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Abstract

Starting on October 1, 1995, the monitoring of seismicity within the southern Great Basin near

Yucca Mountain was performed with a new digital network. This network features three-component

recording with 24-bit A/D conversion in the field. Continuous data are collected at 20 sps, and event

triggered windows are collected at 100 sps. A seismic bulletin of events is made by automatically

associating triggers among stations, classifying the local earthquake events, and locating the

earthquakes and computing their magnitudes with conventional methods. This report covers the

operational and seismic results of the seventh year (FY02) of the digital network monitoring.

The FY02 earthquake bulletin includes over 5000 events within about 65 km of Yucca Mountain.

This is roughly twice the average number of events in the previous six years and is due to the

occurrence of a significant M = 4.4 earthquake on 06/14/2002 within the aftershock zone of the 1992

M = 5.6 Little Skull Mountain earthquake. This event was followed by nearly 3000 aftershocks

through September 30,2002. Hypocentral depths of the recent aftershocks are largely concentrated

in the range of 8-12 km, consistent with previous years. Earthquakes outside the LSM aftershock

zone are largely in the 4-12 km range. The observed minimum detection thresholds for earthquakes

within the network range in ML from -0.5 to 0.5 or greater, with the lower threshold achieved for

earthquakes in the LSM and Yucca Mountain areas where the network is most dense.

The M 4.4 earthquake at Little Skull Mountain on 06/14/2002 was the major event in the network

during FY02. During FY02 only the M 4.4 Little Skull Mountain earthquake provided usable

strong-motion recordings. The maximum acceleration of 0.084 g was observed at the station LSC
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nearly directly above the hypocenter, and maximum accelerations in a range of .004 to .032 g were

observed near Yucca Mountain, with top end of the range observed at station WHBS on the pad of

the proposed Waste Handling Building. Recorded accelerations were roughly in agreement with

those predicted in the PSHA (Probabilistic Seismic Hazard Analysis) study for Yucca Mountain.

From the FY02 earthquakes, 46 new short-period, first-motion focal mechanisms were reliably

determined. These, and the roughly 300 from the previous six years, show a consistent picture of the

overall stress field in the region of the digital network. The mean tensional axis is oriented at

roughly 60° west of north, at shallow dip, and the pressure axis at roughly 30° east of north, with

greater variability in the dip direction accounting for a range of both strike-slip and dip-slip faulting

within the general NW-SE extension.

In FY02 five additional small earthquakes occurred within 10 km of the ESF, all with magnitudes <

0.0. In addition, a small earthquake was located in the southern part of the Yucca Mountain block,

more than 10 km from the ESF, and another in Crater Flat.

In the Death Valley region, two earthquakes measured M > 3 within the park boundaries. Little of

the observed seismicity in the Death Valley region can be related to the two large faults there:

Furnace Creek and Death Valley.



1. Introduction

This report covers the seismicity observed within the Yucca Mountain region during the seventh

year of operation of the Southern Great Basin Digital Seismic Network (SGBDSN). Originally

brought into operation on October 1, 1995, the digital network has now grown to 30 three-

component stations within roughly 50 km of Yucca Mountain. In addition, 19 sites at relatively

close distances from Yucca Mountain are equipped with strong-motion sensors. This network (weak

and strong motion) addresses the seismic hazard of the Yucca Mountain area by providing important

magnitude data for earthquake recurrence estimates, spatial hypocentral data for inference of active

faults and verification of tectonic models, actual ground motion data for comparison with

predictions, and source data for characterizing faulting and determining stress patterns.

This report is organized to first present the basic information on the network performance. This

comprises a brief description of the data recording, an explanation of recording problems, a

discussion of the processing procedures, and explanation of how the final catalog is produced. The

report then presents the recorded and located seismicity as measured by the SGBDSN in FY02

(10/01/2001 through 09/30/2002). A more detailed treatment of special events or topics is given;

among these are the 06/14/2002 M = 4.4 earthquake at Little Skull Mountain, earthquakes for which

focal mechanisms could be determined, and earthquakes close to Yucca Mountain. The seismicity

of Death Valley is treated, making use of stations remaining from an earlier analog network. This is

possible due to the integration of all Nevada seismic stations under the Antelope seismic processing

software, as described later.



