operating our fourth laser in one year, whereas the expected laser lifetime is more than two years. Not all of the lasers have failed completely, but frequency-locking problems have developed to the point that swapping-out the lasers proved necessary. (Recognizing this unprecedented problem has been the single most difficult part of operating the strainmeter.) In July of this year (2003) we made an ambitious effort to physically isolate the main laser (suspending it from compliant springs) and route the laser light into the interferometer optics using optical fiber. For the laser-wavelengths involved and the demands of the system, this was a "research" type endeavor, and we're pleased to report success. In the course of 6 successive tunnel-trips we succeeded, and are now obtaining clean records.

A final problem worth noting has been infrequent miscounting of the interferometer fringes. This, as with the counting-disruptions associated with the trains, is readily edited, but at the cost of more time in the lab processing the data. With the initial objective of improving the servicability of the electronics, at the onset of this project we undertook to rework the electronic layout (though still using our long-proven design). In fact, this new layout has led to troubles and we are now actively working on a second generation of circuit cards. In the interim we have modified the cards in the field to suppress the problem, and added redundant electronics, all of which are currently operating properly. We are also working to improve an undesirable room-temperature response evident in some of the recorded signals.

4.3. Calibration to QA Standards

We next describe how we fulfill QA requirements on instrument operation and data handling—a plan resulting from extensive discussions with QA personnel from UCCSN. In the discussion below **boldface** indicates the few hardware items that are subject to QA verification (see also **Table 3**).

Equipment	Model	S/N	BN ID
Winters Electro-Optics Iodine-Stabilized HeNe Laser	M-100	177	NIST
Hameg Frequency Counter and main frame	8021-3	21993P 24437 80013P 08308	008638
Wavetek Digital Multimeter	85XT	000410622	008639
Setra Air Pressure Gauge Alternative:	270 270	1949519 1368131	000543 008838
Varian Vacuum Gauge and sensors Alternative:	6522-08-515 6543-25-030 6522-08-515	030505001 960125011	000542 008839
and sensors	6543-25-030		

Table 3: Calibrated Equipment

4.3.1. Calibrations at Instrument Site

4.3.1.1. Electronics and Recorder Verification

- Observe that each interference-fringe (light and dark bands of light) is a full revolution on a scope, and produces 4 counts. This simple observation checks all of the front-end electronics (pre-Fringe Counter electronics) involved in the signal pathway, implicitly. We have been writing such calibration observations in the Scientific Notebook, but we expect this activity to become an Implementing Procedure.
- Enter pairs of "counts" on the Fringe Counter front-panel thumbwheel switches and verify (subsequently) what is recorded by the logger, from our data storage archive(s). This arrangement provides a complete electronic-systems throughput check (a "Systems Check"). This calibration step involves writing down numbers and checking the recorded "raw" data. Again, this has started as Scientific Notebook material, and will become an Implementing Procedure.

4.3.1.2. Laser Frequency Measurements

• Perform regular checks of the instrument-illuminating laser's frequency, at least twice annually. For this we use a regularly calibrated Iodine absorption-cell HeNe (1) **Reference Laser** (*Winters Electro-Optics*, NIST traceable) and a transfer laser (to keep the Reference Laser safely at home; it is not meant to travel), and a regularly calibrated (2) **Frequency Counter**.

4.3.1.3. Routine Checks

Monitor the main-tubing vacuum level, using a regularly calibrated (3) Vacuum Gauge. All that is required here is to note the level occasionally. Check other voltages using a regularly calibrated (4) Voltmeter. The voltmeter is mostly used for trouble-shooting, or initial setup. We also observe and optimize optical alignments. All notes are entered in the Scientific Notebook.

4.3.1.4. Ancillary Measurements

• Record the air pressure using a regularly calibrated (5) Air Pressure Gauge. This signal is recorded on the data logger. The throughput calibration on this involves noting voltages at the site and later checking the recorded observations.

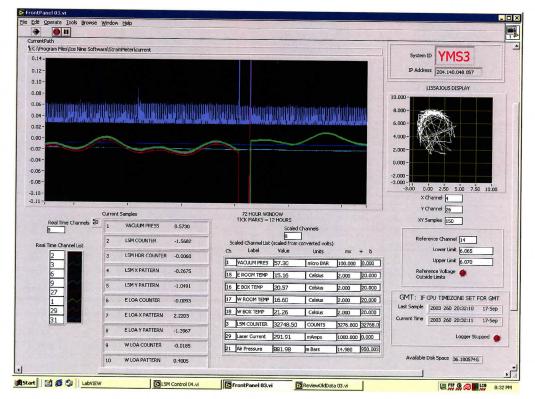
4.3.2. Data Logging (and Control)

The logger is a PC-based system allowing remote control of a number of functions, as well as recording all the system (analog) voltages at 1 and 300 second sample-intervals. (Figure 6 shows a screenshot of the front panel.) The complete, throughput, calibration of the main signals—one laser strainmeter signal and two laser optical anchor signals—are checked through the Electronics and Recorder Verification procedure described in Section 4.3.1.1. The logger also monitors two fixed reference voltages, as a continuous diagnostic of the recording system. These voltages are checked (using the calibrated voltmeter) during field visits and recorded in the Scientific Notebook.

The complete system, from strainmeter through recorder, functioned as designed in this reporting period. In addition, considerable progress was made in the remote/automated control of the strainmeter. **Table 4** presents specifications for the two components of the data-recording system: logging and control.

Logger (au	tonomous operation):
Recording:	continuous, and self-starting on power-up
Power:	operating on 1-hour power back-up (UPS system)
Number of channels:	32 minimum, expandable in multiples of 32
Analog range:	±10.000 V
Sensitivity:	0.3052 mV per least-count (16-bit digitizer)
Noise:	not to exceed 2 least counts
Timing:	accuracy to 1 s
Sampling:	1 s, and 300 s
Files:	day-based (described in detail below)
Tranfer:	automatic, daily 'zipping' and copy transfer
Monitor and	Control (network access):
Displays:	'front panel' display of all channel voltages
Displays:	'front panel' display of all channel voltages graphical summary of last 48 hours
Displays:	graphical summary of last 48 hours
Displays: Review:	
	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern)
Review:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data
Review: Reference voltage:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data indicator of internal calibration status indicator of internal timing status
Review: Reference voltage: Clock:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data indicator of internal calibration status
Review: Reference voltage: Clock: Recorder:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data indicator of internal calibration status indicator of internal timing status remote power-restart capable (external network device)
Review: Reference voltage: Clock: Recorder: Beam steering:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data indicator of internal calibration status indicator of internal timing status remote power-restart capable (external network device) fully automated steering of laser beam
Review: Reference voltage: Clock: Recorder: Beam steering: Vacuum pump: Laser control: Auxiliary:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data indicator of internal calibration status indicator of internal timing status remote power-restart capable (external network device) fully automated steering of laser beam remote control of pump and valve
Review: Reference voltage: Clock: Recorder: Beam steering: Vacuum pump: Laser control:	graphical summary of last 48 hours graphical display of laser-alignment (Lissajous pattern) independent access/display of all recorded (past) data indicator of internal calibration status indicator of internal timing status remote power-restart capable (external network device) fully automated steering of laser beam remote control of pump and valve remote control of 'locking' status

Table 4: Data Recorder and Instrument Control


4.3.3. Transmitting and Storing the Data

We use *gzip* to compress the files before transmission, since this includes a checksum. In order to comply with temporary-records storage requirements, we download a copy of the raw, 'zipped' data to the computer system at Scripps (UCSD) and maintain the original raw data on the computer located at the site. This operation is performed automatically, on a daily basis, shortly after the UTC day-boundary. Prior to removing any data from either the computer at the site or from the (duplicate) Scripps' system, the data are submitted to the Document Control Coordinator (DCC) in accordance with QAP-17.0, "Quality Assurance Records."

DOE/UCCSN DE-FC08-98NV12081

Task 7

Final Technical Report

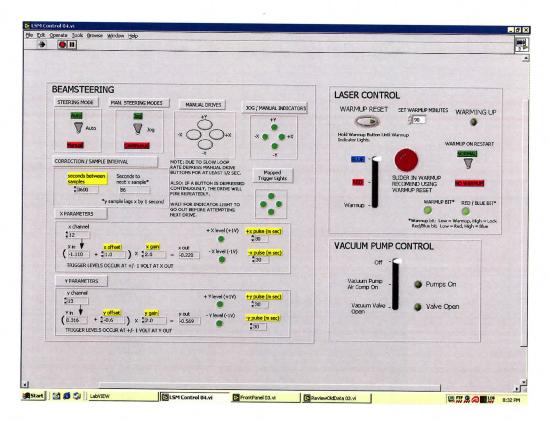


Figure 6

5. Data Description

In this section we describe the data so far provided to the TDA. This is raw data (as recorded) from the longbase laser strainmeter described above. Though preliminary processed results are available, the software for producing them has not yet been Qualified, so only raw data have been submitted. For many sorts of studies, these data are useful as they stand.

5.1. Files and File Naming

The data at the TDMS consists of a single zipped file, which when unpacked contains daily files of data sampled at 300-seconds (5 minutes) and 1 second, for the period between 2002:233 and 2003:099. The file names have the following forms:

- YYYYDDD.1s.gz is a gzipped file of binary data recorded at 1-second interval beginning on year YYYY and day of year DDD: for example 2002246.1s.gz starts (and ends) on day 246 of 2002; note that 2002247.1s.gz starts on day 247 of 2002 but runs through day 266. In some cases a letter may follow the DDD to distinguish files written with different software versions on the same day.
- YYYYDDD.5m.gz is a gzipped file of binary data recorded at 1-second intervals, and sampled every 5 minutes.

