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Feedback Control Solutions to Network Level User-Equilibrium 
Real-Time Dynamic Traffic Assignment Problems 

Pushkin Kachroo 
Bradley Department of Electrical Engineering 

Virginia Polytechnic Institute and State University 
Blacksburg, VA 24061-0536 

Kaan Ozbay 
Department of Civil Engineering, 

Rutgers University, Piscataway, New Jersey 

Abstract - A new method for performing Dynamic 
Traffic Assignment @TA) is presented which is 
applicable in real time, since the solution is based on 
feedback control. This method employs the design of 
nonlinear H, feedback control systems which is robust 
to certain class of uncertainties in the system. The 
solution aims at achieving user equilibrium on alternate 
routes in a network setting. 

1.1 Introduction 
The technique we propose solves the network-wide 

system optimal DTADTR (Routing) problem using 
real-time feedback control. We employ nonlinear H, 
feedback control design methodology to produce the 
solution of the problem which also provides 
robustness against bounded disturbances. The 
modeling paradign of nonlinear H, approach is an 
exact match with the requirements of a network-wide 
DTA/DTR problem applicable to Advanced Traffic 
ManagementAnfonnation Systems (ATMIS) of 
Intelligent Transportation Systems (ITS), because it 
solves the optimal dynamic routing problem by only 
performing simple algebraic operations in real-time, 
unlike existing techniques which rely on lengthy off- 
line/on-line mathematical operations. 

2. System Description 
In this section, we present a mathematical model 

for the traffic system which is in the form usable for 
the design of DTA/DTR feedback control. Many 
models have been proposed before, but the most 
appropriate model has been proposed by 
Papageorgiou [9]. In this section, we will present 
the same model with minor changes, which then will 
be used for feedback control design. 

2.1 System Network 
Following the general notation and development in 

[9], let N be the set of all the network nodes for the 
problem, M the set of all the networked links, I, the 
set of links entering node n, 0, the set of links 
leaving node n, 0 the set of origin nodes, and D the 
set of destination nodes. Let d, denote the origin- 
destination demands. where i E 0 and j ED. 
Traffic flow entering a link m is shown by 9, and 

that leaving the same link by Q,. Let S" denote 
the set of destination nodes which are reachable from 
a node n. There are tnj altemate routes from node n 

to destination node j, and Ltj ,Z = 1727...,lnj are the 

ordered sets of links included in altemate routes. A, 
is the set of output links which connect the node to 
the destination j using one of the alternate tnj 
routes. q;, m E Anj is the flow in the link m 
belonging to one of the routes for destination j 
flowing out from node n. The sum of all 
q:, m E A, for a node n for destination j is given 

There are two kinds of split factors which can be 
used in system dynamics. One is destination based 
splits which are given as ratio of the destination 
based flow on a link out of a node n and the total 
flow from the same node to the same destination. 
This is shown in equation (1). The constraint 
associated with this split factor inputs is given by 

by q n j .  

(2). 

7 mEAnj (1) 
p . = 2  m qm 

nJ 4 ni 
= 1 

mehDj  

Second kind of split factor input takes the ratio of 
the flow into a link m from a node n and the total 
flow from the same node, as shown in (3). The 
associated constraint is shown in (4). 

m 

4, 
p r = L 7   EA, (3) 

meA, 

The total number of independent split factor input 
variables, whether they are destination based or node 
based, is reduced by one because of the constraints (2) 
and (4). 

Link variables can also be modeled based on either 
destination or independent of those. Let s, be the 
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set of destination nodes which are reachable through 
link m. The inflow into a link m is given by 

qm = c p ; s n j  n EN,mE 0, (5)  
jESm 

Let qnj denote the total flow leaving a node n for 
destination j .  The composition rates on a link ase 
given by (6) and the corresponding constraints are 
given by (7). 

4 nj 

4 m  
y mJ . =pm--, nJ nEN,mEOn, jESm 

(6) 
C y m j  

j's, 

The destination based link flow is given by 
qnj = xQmrmj + dnj n E N, j E S" 

where rmj is the fraction of trafik volume exiting 

2.2 System Dynamics 
There are essentially two kinds of system dynamics 

which have been modeled for this problem : link 
based model, and route based model. 

(7) 

m d "  

(8) 

a link m destined for destination j. 

2.2.1 Link Based Model 
In this scheme, the state variables are link density 

and composition rates. The link density dynamics 
are obtained from conservation equation, and are 
given by (9). The relationship between outflow and 
link density is shown by (10). There have been 
many other relationsbps shown in literature instead 
of (10). 

G: .  