2. Data Collection and Processing

2.1 Station Description

As of September 2002 the Southern Great Basin Digital Seismic Network (SGBDSN) included 30

digital seismograph stations. Figure 2-1 shows these locations; they are Q data from DTN #

UN0006SPA012DV.001 and are listed in Appendix 2. Two additional stations (ECO and YFT)

were installed by Sandia National Laboratories (SNL) but are considered effectively part of the

SGBDSN, with all normal QA procedures applied to them. These two stations are tied into the

SGBDSN telemetry system, and data are transmitted and processed in the same way as for all other

SGBDSN sites. Some stations of the former analog monitoring network (Southern Great Basin

Seismic Network - SGBSN) have been maintained outside the SGBDSN to aid in the

characterization of Death Valley area seismicity and in regions not monitored effectively outside of

the SGBDSN. A map of a larger area showing the analog (SGBSN) stations along with the digital

(SGBDSN) stations is shown in Figure 2-2. (These SGBSN locations are also Q data and taken from

DID #023DV.001.) Data from analog stations were used to determine focal mechanisms and to aid

in the location of events, both topics covered later in this report. Note that the stations SHP and

NEN in Figure 2-2, providing some coverage of the Las Vegas area southeast of Yucca Mountain,

are digital stations installed in southern Nevada by NSL (Nevada Seismological Laboratory) and are

not part of the SGBDSN. The SGBDSN stations transmit to one of the five telemetry nodes shown

in Figure 2-3. The exact installation dates of the SGBDSN stations, along with the location

information for each, are listed in Appendix 2. All digital stations use Geotech S-13 seismometers

currently. The last four CMG-40 seismometers were phased out at AMD, SPC, TYM, and TIM in
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FY02. Stations ECO and YFT are configured with Geotech GS-13 seismometers. The AL5 station

within Alcove 5 of the Exploratory Studies Facility (ESF) uses a Mark Products three-component L4

seismometer. Neither the GS-13 nor Mark Products seismometers are used in magnitude

computations. Also, no analog station data are used to calculate earthquake magnitudes. Ten digital

sites are equipped with strong-motion instrumentation (see Appendix 2). Supplemental 16-bit A/D

cards were added to onsite recorders in order to handle the output from RefTek Model 133-05

accelerometers. Data from these strong-motion sites are available in near-real-time and recorded

and archived along with all SGBDSN data. The strong-motion data will be discussed in a later

section of this report.

The response in digital counts to ground displacement versus frequency of the SGBDSN instruments

is shown in Figure 2-4. These responses are nominal for all instruments in the two main groups, S-

13 or CMG-40. Actual calibration data show that there is only a maximum of ±10% deviation for

any particular instrument from the nominal curves. Calibration pulses were analyzed monthly to

ensure that none of the instruments drifted outside of this range. The free period of the S-13 (and

GS-13) instruments was nominally set to 1.0 s and that of the CMG-40 instruments to 30 s. The

damping coefficient was nominally set to 0.7 (critical damping) in all cases. Sensors of the

remaining stations of the analog network have a similar free period and damping coefficient. The

SGBDSN S-13 response peaks at about 40 Hz at high frequency, as compared to 20 Hz for the

instruments of the analog network. The 40 Hz cutoff is due to anti-aliasing filters in the DAS

(Digital Acquisition System) units. It is important to point out that the much higher noise floor of

the analog recordings results in a much narrower usable frequency band than achieved in the

SGBDSN. This was demonstrated in von Seggern et al. (2001) for a collocated pair of digital and

analog stations. The CMG-40 instruments are recorded at a lower gain than the S-13 instruments in
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order to provide broadband, on-scale recordings in the event of a larger earthquake. The S-13's, as

configured with the RefTek recorders, can clip at short distances (< 10 km) for ML = 3 earthquakes.

Station locations were determined with a Trimble GPS unit in a differential mode for early site

installations and then by Garmin GPS units after May 2000 when selective data availability was

discontinued and accuracy of ordinary GPS units became 10 meters or less. Locations in Appendix

2 are for the seismometers themselves, not the antenna position.