On January 28, 2003 the file names were augmented to:

- YYYYDDD.CCCC.1s.gz where CCCC indicates the logger's location and ID; for example, 2003028.YMS3.1s.gz. is logger #3 at site YMS. The logger name was included starting with datalogger software version number 2.3.0.0 and higher, first installed at Yucca Mountain on day 28 of 2003.
- YYYYDDD.CCCC.5m.gz is a gzipped file of binary data recorded at 1-second intervals, and sampled every 5 minutes,

5.2. File Formats

5.2.1. Versions

Slight changes to the file header formats (not the data) have occurred over time; the file format version is related to the software version as follows (the software is the version for which that file format was introduced).

Table 5: Datalogger Softwares

File Format Code#	Files	Software Version	Comments
#1	2002:233 through 2002:268a	2.2.0.2	Added sample interval to file header
#2	2002:268b through 2003:027	2.2.0.7	Software version not indicated in file
#3	2003:028 through 2003:099	2.4.0,1	header (still given as 2.2)

5.2.2. Binary Files

The binary (.1s and .5m) files have a 128-byte header, containing file-specific information, labels to allow cross-checking of the source of the file, and version and system identification information. All

header information is stored in Little Endian (PC) byte order.

5.2.2.1. File Header Record

The header includes the following items:

Bytes 1-4: Binary file version number, which identifies the binary file format.

Bytes 5-8: Header size in bytes.

Bytes 9-12: End-of-file marker; data at or past this location is not valid.

Bytes 13–16: Last sample marker, gives the position in bytes of the start of the last valid sample record.

Bytes 17-20: 4-character system ID, used to identify the source of the data.

Bytes 21-24: Sample interval in seconds (added in Version 2).

Bytes 25-28: IP address of PC (added in version 3; before this just padding with zeroes).

Bytes 29-128: Padding with zeroes.

5.2.2.2. Data Records

Each data record consists of a 16-byte record header followed by the data. The record header information and data are stored in Big Endian (Sun/UNIX) byte order.

The header consists of the following:

Bytes 1-4: UNIX UTC time (seconds since 1 January 1970 00:00 UTC, ignoring leap seconds).

Bytes 5-6: Year

Bytes 7-8: Day of year (1-365, or 366 in leap years).

Bytes 9-10: Hour

Bytes 11-12: Minute

Bytes 13-14: Second

Bytes 15-16: Number of channels of data in record.

The header is followed by N 2-byte integer values, where N is the number of channels in the record header. The data are stored in counts, with the range \pm 10 volts being -32768 to 32768 counts (0.3052 mV per count); the values are stored as 2's-complement 16-bit integers.

The datalogger channels (numbered 1 through 32) have particular signals (which have names) assigned to them, though some channels do not currently have a signal, and the assignment of channels to signals can (and has) changed with time. **Table 6** shows which signals have been assigned to each channel (for those channels with signals), and also the sensitivity (in physical units per count). Channels with no signals are not listed.

5.3. Description of Signals

The signals can be described as follows:

YM VAC: Pressure inside the vacuum system. Increasing values correspond to increasing pressure.

Chan.	Signal	Units/Count	Units of Measurement	Туре
1	YM VAC	3.05 10-4	Ра	
2	YM LSM	1.954 10-10	strain	
3	YM HDR	1.954 10-10	strain	
4	YMSM LX	3.052 10-4	V	Diagnostic
5	YMSM LY	3.052 104	V	Diagnostic
6	YMOA E	1.954 10-10	strain	8
7	YMOA ELX	3.052 10-4	V	Diagnostic
8	YMOA ELY	3.052 10-4	v	Diagnostic
9	YMOA W	1.954 10-10	strain	
10	YMOA WLX	3.052 10-4	V	Diagnostic
11	YMOA WLY	3.052 10-4	V	Diagnostic
12	YMSM BX	3.052 10-4	V	Diagnostic
13	YMSM BY	3.052 10-4	V	Diagnostic
14	YM VR#1	3.052 10-4	V	Diagnostic
15	YM ERMTP	6.10 10-4	°C	Diagnostic
16	YM EINTP	6.10 10-4	°C	Diagnostic
17	YM WRMTP	6.10 10-4	°C	Diagnostic
18	YM WINTP	6.10 104	°C	Diagnostic
21	YM BARO (1)	4.57 10-1	Pa	Bugnoone
24	YM VR#2	3.052 10-4	V	Diagnostic
29	YMML FC (2)	3.052 10-4	amp	Diagnostic
31	YMTS E (3)	3.052 10-4	arbitrary	Diagnostic

Table 6: Strainmeter Data Channels

(1) starting 2003:042:22:30; channel 21 not used before;
 (2) starting 2002:309:19:00; channel 29 not used before;
 (3) starting 2002:309:16:50; channel 31 not used before;
 "Diagnostic" means that the signals can be used in judging data quality and performance, but are not themselves used to create the final results.

YM LSM: Strain between ends of the instrument (at locations 69+46 m and 65+41 m along the S wall of the S ramp tunnel), total length 405 m, filtered with a 500-s time-constant lowpass filter. Increasing values correspond to extensional strain.

YM HDR: Strain between ends of instrument (at locations 69+46 m and 65+41 m along the S wall of the S ramp tunnel), total length 405 m, filtered with a 2-s time-constant lowpass filter. Increasing values correspond to extensional strain.

YMSM LX: Output of the X-detector of the interference pattern for the main strainmeter measurement.

YMSM LY: Output of the Y-detector of the interference pattern for the main strainmeter measurement.

YMOA E: Motion of the East strainmeter point, measured by the optical anchor relative to a depth of 14.091 m. Increasing values correspond to extensional strain of the full instrument.

YMOA ELX: Output of the X-detector of the interference pattern for the East optical anchor measurement.

YMOA ELY: Output of the Y-detector of the interference pattern for the East optical anchor measurement. YMOA W: Motion of the West strainmeter point, measured by the optical anchor relative to a depth of 11.492 m. Increasing values correspond to extensional strain of the full instrument.

YMOA WLX: Output of the X-detector of the interference pattern for the West optical anchor measurement.

YMOA WLY: Output of the Y-detector of the interference pattern for the West optical anchor measurement.

YMSM BX: Beam position voltage (x-component) for the main laser strainmeter beam.

YMSM BY: Beam position voltage (y-component) for the main laser strainmeter beam.

YM VR#1: Reference voltage to monitor datalogger stability; should register as 6.068 V.

YM ERMTP: Air temperature measured inside the East room of the laser strainmeter. Increasing values correspond to increasing temperature.

YM EINTP: Air temperature measured inside the East optics-table enclosure of the laser strainmeter. Increasing values correspond to increasing temperature.

YM WRMTP: Air temperature measured inside the West room of the laser strainmeter. Increasing values correspond to increasing temperature.

YM WINTP: Air temperature measured inside the West optics-table enclosure of the laser strainmeter. Increasing values correspond to increasing temperature.

YM BARO: Air pressure measured in the East room of the laser strainmeter. Increasing values correspond to increasing pressure.

YM VR#2: Reference voltage to monitor datalogger stability; should register as -6.068 V.

YMML FC: Current keeping main strainmeter laser (ML-1) locked to single frequency by changing tube length.

YMTS E: Train-sensing seismometer: a rectified and lowpassed output from a GS-20 geophone.

6. Data Processing

We outline here what is needed to convert the raw data to final processed results.

We, like other groups concerned with producing long time series of strain data, have developed fairly elaborate systems for processing raw strain data. We describe ours briefly here, with reference to the flowchart shown in **Figure 7**. This chart may seem a bit complex; we would emphasize that the procedures have been developed with the aim of utilizing the data for research, which has encouraged us to try to get the most information possible (including very small signals) from the recorded data—inevitably, not a simple task.

The upper part of **Figure 7** shows the procedure for an individual data series: we first remove as much "predictable" energy as possible, usually from a prediction of the tides. The resulting series is then edited using an interactive program which displays the data (raw or as edited) and allows it to be flagged as bad, and offset to remove jumps. This editing is of course a matter of judgement—aided by experience, and helped by examining supplementary information, notably records of environmental data (including the seismic record, to show local shaking from the trains), and also what we have called "metadata"—the whole range of records of what was done to the instrument, which we record in written form.

Task 7

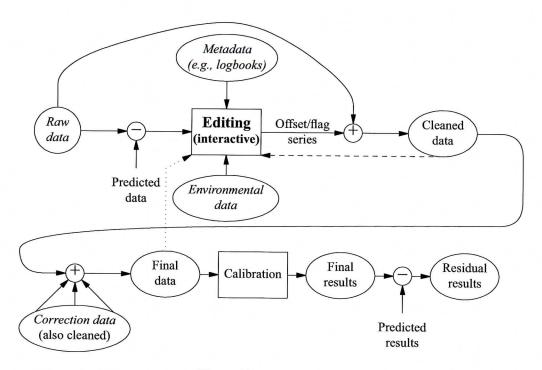
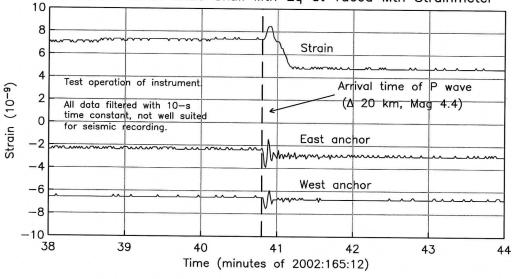


Figure 7

We note that because of the electronics problems mentioned above, some of the channels showed an unusually large number of offsets from miscounts. These are most easily detected by comparing the three main series; any unaccountable offset contained in only one is a miscount, and can be removed by applying an offset.