(9) 

(17) 

\ I x = f(x) + g(x)u + a(x)w 
y = x  .=["I"'] 

1 (10) [I- e -Pm(t ) /KC,  
Q m ( t >  = qmax ,m 

The composition rate dynamics can be represented 
as a time delay, where the amount of time delay is 
related to the travel time on the link. This dynamic 
relation is shown as 

r m j  ('1 = Y mj (t - Xmj  1 

r m j  ('1 = a m  [Ymj - r m j  1 + r m j  

(1 1) 
An alternate method models the dynamics of 

composition rate propagation as a f i s t  order filter, 
given by 

(12) 
wheream is either constant or a function of travel 

2.2.2 Route Based Model 
In the route based model, the state variables are the 

destination based densities on the links of the 
system. The dynamic equations are shown in (13). 
The exiting composition rates are given by the ratio 
of the destination based density to the total link 
density as shown in (14). 

time. 
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Now, in order to formulate the problem in state 
feedback H, control, we need to identify z(t). For a 
system user-equilibrium, we can take z(t) as a cost 
function of the state variables with weights given to 
the function of states as well as to the variation of 
the split factors. That would in effect provide 
bounded variation of the split factor commands which 
is crucial for the actual implementation and 
effectiveness of the system. This further increases 
the size of the state variable vector by the number of 
split factor variables. 

The DTA/DTR can be further solved in two ways 
depending on what we use for split factors i.e. 
destination based split factors or node based split 
factors. There are many subtle and apparent 
theoretical as well as practical implications of this 
choice. The theoretical implications are related to the 
controllability aspect when deciding on which split 
factor to use. Without any detailed analysis, it seems 
intuitive that the destination based split factor 
formulation will give a more controllable system 
dynamics than the node based split factors. However, 
the actual implementation of destination based split 
factors is not trivial. At present, VMS systems or 
other actuation methods can be used for node based 
splitting, and they would have to be either modified 
or designed in such a way that destination based 
splitting information can be provided to the drivers. 
In automated highway systems, or in general in a 
transportation system, where communication 
infrastructure is already present for infrastructUre to 
vehicle communication (such as with in-vehicle route 
guidance system), the destination based split factors 
could be easily implemented, and be highly effective. 

Definition 1: System G/K is said to have L2 gain 
less than or equal to g for some g > 0 if 

T T 5 IlZ(t>ll"dt 5 Y jllw(t>ll2 dt (18) 
0 0 
'd T > 0 and d(t) E L2[0, TI. 
Nonlinear H, - Control Problem: Find an output 

feedback controller K if any, such that the closed 
loop system Q(G, K) is asymptotically stable and 
has L2-gain I g, v T E R+. 

The solution to this problem can be 
derived from the theory of dissipative systems [6], 
which also has implications to the theory of 
differential games [5] .  In order to develop the 
solution, define a storage function as in [4] as: 

Solution: 

l T  
V,(X> = SUP -J(llz(t>112 - Y211W(f>112>dt 

wsL2 [O,T],x(o)=x 2 
(19) 

Condition (18) is equivalent to v,(X) < 00, 
which in turn is true if and only if there exists a 

solution to the following integral dissipation 
inequality. 

t O  

b'tl > t o  and w E L2[t0,tl]. Function V(x) 
which satisfies (20) is called a storage function, and 
if such a storage function exists, then system( 16) is 
called dissipative with respect to the supply rate 
1 -(')''llw(t)lr - l/z(t)f). If V(x) is differentiable, 
2 

we can rewrite (20) as 
1 

V(X> 5 ,(Y211w(t)112 - llz(t>112> (21) 

which combined with (1 6) gives 

We call the left hand side of (22) the energy 
Hamiltonian H. We mrform a min-max oDeration 
on H following the differential game analigy. BY 

solving -=o and -=o we obtain the 
aH aH 
aw aU 

optimum maximizing disturbance w* and 
minimizing input U as: 

* 
. -  

T av (23) 
l T  a v *  w =-a (x)-,U =-g (x)- 

Y2 ax ax 
which provides the saddle point property 

H(x,- ,w,u*)IH(x,--  ,w*,u*) avT avT 
ax ax 

(24) avT 
ax I H(x,- ,w*,u> 

By substituting (23) in (22), we obtain the 
Hamilton-Jacobi inequality 

1 
2 

+-h(x)hT(x) I O  (25) 

If the system is reachable from xo then the storage 
function (19) is finite, and if it is also smooth then it 
is also a solution of the Hamilton-Jacobi-Isaac 
equation 
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1 
2 

+-h(x)h’(x) = 0 (26) 

In the game theoretic formulation, the objective 
function on which the players perform min-max is 

T 

J(u, w) = I (Z’Z - y2w’w)dt 

The solution of the game theoretic formulation is 
given by (23) in conjunction with (26). 