2.2 Data Collection Method

The field data acquisition systems are described in von Seggern and Smith (1997). During the time

period covered by this report, two data streams were in effect at all stations except ECO and YFT: 1)

a 20-sps, 3-component, continuous data stream and 2) a 100-sps, 3-component, triggered data

stream. Stations ECO and YFT only had the triggered stream. The former was enabled with a

"continuous" trigger specification, which creates contiguous trigger windows of 30 minutes duration

each. The latter was controlled by an "event" trigger specification with the following parameters:

short-term average (STA) length 0.4 seconds
long-term average (LTA) length 10.0 seconds
STA/LTA trigger threshold 3.5
pre-trigger record length 30 seconds
total record length 150 seconds
channels included in trigger Z, N, E
threshold exceeded by at least n channels 1

A third data stream has been added for the 10 stations equipped with accelerometers. This stream is

"cross-triggered" from the 100-sps seismometer stream described above, and the data are also
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recorded at 100 sps. The manner of data collection at the NSL was previously described in von

Seggern and Smith (1997). Raw data are archived in large 24-hour files (one per station) that

contain all original data packets sent from the field acquisition units. Such files are termed "refraw"

files, and the actual file names end with this term. We call the set of these files the "upstream"

recording, and it is archived on DVD media. These DVDs are submitted to the YMP Records

Processing Center, as in all prior years, as a raw data record.

On January 1, 2000, a major transition to the Antelope seismic processing system was made (von

Seggern et al., 2000). This transition for the entire NSL network incorporated recording and

processing of seismic data from the SGBDSN. The SGBDSN data, directed to files as described

above, are also transmitted in near-real-time to the Antelope system where it is then available for

review and analysis with the seismic data processing tools of the Antelope system. In automating

some seismic network operations through Antelope, additional data processing measures are

incorporated in the data flow. These introduce potential failure points in the data collection process

if we rely exclusively on the Antelope system for a final data archive. We implemented new

archival procedures on January 1,2000, to put the data on 4-mm DAT tapes in Antelope format as a

"downstream" dataset. Depending on the use of the data, retrieval from one or the other (upstream

or downstream) of the archived datasets is possible. The upstream archival dataset, although more

complete, can often be more difficult to use than the downstream dataset. In addition to storing

waveform data, Antelope also stores various parametric data in tables, collectively called Datascope

(Quinlan, 1998).

2.3 Downtime and Problems
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The reliable collection of data is subject to the following problems:

* seismometer malfunction or failure
* DAS malfunction or failure
* radio transmission interference
* telemetry interference or failure
* hardware failure at the central recording site
* software failure at the central recording site

Except for seismometer malfunction and some types of DAS malfunction, the nature of these

problems is that no data are recorded rather than data are corrupted. The case of corrupt data is

covered by writing appropriate Non-Conformance Reports. Seismometer performance is controlled

by procedures in IPR-001 ("Operation of the Yucca Mountain Seismic Network"). In this fiscal year

of operation, various examples of all of the above types of problems occurred. A more accurate,

station-specific, method of tracking downtime from the upstream recording was devised for this

fiscal-year report. It is based on querying the Datascope table called "reno.wfdisc" for recorded time

intervals for each station. (These Datascope tables are in the daily Antelope directories

/ymp!6/yyyy/jjj on the YMP computing system at the NSL, where yyyy = year and jjj = Julian day.

Data in these tables are non-QA.) Downtime for any given station is simply the total span of time

minus the total of these time intervals for that station. Figure 2-5 is a summary of the downtime for

each station within the SGBDSN. (The SNL stations ECO and YFT are run in triggered mode only

and so are not represented here.) This figure shows that the downtime was under 5% for all stations.

The least downtime, at station HEL, is approximately 0.3%; five other stations have roughly 0.4%

downtime. HEL was installed on 06/24/2002 and therefore was not operating during all of FY02.

Ignoring it, the 0.4% of the five stations is then interpreted as the upper bound of the network-wide

downtime, that is, when not all stations were recorded. This network-wide downtime is significantly

better than the same as reported in previous years (von Seggern and Smith, 2002). The largest
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downtime is associated with station AL5. This station, placed in Alcove 5 of the ESF, has a unique

telemetry connection and a unique power supply mode, both of which have been troublesome during

this fiscal year. The FY02 downtime of AL5 is, however, a large improvement over FY01 (von

Seggern and Smith, 2002).