The result of the editing process is information about which parts of the time series to discard and what offsets to add to it. When the editing information is combined with the raw data, we have cleaned data. The dashed line in **Figure 7** expresses a kind of feedback which plays a role in the process: not infrequently, only after the data have been edited can subtle problems be identified which call for further editing. The next steps, shown in the lower part of **Figure 7**, are to combine the data series as needed to produce a final estimate; for example, the final strain time series from the laser strainmeter requires the cleaned strain to be combined with two optical anchor series, the pressure, and a correction for laser frequency.

For the strainmeter at Yucca Mountain, the primary time series are combined according to the formula


$YM_HDR - (YMOA_E + YMOA_W)$

(recorded strain, less the two end-point displacements) where **Table 6** gives the scale factors to be applied to these channels before combining them. The recorded vacuum pressure signal is not used directly but is included by subtracting a series of ramps with offsets at the times the vacuum pumps are run (see Figure 10: Vacuum correction). Because of the unusual number of laser changes in this particular period (2002:233 - 2003:099), the generally minor role of frequency correction, we have not attempted to estimate the drift of laser frequency, which is small over the times that each laser has been in. (Differences between the absolute wavelength of the different lasers do not affect the measurement, only variations once in use.) The recipe for the fully corrected signal, the measure of the repository strain, is

YM_HDR - (YMOA_E + YMOA_W) - YM_VAC - YM Freq

7. Results

Finally, we describe some of the results from inspection of the data which demonstrate the successful operation of the strainmeter. Because the software is not yet QA-certified, the results we show are not QA, and are given for information only—but the processed QA'd data will not be significantly different from what we show here. (Note, however, that the data plotted in **Figure 9** do not depend on any processing, and are therefore Q.)

14 June 2002 Little Skull Mtn Eq at Yucca Mtn Strainmeter

Figure 8 (Non-Q data, for information only. Ref: Figure 1 in UCSD portion of UNR OSPA No. 1990709.)

7.1. Earthquakes

In fact, the only significant earthquake close to the ESF during the period covered by this report was the magnitude 4.4 earthquake Little Skull Mountain earthquake of 14 June 2002. It was located at 36.7150 N, 116.3003 W, approximately 18 km southeast of the ESF, with a preliminary depth of 12 kilometers. This earthquake occurred in the aftershock zone of the M 5.6 Little Skull Mountain earthquake of June 1992. The area has been active since that earthquake, but this is the largest event in over 6 years. At the time (2002:165:12:40) the instrument had only just begun operation, and only in a preliminary testing mode, so these data are **not QA**—but we show them here for their intrinsic interest (**Figure 8**). The main instrument output (strain) at this time was heavily filtered, so we did not record the seismic waves, which were too high-frequency; since the data are only sampled every second, unfiltered data would have been aliased (as is suggested by the optical anchor records). The records show, however, nothing unusual in the response of the site to this (strong) local disturbance.

Worldwide there were approximately 6 earthquakes of magnitude 7.5 or greater in this reporting period whose signal was large enough to be of some value to characterizing site response. Only two events produced sizable signals: on 3 November 2002 (day 307) a magnitude 7.9 (Denali, Alaska); and on 22 January 2003 a magnitude 7.6 (Colima, Mexico), shown in **Figure 9**; note that this did not clip the

Task 7

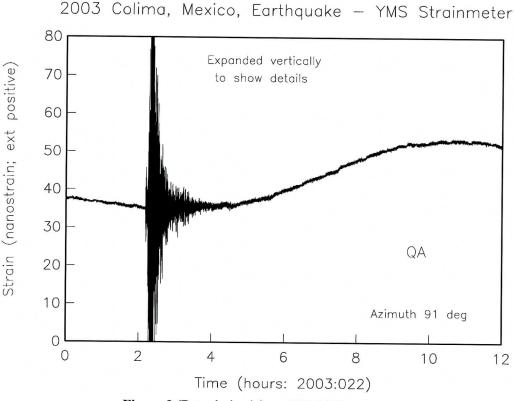


Figure 9 (Data derived from DID 007DA.001)

datalogger but has been scaled to show the underlying deformation. Observations from these events will be used, in conjunction with other signals (e.g., the recorded earth tides and air-pressure response, discussed below), to establish measures of repository-block bulk properties.

7.2. Tides, Air Pressure, Long-Term Strain

Prior to 2002:330 the data were significantly and routinely disturbed by laser-related problems stemming from passage of mine trains, a problem since reduced (though not eliminated) by the development and installation of another laser system. Nearly all short-period signals for the 100-day period from 2002:233 to 2002:330 are adequately recorded, but the longer period record is not well constrained. Other than this and a return of the laser troubles in the spring of 2003, the instrument has run with remarkably little trouble, providing a continuous record of strain with a resolution of 0.001 microstrain on a day-to-day basis—more than 100 times better than GPS over repository length scales. **Figure 10** presents both the de-tided repository strain record and the air pressure measured at the instrument, as edited; **Figure 11** presents some of the most recent data. The recorded earth tides match the theoretical tides well; there is no anomalous or nonlinear tidal response.

From the beginnings of operations we noticed an unusual response associated with the air pressure. The correlation of the two records is clear; the scaling factor is 1.0 nanostrain per mbar. Not so apparent is that for these long-period variations there is actually a delay of some 8 hours in the response of the strainmeter to the pressure. This response is much larger than anything we are familiar with from other strainmeter sites. Additional information is provided by the air-pressure changes from operation of the tunnel fans; when these are turned on or off the pressure at the instrument changes abruptly.

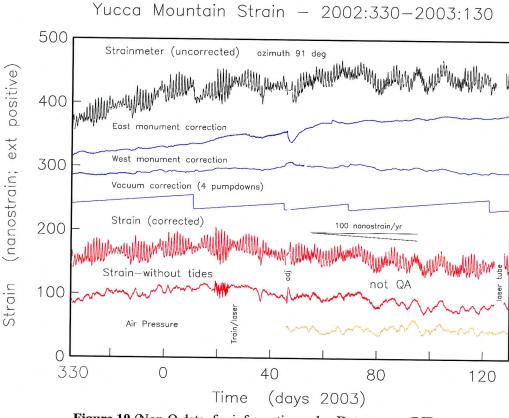


Figure 10 (Non-Q data, for information only. Data source: DID 007DA.001.)

Surprisingly the response from this source is stronger, immediate (without any delay), and has the opposite sign from that caused by outside air-pressure changes (-2.1 nanostrain per mbar). Modeling of these apparently disparate effects should prove valuable in understanding the response of the mountain to applied forces.

A major reason for the installation of the strainmeter at the ESF was that Wernicke *et al.* (1998), using GPS measurements from 1991 to 1997, found strain rates possibly an order of magnitude higher than average long-term rates indicated by the tectonic history of the region. The small number of sites involved in that study, the possibility of significant GPS monument instability, and the possible influence of postseismic deformation associated with the June 1992 $M_L = 5.6$, Little Skull Mountain earthquake on the reported strain-rate raised concerns about the applicability of the GPS results to issues concerning seismic and volcanic hazards. The strainmeter provides a completely independent measurement of the same quantity, with quite different error sources.

With only months of data for this reporting period and the likelihood of there being an annual variation in the deformation, the long-term East-West strain rate can be bounded only preliminarily ("Strain-without tides" in the figure), but it is certainly within ± 0.2 microstrain per year, and could be much smaller. Since the estimated strain rate now found using continuous GPS is much smaller than the original Wernicke *et al.* estimate (G. Blewitt, pers. commun.), it will take more time for the strainmeter to be able to confirm (or not) the GPS-derived rate. However, this discrepancy between old and new GPS rates raises the possibility (though it is unlikely) that the strain rate can vary with time, which would pose

Task 7

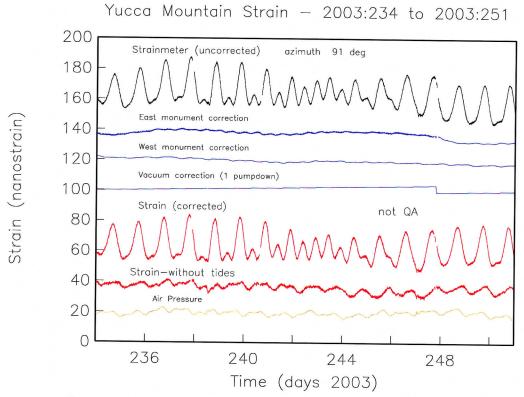


Figure 11 (Non-Q data, for information only. Ref: Figure 2 in UCSD portion of UNR OSPA No. 0404021.)

a major concern for the repository. The strainmeter's ability to detect such changes over periods of a year and less makes it an important part of the continued monitoring of the facility—this instrument, and the continuous GPS network, provide complementary measures which between them will measure the deformation in this area as well as is done anywhere.

References

- D. C. Agnew and F. K. Wyatt (2003). Long-base laser strainmeters: a review. SIO Technical Report: http://repositories.cdlib.org/sio/techreport/2/
- Wernicke, B., J.L. Davis, R.A. Bennett, P. Elosegui, M.J. Abolins, R.J. Brady, M.A. House, N.A. Niemi, and J.K. Snow, Anomalous strain accumulation in the Yucca Mountain area, Nevada, *Science*, 279, 2096-2100, 1998.
- Figure 8: See Figure 1 in the University of California, San Diego section of Proposal Number UNR OSPA No. 1990709 from the University of Nevada Reno Office of Sponsored Projects.
- Figure 11: See Figure 2 in the University of California, San Diego section of Proposal Number UNR OSPA No. 0404021 from the University of Nevada Reno Office of Sponsored Projects.