(27) 
0 

The solution for the standard infinite time horizon 
optimal control problem can be obtained from this 
by eliminating the disturbance player w(t). This can 
be achieved by taking the limit y +  0 ~ )  in the 
Hamilton-Jacobi inequality. Hence an optimal 
control problem with a feedback solution for 
minimizing 

T 

J(u) = I(z’z)dt (28) 
0 

The solution of this is given by 

(29) 
T av U* =-g (x)- ax 

where V(x) is the solution of the Hamilton Jacobi 
ecluation 

1 +,h(x)hT(x) = 0 (30) 
L 

Polynomial hproximation Method for Solving 

Set 
Hamilton-Jacobi eauation and ineaualitv: 

V(X) = V[”(X) + Vt31(X) 
where VL2](x) contains second order terms and 

Vf3’(x) contains third order terms. For solving 
(30), we can substitute (31) in (30), and solve for 
similar order terms. The details of using the 
polynomial approximation technique which provides 
local results are shown in references [ 101 and [ 111. 

Measurement Feedback Control: The above 
described solutions (23), (29) are valid when the full 
state is available for feedback, i.e. the full state is 
measured directly. On the other hand, in many cases, 
the full state is not available. In those cases, it needs 
to be found out if the partial measurement available 
renders the system observable; in other words, can 
the state variables be estimated from the measured 
outputs. If the system is observable, then we can 
design state observers whch process the measured 
outputs and provide best (in some sense) estimates of 

-4- 

the state variables, which then can be used in the 
controllers. There is a good amount of literature on 
the topic of linear and nonlinear observers. In linear 
systems, Luenberger observer and Kalman filters 
have been used effectively [12]. Reference [I31 
provides a good survey of nonlinear observers. 

For dynamic traffic assignment problems using 
feedback control, normally state variables like trafik 
flow or traffic density are measured. Other variables 
like split parameters, origin-destination flows have 
to be estimated. If information about split factors 
and origin-destination flows is available through 
communication with vehicles (such as by using 
GPS, cellular communication, etc.) then it becomes 
a full state feedback control problem, but at the 
present level of applied technology, these variables 
have to be estimated. There has been some effort at 
building Kalman filter based observers for origin- 
destination trip table estimation [14, 151, but the 
authors have not seen any work in the area of 
estimating the composition rates. This will be area 
of further research by the authors, which would then 
in conjunction with the work presented in this paper 
provide an immediately deployable DTA scheme. In 
the meantime, however, this solution is highly 
attractive for off-line simulation studies also and for 
preliminary design for deployable systems, which 
would work with state observers for real time 
deployable feedback systems. 

3.1 DTA Problem using Link Based 
Model 

The dynamics of the link based model can be 
written in form (15) by using equations (l), (2), (5- 
10) and either (11) or (12). In this paper we will deal 
with equations of type (12) instead of (11) for 
composition rate dynamics. In the link based model, 
the link densities can be used directly to formulate 
the system cost. For instance, if we are trying to 
minimize the weighted cost of input and the user- 
equilibrium travel cost, we can write the variable z(t) 
as 

where w is the relative weight on the input. If we 
assume that travel time on a link is given by the 
quotient of the division of its length with the average 
velocity on it. On that basis, h(x) will be 

k=t.. 

h(x) = x e i ,  where e, = C ( A k  - Ak+1)2, 
iaP k=l  

andAk = C6,pi /Qi (33) 
i erk 

We have taken .!, + 1 to be same as 1. The symbol 
Ak indicates the total travel time on the kth alternate 
route starting from the node I, P is the set of all the 
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node-destination pairs nj, and rk is the set of all 
links in the kth alternate route. 

3.2 DTA Problem using Route Based 
Model 

Route based system dynamics model is obtained by 
combining (I), (2), (5-8), (13) and (14). In this case 
also, the system cost is a weighted function of the 
input and state dependent cost. Since the state 
variables are different in this case, the state dependent 
cost will have to be written in a different form. We 
can take z(t) to be 

where w is the relative weight on the input. For 
the route based model h(x) can be written as 

k=&,; 

h(x) = C e i ,  where e, = z ( A k  - Ak+t)2, 
ieP k=l 

ieq jsS, 

3.3. Feedback Control for the Traffic 
When the complete extended system which 

includes the dynamics of the OD flows as well as 
those of the split factors, so that the input vector 
consists of all the rate change of split factors, is 
written in form (16), then the feedback control for the 
system is given by (23) combined with solution of 
the Hamilton-Jacobi inequality, where appropriate 
substitution of h(x) is made from (32) or (34). 
Specifically, in (25) wherever h(x) appears, it will be 
replaced by w h(x). 

Conclusions 
In this paper we present a real-time on-line 

feedback control solution for the network wide 
dynamic traffic assignment problem using user 
equilibrium. The solutions, which are based on 
nonlinear H, design, are shown for link based as 
well route based models, and it is also shown how 
the problem can be modeled and solved using 
destination based and route based split factors. 
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