The downtime inferred from gaps in recording does not exactly represent when data are

unrecoverable. The upstream recording to refraw files, as discussed above, is actually more

complete due to the fact that Antelope software failures would further add to the outage as seen in

the Antelope archive of data. Data from the refraw files are fully recoverable and, in fact, can be

replayed through the Antelope system in a non-real-time mode. We have had occasion to do this,

with satisfactory results. The decision to replay the refraw data is made on the length of the "hole"

in the Antelope archive and the appearance of any significant earthquakes in that time period. If

problems, such as telemetry failure, affect both the upstream and downstream archives, then

recovery is generally not possible. An exception is when the outage has short duration (~ 15 to 30

minutes) because the data are saved in a FIFO (first-in, first-out) memory in the DAS units until

transmission can be restored. We are not aware of any events with M > 2 falling in the 0.4% of

overall downtime for FY02. Most of the downtime in Figure 2-5 relates to times where only one

station or only a part of the network was down. Single-station downtimes only marginally impact

the ability to locate events within the network. Multiple-station downtimes have greater impact on

this ability; but, even with a few stations operative, events of M > 1 within the SGBDSN can usually

be located accurately.

2.4 Daily Processing
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The daily processing routine is outlined in Figure 2-6. It was fully described in von Seggern and

Smith (2001) for FYOO and has not changed since. The preliminary processing is done with the

Antelope system of BRTT, Inc., and the preliminary event locations and magnitudes are kept in the

Datascope database (Quinlan, 1998). Waveforms are excerpted for these events and kept online

with the database.

The last step in preliminary analysis is for the events to be checked and initialed on record sheets

called the "Yucca Mountain Seismic Event Sheet." These sheets are made by subsetting the

Antelope database for events within 65 km of Yucca Mountain (specifically, the station RPY).

Events are reviewed according to IPR-002 ("Determining the Location of Earthquakes Recorded by

the Yucca Mountain Seismic Network") and initialed by professional staff on the record sheets. In

this process events may be relocated and magnitudes recomputed; the revised information is

captured in the database. This is still not the "final" qualified information. Also at this time, a

review is made on classification of events other than local earthquakes (for instance, blasts).

2.5 Finalizing the Earthquake Catalog

The final locations and magnitudes for the FY02 earthquakes were obtained according to UCCSN

procedures IPR-002 and IPR-003 ("Determining the Magnitude of Earthquakes Recorded by the

Yucca Mountain Seismic Network"). The location program specified in IPR-002 is

HYPOINVERSE, Vl.O (STN 10080-1.0) (Klein, 1989). The magnitude program specified in IPR-

003 is MLCALC, VI .0 (STN 10081-2.0), which was internally developed and implements the local

magnitude calculation of Richter (1935); this magnitude is widely termed "ML". Again, we note that
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non-SGBDSN arrivals may be used in the locations, depending on seismological judgment. This

enables us to improve the locations of events around the fringe of the SGBDSN. With regard to

final magnitudes, we emphasize that only SGBDSN waveforms are used, specifically only those

from S-13 stations within the SGBDSN, as required by IPR-003.

The preliminary earthquake catalog for FY02, as residing in the Datascope database, contained a

total of 5249 earthquakes. The procedure for computing final locations prescribes that the arrival

times and preliminary locations be extracted from the Datascope tables and reformatted for input to

the program HYPOINVERSE (Klein, 1989); this was done with the program DB2PHS (STN #

10637-1.0). The procedure requires that a single velocity model be used for the entire suite of

earthquakes; this model, called the "moonhof model (Hoffman and Mooney, 1984), has the

following structure:

Depth (km) P velocity (km/s)
0.0 3.00
1.0 6.00

25.0 6.35
30.0 6.60
35.0 7.80

S-wave velocities are computed from P-wave velocities using a Poisson ratio of 0.25. Note that the

velocity of the second layer in IPR-002 is given as 5.85 km/s, not 6.00 km/s. This alteration crept

into the velocity model and has affected all SGBDSN locations since the start of operations in

October 1995. A Non-Conformance Report (NCR # UNR-03-0011) was filed and has been closed.

This NCR contains an impact analysis which basically states that the result of this error on locations

is insignificant.

HYPOINVERSE was run in batch mode with the altered velocity model. A few hypocenters were
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eliminated because they had four or less arrivals. At this point, events with large azimuthal gaps

(>300°) and with large horizontal error (> 5 km for one sigma) were culled out for review. Events

just west of the Little Skull Mountain area were also reviewed because several of them were

considered unreliable. This unreliability was due to the fact that, for many of these events, the only

observing stations were LSC, FMW, STH, and CAP (3 or 4 of them), which are nearly in a linear

configuration (see Figure 2-1). This review criterion eliminated several events. The procedure then

calls for removing arrivals having residuals greater than 0.3 seconds. The program was rerun with

these removed, and many additional events could not be located because the number of acceptable

arrivals fell below five. Through all these criteria, 77 events were subtracted from the original 5249,

less than 2%. None of these had a magnitude larger than 2.0. A total of 5172 events remained in the

final catalog which is listed in Appendix 3. The final magnitudes (ML) were then computed

according to IPR-003.