Appendix A: MD5 Signatures for Files

Files of 1-second Data

2002233.1s.gz58178c09499e1b702df4ca72d779f157 2002234.1s.gz522e560860f9204687298776b2bb22d7
2002235.1s.gz619efd50abaf8c0b9e384ed6219ab815 2002236.1s.gz882ca4bddc66baa1a6f92bfc59e7009c
2002237.1s.gzc7941ce79dea4da440c65cfaeb4c1755 2002239.1s.gzae9db9a68f0010a3563f3f902244b5c3
2002240.1s.gz460133a5b0ba5af8fad2a27c6982cb04 2002241.1s.gzdcec70f390fac4b5e00195e70bd24325
2002242 1s grabh54652555556567556765676759767590fac4b5e00195e70bd24325
2002242.1s.gza1b455d6a2aa7bc64ceb75af6a76077f 2002243.1s.gz654129abd63182a20b140706528a9795
2002244.1s.gz52978ebd637c65380f2e2ee33da62f3b 2002245.1s.gz6b27dcf945a057c2a56bbc3b571c86d4
2002246.1s.gzc42638b43c45738cbdlce8f00df5426e 2002247.1s.gzcb9e88b749d541463e349a8ac21cd06e
2002267.1s.gz9c289b7fe048672cb5635e8be0df67e9 2002268a.1s.gz 8480a62565412cc22b969aae7a66e268
2002268b.ls.gz 2be4cf7342ffafbe0e2feddf2fc64860 2002269.ls.gz5a8dc1353927a5514354659bc69af43f
20022708.15.92 a03fa5/ae014ca5b4bf9e4b3261231fc 2002270b.1s.gz a590b1b75a4e2edb4611aad24d6888c3 2002271.1s.gz037a19897222e9a7f37825e3d30bf6e2 2002272.1s.gz4132af99c2c4d44a5f878312389cfe86
2002273.1s.gz25277df88285bb0f7e424fb038c24a85 2002274.1s.gz4152a199c24d4445f8/8312389cfe86
2002275 15 g29549adbb9ag520131245654264a5 2002274.15.g269Cd4C8263aI41C865ee8e6858dddc81
2002275.1s.gz9a649ad0b88ccf2a1212cbf1d30b109a 2002276.1s.gzda4ea365176ec068aeff298f831ffd12
2002277.1s.gz6b3adb332818106d89bfd2cded7e944b 2002278.1s.gz05b25bcc94e235b8d5107e28bb3c07e2
2002279.ls.gz3ed7856f1e7c6b6f429301c1646d8f07 2002280.ls.gz415c9796167e39515c26320398cb91a0
2002281.1s.gzc676169dcd2af425d3cc7a8982386808 2002282.1s.gz5938619622f593b9b59bef8b2fe3c1b1
2002283.1s.gz5d6ed7ec7077a52eda1c7082f71fb735 2002284.1s.gz64e0692f22eabb6f4ee471eea0b364cc
2002285.1s.gz37c13e26ff1d045304312f344cf78af0 2002286.1s.gzf4e81dd9090b9718be4a6a1cc62bca24
2002287.1s.gzb82d601a3a3c22f19b1e745c50a0b1f6 2002288.1s.gz6cc6ee1feb9678539944e9badfc759c4
2002289.1s.gz1fa112629c97a00a775eb30566beda40 2002290.1s.gzfb8f3113671abe7680b9695efa55c1ff
2002291.1s.gzf965a42f08de7ce92f275fbabbfb0193 2002292.1s.gzecb9bb87157a87dc12347d7a7ede6f29
2002293.1s.gzb07c0577d3a05c799b4caf115f98989a 2002294.1s.gzf4c5520f3e13772f246c4471d65b5c1f
2002295 1s gr4eblogbdbbbbbcbccf9992c021115199898 2002294.1s.gz14c5520f3e13772f246c4471d65b5c1f
2002295.1s.gz4eb1e99db79b369ea2c603a7850751c6 2002296.1s.gze3777da8a74db4fc84093a3fc6eac400
2002297.1s.gz440aedfbe3a25f11edc5abcb7c994206 2002298.1s.gz4b19453c678829013017691624a76351
2002299.1s.gz9c27e02d840c1b40ac56b4ecbb00a0e8 2002300.1s.gz46e3751026d3f3e0ebe48cececce536d
2002301.1s.gzf1b9dfd3e7c217228e7e3f0b05e2d04c 2002302.1s.gzc25a813e6643b3c7b01923837711241e
2002303.1s.gz680f764bae4319a7cc82603a0e6aff2e 2002304.1s.gz7c41f898297ff17c442a4b50d7e41c48
2002305.1s.gz1edafeebaa163ffc7452e991fdb64c2a 2002306.1s.gz6193db4267f33233872c89404f82cb86
2002307.1s.gzb112c897fb9352c784557d2770642388 2002308.1s.gz539dc0bfb388d055a7b68dd455a7b996
2002309.1s.gz8a0dcd7dc1bccd3371b8eabf9b6e8e51 2002310.1s.gz3ded31a876fd93b43f4b5cd564f87774
2002311.1s.gz61332c7ae0134e1144dbf27ebd3ae3aa 2002312.1s.gz2424bc3545ca9af6fbfb8c34371deb98
2002313.1s.gzf35819e7733b0cdb59eef2cf17e50193 2002314.1s.gz557bb0a6ff7173abb7c96e328b66d268
2002315.1s.gz1b39e1cde3429a83e423c6bf21755aa7 2002316.1s.gz6214dccbac868fc2d67a9aa47312b437
2002317.1s.gz123fb06f67d58b076ba4912d2e7b17f5 2002318.1s.gzcaadf23f07c2bd4d20df02a37fd6db02
2002319.1s.gz83dec92b75352c1448ab32de79f76bab 2002320.1s.gz2fd050d0e034150ff6cf3d4286d53d79
2002321.1s.gzf91812de0c641c9ea9cb57acb949e941 2002322.1s.gz46afe5c58f5e6f93d886895d90ce2d33
2002323.1s.gzb0a44f6c94eab63aaf918c0addcf7aa3 2002324.1s.gz0674961f68fe37ec1be875cf30d01835
2002325 15 ggf9789200562626292324.52 2002324.18.g20674961f68fe37ec1be875cf30d01835
2002325.1s.gzf87e80aea66a86c883ee6cfca62ab719 2002326.1s.gz84ca677bc160ad8799519eb5ba8f281a
2002327.1s.gz4902e39c0aff098bdce6281961f155e2 2002328.1s.gzf72fdb855f727603ae0dafd4340568e7
2002329.1s.gzca05d1b27437e848c958f7f50edf501c 2002330.1s.gza959684f6a8b6ab72e6425ea551bb0dd
2002331.ls.gz4dbb5f9327ad85433b315cad551116db 2002332.ls.gz492c74caa1ba3e1cbbb5be00b278c21f
2002333.1s.gz9533f1c6e230e5d7cfee0d8306997a08 2002334.1s.gzcf8ba11989afbc8e879f998ee5519cd9
2002335.1s.gz090295d6a6f3b75047d731de81f222d6 2002336.1s.gzd32c41dff42a63afb7d09f09a9ae910e
2002337.1s.gzc9df5de20d1ee0c1de54ba9ae6c68ab0 2002338.1s.gzefe5600aee96c987603cbb126e976430
2002339.1s.gz702fa7196af528bc6af984d4c553a5ed 2002340.1s.gzb08b95f690a3577b94573a299eb8dd92
2002341.1s.gz5b40d53elee24daed0d0fc40adb0c454 2002342.1s.gz804f4c08b100064d5cfa6856835c6427
2002343.1s.gza7030f0f767c92bf12d64c79cc1d656e 2002344.1s.gz72d52a62db1b946e3ab66d1b49df9e7f
2002345.1s.gzfd2a71f56c83ef2985640985eb794bb4 2002346.1s.gz9880eb8ed9cc85cb6a40d7adf5b7a2d8
2002347.1s.gzb3b4788dd6b01f1ec32775b3353cb8f9 2002348.1s.gze1ed356266382c2354a6e20274a6c8e8
2002349.1s.gz2f7a68dfe62d5f5caefa7db1b39c3581 2002350.1s.gz46b61ae7c52e332c663f14feb50da2bf
2002351.1s.gzad4ab7c2e7782a1e7df360437403b2aa 2002352.1s.gz5eb4189a4f241c91e141853b5f6aed24
2002353.1s.gzf2b0e2e83a876bfa6af2857c16e3805f 2002354.1s.gzb48a52cb2a7e19a6a9d2e387c1f2caf6
200235 1 ggl16d72dpbbc5c3bc0stablaga/bbc5c3bc0st200234.1B.gzD48a52cD2a/e19a6a9d2e387c1f2caf6
2002355.1s.gz116cd73dabcb6563db580a41dbc7068e 2002356.1s.gz890865e1590a401f9bb756aed7463ecf
2002357.1s.gzc0805617f073f6f76731f023fa7b6acd 2002358.1s.gzd742d3264380a9ed40d2cb2947091039
2002359.1s.gz4eef573720de2233c34ceb6895e5d1e5 2002360.1s.gz75db1495af015f79717fdc0db69d02f4
2002361.1s.gz23c198264d3030303153fecffd845315 2002362.1s.gz978564ffca3945e0756fle216da3eeab
2002363.1s.gz09f57e0cbeba03bba17c492d3afa2814 2002364.1s.gz08fed9defa20f658e8e9ed8414952c69
2002365.1s.gzb175e76ec9597a3485e731a9270d33a0 2003001.1s.gze0cd9fbfe38dd9d1f2cc6af98c1498cf
2003002.1s.gz268d65ba6c08178c7aaa5586795ad14f 2003003.1s.gz0d67fa3e7a643812b8f18c0852c5e979
2003004.1s.gza3e89ac6a842c8d05ce31ff0cdb9ddf4 2003005.1s.gzb03f6e4dd6819920b788f3900d930be8
2003006.1s.gz2e457ca4fb0381d21b812231a9842cc1 2003007.1s.gze88212086c50e9b37e5457167c5b6d77

2003008.1s.gz35ac1	6cb6064ca514e1a084540011b9d 2003009.1s.gzc14b09517c0d	2318033d7d72ff18c49a
2003010.1s.gz480d1	.0c7dbedb4aa014181fe2f32ea91 2003011.1s.qz7ee4317917e4	dd629b6ab5ddb90ce68e
2003012.1s.gzd4825	67a6d0c32561f1553ff3912215b 2003013.1s.qz296d84153edd	a2afcd0bfe735e0b60fd
2003014.1s.gz41763	fc3dcf42b3355b24cb40d494e55 2003015.1s.gz7346e0022c93	b43fe1023ed7254aea08
2003016.1s.gz8f8cc	0400755352bc2d2b550e178b240 2003017.1s.gz6b71d7458301	f295e7adffabfffdddaa
2003018.1s.gzd076c	11428c832224d4ee07e9a3b6329 2003019.1s.gz222423aff421	0b7b05ge020e=045_0_1
2003020.1s.gz20379	e04029ceela0fla96c93b109029 2003021.1s.gz8cfbcdd14982	
2003022.1s.qz17189	55facbb33019d6e053c78757db5 2003023.1s.gzdb7c8b5b6155	3a76029D4E924dD15078
2003024.1s.gz700f7	0ccl6f9af3cf5bf8dcd6b96ec12 2003025.1s.gza2fce864c886	9034f157535144aa49b6
2003026.1s.gz756d5	99858ab5e67a3711aaa372e10fc 2003027.1s.gz43827797d418	740956£38£791984£210
2003028 YMS3 1s gz	899d6E2faf4064E0=0227=4064_040_0_0027.1s.gz43827797d418	df80290426abe48f1ae9
2003030 VMS3 18 gg	899d653fcf496459a9337c426de841a8 2003029.YMS3.1s.gz	655302ee3b77022b6468c8b15b3bd055
2003030.1M35.15.92	ea89f629ec1dc92ee493738bb530cdb0 2003031.YMS3.ls.gz	17d32455a0dbbabd9853e12871149203
2003032.IMS3.IS.gz	ff3bbfbe356e988db74593a6a614ec1b 2003033.YMS3.1s.gz	528f916c44ec634805095ac6769ebdf9
2003034.IMS3.IS.gz	57a2f4c4826907f454ef7cfbbb4aald8 2003035.YMS3.1s.gz	76901dab8ea7e9229dafd71470f15972
2003036.YMS3.1s.gz	2005057.1105.15.92	e8da647f47a668e56839808c78499a44
2003038.YMS3.1s.gz		43351212611409a81fd0131571611e4d
2003040.YMS3.1s.gz	d5befdb0324b7de2f2270dd5219cc1f5 2003041.YMS3.1s.gz	adb1fa681af58d58c32656e49fa5ded3
2003042.YMS3.1s.gz	2003045.1M55.15.92	b7d47aa170c73a0126c4cd91495f4c9b
2003044.YMS3.1s.gz	2005045.1MB5.15.92	72cd7f483ccf5077aea25ccce7c75a68
2003046.YMS3.1s.gz	2003047.1M33.15.92	0446a09aa98e8021419686cf9b28dbec
2003048.YMS3.1s.gz	11111111111111111111111111111111111111	5c0b163c652323cf9c421a1d96e5993c
2003050.YMS3.1s.gz	f459b73cd385209dd351cf357d4cae2d 2003051.YMS3.1s.gz	75b98fcfalec0f123bdd4b0e92c77fbe
2003052.YMS3.1s.gz	9ebfbaf3a84f92c659a30b41f53888d8 2003053.YMS3.1s.gz	497699840304f8e94def11eefeabb8a2
2003054.YMS3.1s.gz	140e77e441f6daf7a59eb9480d374cfd 2003055.YMS3.1s.gz	1a358ea391be1843a1af751e33ce03e6
2003056.YMS3.ls.gz	bcce2f998b979f4683900bfdffb785b1 2003057.YMS3.1s.gz	db8a168aba8753c583c878a5b49d0e2b
2003058.YMS3.ls.gz	cb840b8f24a338472bbd1bb9a4b4767e 2003059.YMS3.1s.gz	88997c65bffaedf57e0c059c2ca08e46
2003060.YMS3.ls.gz	f4597b7445801f558cb78bff22aa89d9 2003061.YMS3.1s.gz	d54654f5a7e03d96415f3a01e4bccba6
2003062.YMS3.1s.gz	22afc8cd3a4a03561b2676f78dbe210a 2003063.YMS3.1s.gz	301448fb91abc99510c0c9f369dac37b
2003064.YMS3.1s.gz	27e230557e000f988553cac99fe8afb9 2003065.YMS3.1s.gz	2fbfa815d68a392445914ca0f5607827
2003066.YMS3.1s.gz	8clbcaabfe56d0af00536e52a56ba7a2 2003067.YMS3.ls.gz	0e99d3011afc87bfb167be85370bc697
2003068.YMS3.ls.gz	a22eb4dc4565c77248cecf6b024fd315 2003069.YMS3.1s.gz	6dc19d12e58c847c9d89854fd7261827
2003070.YMS3.ls.gz	7ddle114d5320d2ddaf849b828018d75 2003071.YMS3.ls.gz	5142fae0ba03d35d65217b5db69d7ab3
2003072.YMS3.1s.gz	lcl0cb42810bc12df40a4509167cec57 2003073.YMS3.ls.gz	63334a01a45a9296fe12951ee131f143
2003074.YMS3.1s.gz	fa96031c895bd17529dee5f8646fd67a 2003075.YMS3.1s.gz	4d54369d06a6f796b9767910502b0585
2003076.YMS3.1s.qz	de10-0-	
2003078.YMS3.1s.gz	593425832ca0dalafcf4477e8a7c8627 2003079.YMS3.1s.gz	b969a02ce4647389216d043b348c4601
2003080.YMS3.1s.gz	0061bf6180904837785290b255c4ec59 2003081.YMS3.1s.gz	646b92c7041f69824d2cc6c52ff8b8b0
2003082.YMS3.1s.gz	d5a6a4bb181d3cb1228066e4e116cecb 2003083.YMS3.1s.gz	714377905e6265bf13ca3bc49d3c92ea
2003084.YMS3.1s.gz		a5a8013ccfe22c7f075f139f7381a25c
2003086.YMS3.1s.qz	8b4892a7007285c96fcc8b762fa2606b 2003087.YMS3.1s.gz	b4944e4de7f8aa951f2ab6718da043fc
2003088.YMS3.1s.gz		6b443caeac989f680d3a142395fd1ef8
2003090.YMS3.1s.gz	2432dd237e1a7bd81ef69a9c5e372d81 2003089.YMS3.1s.gz	554ed4a233a4b3583103ff0208f1a854
2003092.YMS3.1s.gz	11c22be2ba2d69cafada617a664d622c 2003091.YMS3.1s.gz	c855c52a552c96a05fce0af1007e6a7f
2003092.1MS3.1s.gz	1f0a39a724bf2242382419f280093a61 2003093.YMS3.1s.gz	55d42c52a92484f3e9962c79bfde3a0a
2003094.1MS3.1s.gz	3d86948f2e6edc7afd1b18d16dcd17b9 2003095.YMS3.1s.gz	3547860aef4eal1d001e8d6a054a553f
5	d6ce236091aaf1973765aebela1bbdf6 2003097.YMS3.1s.gz	857fed9724e0d4ddd0bfa05b1d247250
2003090.1MS3.1S.gz	b840b84edd19ac0f09a2a9c90521e154 2003099.YMS3.ls.gz	69e9ecfa0be9c9230c9db7a424750d31

Files of 5-minute Data

2002233.5m.gz63f680af8c1ae2d42aa8961659ecd931 2002234.5m.gz55074b01a62afe8cb32d4488a02ea331 2002235.5m.gz7139954cc36f5fd3657c76f053c73268 2002236.5m.gzec4b03f1a422dcc4b03bf91b41be05d6 2002237.5m.gz16c8ed821a058cf48c1e50d04a5b5279 2002238.5m.gz50b0c7ba7a1a8359797ce99ed6303d0c 2002239.5m.gz89239f184dd745fcbf4278bbf0dc59f4 2002240.5m.gze188b5e32b9b7d4fd3dabd24b5a70212 2002241.5m.gze2b9ca707decf4ef7324c4436dd6000e 2002242.5m.gz6b55a2c5ef03181f77c70714f089ae7b 2002243.5m.gz3973e7efe58c9d924a457a089c6a67c5 2002244.5m.gza4b938efe817bf71de65d8a9239ed4d3 2002245.5m.gzcda2cb288b393913bc9b91d585dc309f 2002246.5m.gz4561b7d0ffb8e38f2a689f1eb4522d7c 2002247.5m.gz4d4a569a26fc212b94e5d6e6ba4862fc 2002248.5m.gz6c9fed9b42739f70f6ddf40c694bdfc7 2002249.5m.gz185ce009c81e0ba54a52db2334718f66 2002250.5m.gz8f9adeada683e6ed49bf9bee1cf54629 2002251.5m.gzf53felf0fbfcd229f763339465033406 2002252.5m.gz6a793ab2cf69afe057430eab0cb93485 2002253.5m.gza205fffa1b73cf9ca0ede3e4197684df 2002254.5m.gz08c5f35a79d1f523d498fb44e76309a0 2002255.5m.gz5ca73281eb968558e2c95eee5b66e040 2002256.5m.gza8334b06de25cc1354a74938aeed4f23 2002257.5m.gz8c9c07d59525118ad17551bddb3856c6 2002258.5m.gz57f1d85e3c776d8800fca6c3290671b9 2002259.5m.gzcbbdaf82f11d092d47e2fd59cab9281f 2002260.5m.gz81edc8186b8e6691971f7cd9110b1c96 2002261.5m.gzd44ee4e6bb684b4f0502d7d41fa75627 2002262.5m.gz0c2a60c1ecb9ce4646c2defe327739e9 2002263.5m.gzfc657b3aa0ebcef1483891660adac1eb 2002264.5m.gz3bf68710d7c523e061d352af6670ca43

2002265.5m.gz8bc934bba764a39d034b1ee0bdf9bd42 2002266.5m.gz41d5cf8b1aa39ac2767428c9ad4354b4
2002267.5m.gzdc2dbbb3e9aa37855aa64e37a0364e5e 2002268a.5m.gz a6a7cc8db3795201f9332514950d514d
2002268b.5m.gz bdaf08e3072dbc2f594f9b4bdde69939 2002269.5m.gz54b4dd94a5e1b6912cadc05f150ba65c
2002270a.5m.gz 96239bc65988a231dfd0a6a915d352c6 2002270b.5m.gz 98fb8bc331e7270170971691b1cc6a8e
2002271.5m.gz0437572829a1b145d651aae499286750 2002272.5m.gz0ad3278d3b9536faedfefd6b4adc072b
2002273.5m.gzef35a9248b190327eee360d3fe270883 2002274.5m.gzb9bd19f6fd693b17cb77aee8e35d53b7
2002275.5m.gz6ca1626a5b141006cf5ce0754f4d6471 2002276.5m.gz7ec7d5f43f0160a228b3c8d81cdae9f7
2002277.5m.gz61b5c9b97cde45ee60adea60a54665a7 2002278.5m.gzed95878658a120107d7dfb213e200dbf
2002279.5m.gze992170a0ff22c3b147551a12a6e47a2 2002280.5m.gz06d78e54cfc4c9b6ca60faf05f05dec6
2002281.5m.gz1a4cb78c27b1b6e56bae98b74d3681a0 2002282.5m.gz51dcacd3feb3cdd57db317c148a25207
2002283.5m.gze5ledb64b152f62497f24b32eaada953 2002284.5m.gz8343ccf16be4b0137a888dc4a1881146
2002285.5m.gz9d773ec28b58426b96a9a75b6bacaa4a 2002286.5m.gz18812d78b1b9949fa849e39d1d1af645
2002287.5m.gz4123ab51a4b62a907b5175c84348701d 2002288.5m.gz4668ad770d9f5a7630dfda229f6cfd86
2002289.5m.gz4f578725f456d28c0d6f5fc7e0977e82 2002290.5m.gz74fd560f6a19cb5f5e2604c783dbafc7
2002291.5m.gzea9da61c05b5f1d04d6b92dcaa32485e 2002292.5m.gz820c2b35f756d0f1dd249b98d61f2f43
2002293.5m.gz4d967fcld53lefbd6ad609cd920e69c8 2002294.5m.gzb18a4e3ae50624228595a84ee6d10e62
2002295.5m.gz731cb3a3d6fa5432b80f72353de9588f 2002296.5m.gz70b51bef3a4e98791ee5c89bb11141e9
2002297.5m.gz50614a0cfe19be1b8f6f095d972a32f5 2002298.5m.gzc3590e44e2637f5a32263510efd154f1
2002299.5m.gz243356be138910bf75dbb39d5b637765 2002300.5m.gz8bc4d62d814adc7efb473d3e16505501
2002301.5m.gzf49bba816be7707d9d2ec526cd66c2c0 2002302.5m.gzc60e95f43af87345722ebed7ed9bf942
2002303.5m.gzce2e601e1e98740b80209ce7fa9c137d 2002304.5m.gz5adecba9295ac7f5a8bcd8107125f943
2002305.5m.gzae40f677c76bded973fe1307041399ce 2002306.5m.gz0a78d7ddc64612477446f3fddbfdc67f
2002307.5m.gzb47d99d7370c231821694d7459eb2dcd 2002308.5m.gz9dd78dr4dc6461247744bf3fddbfdc67f
2002309.5m.gzc66994bcf5e3feeb5926c8f630a41bf5 2002310.5m.gzcc1be3a743d28fe022e184b262ac80c4
2002311.5m.gz80d611573b0df75b6f382741182fd388 2002312.5m.gz51827aa3f9827e12087a8c1fe794269e
2002313.5m.gzd75a325126257d2427e2d6098c5164e6 2002314.5m.gz251827aa3f9827e12087a8c1fe794269e
2002315.5m.gze212be9d561990dee9cea5293b36f3bf 2002316.5m.gzf5c1601e5a505e99ab210a08c8cb993d
2002317.5m.gzc6d9f7aa486c458c0fe21b63137b829c 2002318.5m.gz54c08de3e2f8bdac90aa9c256633c1dc
2002319.5m.gz096abce6f406fb8c7fb070a2ee95aa5f 2002320.5m.gz62de7b8b339d2d3eadf8452b5e4359b9
2002321.5m.gz8e2bd736413d8e1bc977b039a9bbbcfe 2002322.5m.gz66704b1d2e42a1e8dac967c901facc58
2002323.5m.gz21355320d64a4c231b0c174e8b36f17c 2002324.5m.gz65ae4a54c759d85bd5eb9346ee3d5743
2002325.5m.gzb2285d21f137083c66493613e82d93a8 2002326.5m.gzd983c761f8472004f473d7b8d783b361
2002327.5m.gz03624bdea5a0a94530295995f1458b96 2002328.5m.gz23e9bb17ad1b7fa0e3029c58dbae165e
2002329.5m.gz7c3c5df131a2970353ed5686ecf9e762 2002330.5m.gz0522826357f0923bd65f331a62ead59c
2002331.5m.gz7174241a8121526e67a681c536ba762d 2002332.5m.gz4081b16cacbb4ed05dc382c081a48bbc
2002333.5m.gz083d76373b5dd30b5710d6ea4b2c20a4 2002334.5m.gz12b0af41c2fd698ba181435417cecc12
2002335.5m.gz49cc0684815a74c2ba295fbeb8bc8a0b 2002336.5m.gzc1f187c1c96e40b82a61055dcd79c451
2002337.5m.gz8aa1d2f893989293b8314e567f61f255 2002338.5m.gza42c477c2b47ce923f1d64fa7e87b560
2002339.5m.gza74bla9499d3dcf25cbb66fd3b9506bb 2002340.5m.gz5116e53328fe7ce47l2alaabd14156b1
2002341.5m.gz956602b19c6e7f533647c4a64b97c32c 2002342.5m.gz2712c35192165a1c9b4fbb5de2e7ff1f
2002343.5m.gzf0d2e0898f8742878ba186dcd7785d43 2002344.5m.gz5393e2dbebe25cb0516b15fef016ba18
2002345.5m.gz358703f3ff50e5cc057b2e9cfa79c4ed 2002346.5m.gz061581c74bcf68eccbb1f5e35b20c401
2002347.5m.gzb297d86c744bfcb589b605e0f0fe913f 2002348.5m.gz2acbcf53362e2a8bbfbc4dc3cb95eea5
2002349.5m.gz2cd90fb6f0e86ea36b58cca3ad664c03 2002350.5m.gz936dcc90692ce6175ad491bf2113cdc0
2002351.5m.gz4fa5d02cd8e754b4ae66f3bd6a2699c3 2002352.5m.gz7faf7ec1ddccc4f37f2b20e0defcb4f8
2002353.5m.gzad0467b4891ad5819bf645f147f0d34b 2002354.5m.gzbf0d3al1eb0bb04d4c401ca7cdaf887a
2002355.5m.gzddcalf80713ce66f5e8f428376db2483 2002356.5m.gzbed324dc868d0613e3c80ecbd7e9f62f
2002357.5m.gz65c14e7d1629b89b5b42bdde41b83492 2002358.5m.gz59e16d2e15b7d37d6d1fe2da9919f279
2002359.5m.gzb264elcae698ffd6155329el2827de62 2002360.5m.gze4064651cb5e47f7b08468837af087ab
2002361.5m.gz1865f3f0c0ef752a29c32022217592f1 2002362.5m.gz1650d1a5235add1f8a05841cf9f43aa7
2002363.5m.gz483f8398844cbd581a64cc485a71dc85 2002364.5m.gzf34d3f720fea94c8eb28d86554ee8c26
2002365.5m.gz154aff1c54b7531651370f0bac91ba68 2003001.5m.gza7cc6717f7b6d46d7bfac97dc95f38db
2003002.5m.gz74554a31691ebc5fdb0a4d9e4d808147 2003003.5m.gzfee53232a790d5f4c34bc948f2a6c7fe
2003004.5m.gzff7d9baebd9846ba8181fb46e0ab87be 2003005.5m.gz5feb14c341d2f005ab58b7a47fe163e0
2003006.5m.gz7dlde8af241b0b80b315f7lefc32e6aa 2003007.5m.gzfed9ea369d3f325927309e80f47d2b3e
2003008.5m.gz79f6a6255b748014756862c9e6ebfd67 2003009.5m.gz013fd3b5da646ba9dd13759e7a619b39
2003010.5m.gz00708aa2851a0023850d71a31e88638f 2003011.5m.gz291b45f044de29bde346cd4996f88638
2003012.5m.gzaeaae5d8e29e5549c43ad51bd10e96f8 2003011.5m.gzbaeea0150f52bf2b2b71556b20d69c41
2003014.5m.gze00b375a53156a64c3889f3781e111ef 2003015.5m.gz80044a282d26957defd9fcd5d645b898
2003016.5m.gzb7cfe3121e66f4a98e8240623eb06e4b 2003017.5m.gz7083b814bf22a72fa8f7c43a85aa9dbf
2003018.5m.gz50094f9ab3f7bc6aaaff422768873532 2003019.5m.gz7083b814bf22a72fa8f7c43a85aa9dbf
2003020.5m.gz918a00c7db4bbbb5b8eaeaf9c09a6ae 2003019.5m.gz6bc153d52c817ea0e37d7313480b5802
2003022.5m.gzfclffle16a5b72377b4dce984d97f53c 2003023.5m.gz19ea4664ea5338da2c45c8b433ee7d50
2003024.5m.gz88a6b310f09d7b45d1177ba9fe3f2743 2003025.5m.gz19ea4664ea5338da2c45c8b433ee7d50
2003026.5m.gzef67dc4ed8384bdcb363ae7e0533dld7 2003027.5m.gz2ea77ef7f42b8b211427a862cdcef92c

2003028.YMS3.5m.gz	2003029.1MS3.5m.dz	2ac2a4f5036ddb67338b3cfe20e98bc0
2003030.YMS3.5m.gz	87dda39677c120decbec6c288e503668 2003031.YMS3.5m.gz	b65d83efc58c068c6908a289ae0ff985
2003032.YMS3.5m.gz	5d95e7c0abb1b7328814b81e87384e8b 2003033.YMS3.5m.gz	41b0d7c85742c578be152ded387be69a
2003034.YMS3.5m.gz	elf0af354c64d484424b127680ab0bd8 2003035.YMS3.5m.gz	c3d725e9a1b9277a4193e917a94aeca9
2003036.YMS3.5m.gz	895d7b9f4c082d4e25cd174eb3338084 2003037.YMS3.5m.gz	796cafdecc4afad6ace0ebbff33b1035
2003038.YMS3.5m.gz	259db887aad52c87bd1366da348f6f51 2003039.YMS3.5m.gz	53ec7adc28eafe64923ceb746843bef6
2003040.YMS3.5m.gz	b7a27f387a646693cad086de8c8a664b 2003041.YMS3.5m.gz	f464delf908bd04170d9bc330c56a702
2003042.YMS3.5m.gz	97afcb4b7139b834d7965158be4ac97c 2003043.YMS3.5m.gz	55b0e959383f6a8a495f87268fb68961
2003044.YMS3.5m.gz	5c86a125d0d89e38b98e975b34ec93f9 2003045.YMS3.5m.gz	bca3a101e546feee728f25d8a2cf8201
2003046.YMS3.5m.gz	bf8771942c525645b78f4f03287f1d92 2003047.YMS3.5m.gz	4aec6c5346063290b11cad6b5b597f4c
2003048.YMS3.5m.gz	ec8952c40a975ebc1eb763875f15c5e1 2003049.YMS3.5m.gz	b7398cd627d53b22fc1f343c90c68d12
2003050.YMS3.5m.gz	3f5b9eb259bde1c926ab65ebe8bfb6d2 2003051.YMS3.5m.gz	80cb03cf66998024302eed3eedeb3a0e
2003052.YMS3.5m.gz	70bcc3546e46b7871e23741743e596bd 2003053.YMS3.5m.gz	1dc438a51a35eab1b5f9f4b628378d03
2003054.YMS3.5m.gz	7c8b9a67921ffd21e6cce4267b369547 2003055.YMS3.5m.qz	985ce72f39226c8f2f485e6d87d29d84
2003056.YMS3.5m.gz	2ab040829acacf5149c5e87e071b5a38 2003057.YMS3.5m.gz	72af28ae24fb6b3615e5314f8db083c3
2003058.YMS3.5m.gz	154d2bd1f9bbf1c3d1ae254aaf4f2878 2003059.YMS3.5m.gz	80712e81ecea0ee46f0d0b5aac761499
2003060.YMS3.5m.gz	b4484be9a44aa38aedfb865d6ca23d7e 2003061.YMS3.5m.gz	3clef08497b3dfd1a531d9f4313a8fab
2003062.YMS3.5m.gz	b98b1ebdb9e2fe1e5eb4d601ae57c14a 2003063.YMS3.5m.gz	2de3c557265070ed430270c6cc5d3726
2003064.YMS3.5m.gz	691a06149053c49459b0e75d43e14eb4 2003065.YMS3.5m.gz	b8014bd9083fb4a75ca5d2cc7a0aedf4
2003066.YMS3.5m.gz	838b3221bb158b11e4eaab2f568a4d9a 2003067.YMS3.5m.gz	33cdcbce334406085df24864385d02fa
2003068.YMS3.5m.gz	6ceb4db6f973674cda7c5aa6c2425e82 2003069.YMS3.5m.gz	10dd0d66bf67da0f4b710c49077e60b2
2003070.YMS3.5m.gz	429bf7bcc9c54b6a033590234f9ddb63 2003071.YMS3.5m.gz	b9693bdd30f69f84fb967c7a228f973d
2003072.YMS3.5m.gz	13a5c5bfe263066f27adddd46ac9ec02 2003073.YMS3.5m.gz	52ede9425281d480f5b3637c0388d800
2003074.YMS3.5m.gz	065b3abc2375c56d67d6ad0b0ffbe830 2003075.YMS3.5m.gz	413139cbddfa50ef2d8ac86709886a72
2003076.YMS3.5m.gz	29286a3cc26f4f8c30aa59491ded1e80 2003077.YMS3.5m.gz	e4afdbd053d06b36e93cae890db98a7c
2003078.YMS3.5m.gz	9f2824c6269c76dcf7c0244d1993fe4e 2003079.YMS3.5m.gz	c2f5fd5b5f182509202c9854144bc756
2003080.YMS3.5m.gz	be8fe454e2479d299d028d73a7b9558d 2003081.YMS3.5m.gz	a53feac3b6167018668c24d2c20168fa
2003082.YMS3.5m.gz	cf63924e5042c1f408ab984f97f3e302 2003083.YMS3.5m.gz	6ea22fdccb15c3bbf7f86e1165f16302
2003084.YMS3.5m.gz	1a7e01212b663ac1e8268c885840c76a 2003085.YMS3.5m.gz	ce7d69680292315a36341769a2c8d21d
2003086.YMS3.5m.gz	04d033cab96cd48d7611ac9cad1d9c3a 2003087.YMS3.5m.gz	alb71ffe2a603ff11b6c6a26ec068923
2003088.YMS3.5m.gz	c707ee0bb9489b576e6fed1c1502f4f8 2003089.YMS3.5m.gz	dld40a4c43693aa193850255b55a3b5d
2003090.YMS3.5m.gz	ed1027c3dc23dcec1f0f32e8b0bb02dd 2003091.YMS3.5m.gz	e6dc38354d52ef281d4fa2d4d258f1a1
2003092.YMS3.5m.gz	fc6f1f7ca35489eede447d60fc634194 2003093.YMS3.5m.gz	76ad60fe3ffb801894ca41755aef28f0
2003094.YMS3.5m.gz	lf091bf1e78412e5a62baf70535587c2 2003095.YMS3.5m.gz	aef548f106f7fec7227b1e4c95e436b7
2003096.YMS3.5m.gz	2ef4a1b54945becfdde20f365b6b58c7 2003097.YMS3.5m.gz	91fda159c175c64c93c0dd5c97b3867b
2003098.YMS3.5m.gz	410dabd504f3e49a31cdd6246bc3593c 2003099.YMS3.5m.gz	12d1dc0e906a30d9678fc178ccff691b

Appendix B: Strainmeter-Component-Plans

YMS Strainmeter

\Electrical

\01-Logger

- 01-01-010 Multiplexer box layout
- 01-02-010 Multiplexer rack layout

\02-Other Remote Control

• Master Control Block Diagram

\03-Beamsteering driver

All drawings transferred to OrCad .

\04-LOA Modulation driver

All drawings transferred to OrCad

\05-Vacuum Control

- 05-01-010 Vacuum controller box
- 05-01-020 Vacuum controller box 2
- 05-01-030 Vacuum controller circuit (electric, air, and vacuum) .
- 05-01-040 Vacuum pneumatics

\06-Thermal Control

•	06-01-010	TEM schematic
٠	06-01-020	TEM control board layout
•	06-01-030	TEM installation layout
٠	06-01-040	TEM parts

06-01-050 TEM assembly

\LOAs

•

•

.

\02-LOA 2000 Vacuum

- LOAS-02-01-010 .
 - LOAS-02-01-020 System base (screws into canister)

4" LOA flange

- LOAS-02-01-021 System base hole x-y coordinates
- LOAS-02-01-030 1" reflector holder and retaining ring
- LOAS-02-01-031 Large (1.5") corner reflector holder
- LOAS-02-01-040 . Pipe end flange (mate to bellows)
- LOAS-02-01-050 . Bellows flange
- LOAS-02-01-060 LOA bellows design •
- LOAS-02-01-070 Guide rods and parts
- LOAS-02-01-080 Window holder
- LOAS-02-01-090 .
- Window retainer ring and vacuum hose flange LOAS-02-01-100 . Vacuum tube hanger
- LOAS-02-01-110 • LOA pipe lowering clamp
- LOAS-02-01-120 .
- Install tool mod (older tool modified) LOAS-02-02-010 Bellows assembly •
- •
- LOAS-02-02-020 Vacuum hookup assembly . Vacuum pipe assembly
- LOAS-02-02-030
- LOAS-02-02-040 Bottom pipe assembly
- . LOAS-02-02-050 Middle pipe assembly

DOE/UCCSN DE-FC08-98NV12081

- LOAS-02-02-060 Top pipe assembly
- LOAS-02-05-010 Length assembly worksheet

\03-LOA 2000 Casing

- LOAS-03-01-010 Anchor canister
- LOAS-03-01-020 Anchor canister base threads
- LOAS-03-01-030 Anchor canister frame parts
- LOAS-03-01-040 Anchor canister grout tube assembly
- LOAS-03-01-050 Grout cap
- LOAS-03-01-060 LOA PVC casing canister threads
- LOAS-03-01-070 PVC casing skids
- LOAS-03-01-080 1 1/4" pipe guides
- LOAS-03-01-090 . Casing survey tool
- LOAS-03-02-010 Anchor canister assembly
- LOAS-03-02-020 Anchor canister skid assembly
- LOAS-03-02-030 Long socket assembly
- LOAS-03-03-010 Anchor canister in ground (cutaway)
- LOAS-03-03-020 Anchor canister in ground
- . LOAS-03-03-030 Anchor canister loading views
- LOAS-03-05-010 Casing shim worksheet
- LOAS-03-05-020 Casing vs. borehole vs. vac tube worksheet
- LOAS-03-05-030 Casing vs. borehole vs. vac tube Advanced worksheet
- LOAS-03-05-050 Target worksheet

Main Vacuum

\01-Main Pipe

•

.

- PIPE-01-01-010 5.5" tube 8 bolt flange
- PIPE-01-01-020 5.5" tube flange welding specifications
- PIPE-01-01-030 5.5" tube 4 bolt flange
- PIPE-01-01-040 5.5 and 6" tube O-ring overpressure rings
- PIPE-01-01-050 Pipe cradle layout and design

\03-Yucca Stanchions

- PIPE-02-01-010
- PIPE-03-01-010
- PIPE-03-01-020 Yucca layout tool (piercing point) .
- PIPE-03-01-030 Yucca center clamp
- PIPE-03-02-010
- Tunnel wall and layout view PIPE-03-02-020
 - Piercing point tool use PIPE-03-02-030 Center anchor layout
- PIPE-03-02-040
 - Yucca roller assembly

5.5" pipe rollers

Yucca stanchions

\04-Pump and Plumbing

PIPE-04-01-020 Vacuum pump layout and plumbing

Tail piece assembly

- PIPE-04-01-040 Yucca vacuum pump stand
- PIPE-04-01-050 LASM (GVS) pump stand

\05-Bellows

•

•

.

.

- PIPE-05-01-010 . Bellows main brace
- PIPE-05-01-020
 - Bellows adapter plate PIPE-05-01-030 Bellows anti-torque brace
 - PIPE-05-01-040 End window assembly
- . PIPE-05-01-050
 - PIPE-05-02-010 Bellows assembly
- 32 -

\Optics

•

.

•

•

•

.

•

•

•

\01-Laser adapter

- OPTC-01-01-010 ML1-AL1 adapter
- OPTC-01-02-010 ML1 laser
- OPTC-01-02-020 ML1- AL1 adapter assembly

\02-Optics Table

- OPTC-02-01-010 48"x24" optics table (unmodified)
- OPTC-02-01-011 48"x24" optics table (modified for vertical LOA s)
- OPTC-02-01-011A Yucca optics table. No LOA holes (renumber).
- OPTC-02-01-012 • Optic table legs and holders
 - OPTC-02-01-013 Optics table feet
- OPTC-02-01-014 Yucca special flat foot (for tilted optics table)
- OPTC-02-01-020 Optic table hold downs
- OPTC-02-05-010 . Optic table legs assembly
- .
 - OPTC-02-05-020 Yucca table assembly view (showing tilt)

\03-Beam Splitters

- OPTC-03-01-010 2" beamsplitter holder (for Newport beamsplitter) .
 - OPTC-03-01-020 3" beamsplitter holder (for BS Arch)
 - OPTC-03-01-030 2" beamsplitter holder (for Coherent beamsplitter)
- OPTC-03-01-040 Telescope mount
 - OPTC-03-01-050 LSM beamsplitter arch
 - OPTC-03-01-060 LOA beamsplitter arch
 - OPTC-03-01-070 Yucca LOA beamsplitter arch
 - OPTC-03-01-080 Arch feet and legs
 - OPTC-03-02-010 2" beamsplitter light path
 - OPTC-03-02-020 Telescope mount assembly

\04-Reference Laser

OPTC-04-02-010 Iodine laser to He-Ne laser test stand schematic

\05-Optics Layouts

- OPTC-05-02-010 Yucca optics layout (older version)
- OPTC-05-02-020 Yucca optics layout (presentation quality)
- OPTC-05-02-030 Yucca optics layout (side view)

\06-Laser Stage

•

• .

•

.

•

- OPTC-06-01-010 Laser stage pivot and spring parts
- OPTC-06-01-011 Stage hold down parts
- OPTC-06-01-020 Steering arm and micrometer surfaces
- OPTC-06-01-030 Micrometer holders
- OPTC-06-01-040 Yucca laser stage
 - OPTC-06-02-010 Yucca optics layout (move to Layouts)
- OPTC-06-02-020 Laser stage assembly
 - OPTC-06-02-030 Yucca laser stage center of gravity worksheet

\07-LOA Scope Mount

- OPTC-07-01-010 Telescope base
 - OPTC-07-01-020 Base cross bar
 - OPTC-07-01-030 Leg and leg base
- OPTC-07-02-010 LOA scope mount assembly

\08-LOA Prism Steering

- OPTC-08-01-010 Unmodified rotary mount and motor micrometer
- OPTC-08-01-020 Micrometer bracket
- OPTC-08-01-030 Rotary mount modifications and steering arm ring
- OPTC-08-01-040 Spring plunger and ring assembly
- OPTC-08-01-050 Rotator mount
- OPTC-08-01-060 Rotator and wave plate mount
- OPTC-08-02-010 Range of motion worksheet
- OPTC-08-02-020 Assembly top view
 - OPTC-08-02-030 Beam splitter to counter rotating prism layout worksheet
 - OPTC-08-05-010 Prism motion and function worksheet

Yucca

.

01-Site Drawings (note West = 65+41 and East = 69+46)

- YUCA-01-01-010 West alcove concrete. Layout and volumes
- YUCA-01-01-020 East alcove concrete. Layout and volumes
- YUCA-01-01-030 . West monument and bellows piers construction detail
 - YUCA-01-01-040 East monument and bellows piers construction detail
- YUCA-01-01-050 Monument pier detail. Showing relation between ground contact and slabs. .
- YUCA-01-01-060 Concrete floor detail and rebar layout
- YUCA-01-01-070 West alcove excavation detail and volumes
- YUCA-01-01-080 East alcove excavation detail and volumes
- YUCA-01-02-010 Pipe roller layout. Tunnel position and various views.
- YUCA-01-02-020 Alcove / Building / Monument layout view.
- YUCA-01-02-030 Instrument layout. Top and side view.
- YUCA-01-03-010 East and West building cutaway view. (Contains two drawings.)
- YUCA-01-03-020 Top and end view showing full LOA depth to scale
- YUCA-01-03-030 End view showing full LOA depth to scale
- YUCA-01-05-010 West building placement layout guide
- . YUCA-01-05-020 East building placement layout guide

\02-Strainmeter

- YUCA-02-01-010 East vault construction plans (ours)
- YUCA-02-01-015 East vault construction plans (contractors)
- YUCA-02-01-020 West vault construction plans (ours)
 - YUCA-02-01-025 West vault construction plans (contractors)

LOA tube clamping collar

- YUCA-02-01-030
 - YUCA-02-01-032 LOA tube clamp
 - YUCA-02-01-033 LOA window end clamp (unfinished)
 - YUCA-02-01-040 Instrument enclosure assembly drawing
 - YUCA-02-01-041 Instrument enclosure assembly cutaway
- YUCA-02-01-042 Instrument panel construction plans
- YUCA-02-01-043 Instrument box fasteners and assembly
- YUCA-02-01-050 East instrument box modifications
- YUCA-02-01-060 West instrument box modifications
- . YUCA-02-02-010
 - LOA tube clamping collar assembly and instructions

\03-LOA Layout

- YUCA-03-05-010 LOA layout instructions and definitions
- YUCA-03-05-020 Acceptable borehole drift
- YUCA-03-05-030 Angular drift allowances and drift from straight line •

\04-Rail Cart •

Rail cart assembly and frame construction YUCA-04-01-010

DOE/UCCSN DE-FC08-98NV12081

Task 7

- YUCA-04-01-020 Push bar
- YUCA-04-01-030 Rail cart parts

\05-As Built Drawings

- YUCA-05-01-010 West concrete
- YUCA-05-01-020 East conctete
- YUCA-05-01-030 West pier detail (unfinished)
- YUCA-05-01-040 East pier detail (unfinished)

\99-Old and Unused

- LOA pipe installation supports
 YUCA-01-04-020 Tunnel t
 - YUCA-01-04-020 Tunnel tools. Various views of pipe layout, building layout and tunnel to pipe dimensions
- YUCA-01-02-020 Old building design
- YUCA-01-09-020 Alternate roller support design
- YUCA-01-09-010 Early tunnel cross section showing proposed pipe location
- YUCA-01-09-030 No vault strainmeter design layout (end view cross section)
- YUCA-99-09-040 No vault strainmeter design (top view)
- YUCA-99-09-090 20 shipping container strainmeter layout
- YUCA-99-09-080 20 shipping container layout
- YUCA-99-09-070 Another 20 shipping container layout
- YUCA-99-09-060 Early building tunnel layout
- YUCA-99-09-050 Micro building layout
- YUCA-99-09-100 Mico building layout detail. Building / Excavation / Concrete.