Note that the catalog of events in Appendix 3 includes error bars (+/- one standard deviation) for the

horizontal (erh) and vertical (erz) precision of the hypocenters. These errors, indicative of the

location quality, are considerable in some cases (on the order of several km) and are generally

greater for erz values than for erh ones. The density of these errors, in 1-km bins, is shown in Figure

2-7 (Q data, derived from DID # 012DV.014). In the case of horizontal errors, 96% of the events

have standard errors < 2 km. For a 95% confidence ellipse and assuming a normal density of errors,

it should be doubled to 4 km. Assuming a circular 95% confidence region, one computes the area as

7l42 ~ 50 km2.

The results here must be weighed in relation to the assumptions (mostly programmatic) used in
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producing the final locations. One of these assumptions was that the earth can be represented by a

homogeneous, plane-layered model. This implies the use of a single 1-D velocity model for the

entire network region. This " 1 -D earth" assumption has been inherent in all reporting since the start

of seismic monitoring in 1978. We regard this assumption as satisfactory for the intended primary

uses of the data. Further refinement of hypocenters through a 3-D model and through advanced

relative location algorithms is beyond the scope of this report but may be important for future work

in understanding details of faulting and tectonics in the Yucca Mountain vicinity.

Station corrections are often used with a 1 -D model to improve locations; but we chose to not utilize

them. This too has been true for all the earthquake catalogs produced since the start of seismic

monitoring in the Yucca Mountain region. Again, ignoring such first-order terms is satisfactory for

the intended primary uses of the data. We now have a large enough dataset to compute these terms

but expect that they will be highly azimuthal and distance dependent: a sign of significant 3-D

velocity heterogeneity. When 3-D location programs are applied to the hypocenters produced here,

the station effects will be automatically and accurately accounted for.

Aside from the location precision indicated by the erh and erz values, there is the question of

accuracy. Especially for events near the fringe of the SGBDSN network on the west side, the

addition of analog readings, if available, should have improved both location precision and accuracy

in nearly every case. However, it is important to note that, even with excellent station coverage in

both distance and azimuth, locations can be significantly off. The non-proliferation explosion (NPE)

of September 22, 1993, was recorded by the entire analog network and had excellently timed

arrivals; but its computed location, with depth constrained to the known 0.4 km, was off by

approximately 2 km horizontally (von Seggern and dePolo, 1994). The 95% confidence ellipse
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around the computed epicenter had a semi-major axis of only 0.5 km and thus failed to cover the true

location. This inaccuracy is due to the significant 3-D velocity variations in the southern Great

Basin that are not accounted for in routine location with a 1-D plane-layered velocity model.
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3. Seismicity Characteristics

3.1 Spatial Pattern of Earthquakes

Earthquake activity in the vicinity of Yucca Mountain has been described in numerous annual

reports prior to this. For reference, the historical seismicity of 1868 to 1978 (Meremonte and

Rogers, 1987; DTN # GS900983117411.004) is shown in Figure 3-1; and the seismicity for the

years 1978-1995, when the area was monitored with the analog network, is shown in Figure 3-2.

Also for reference, the seismicity for the years FY1995-FY2001, when the SGBDSN was operative,

is shown in Figure 3-3. (The historical catalog data in Figure 3-1 is non-Q data; Figure 3-2 is a

combination of Q and non-Q data for which the DTN #'s are listed in Appendix 1; and Figure 3.3

presents Q data for which the DTN #'s are also listed in Appendix 1.)

The historical catalog includes large uncertainties in locations and magnitudes, and spatial

representation of actual seismicity may not be very accurate. Many earthquakes in the historical

catalog have no assigned magnitude and are presumed to be M < 5 prior to 1932; M < 4 between

1932 and 1968, when the California networks started locating events in Nevada; and M < 3 after

1968 when instrumentation relating to the underground nuclear testing program was installed. The

1978-1995 data (SGBSN era) have much lower uncertainties in magnitudes and locations, and

regional spatial patterns can be established. However, we speculate that much of the SGBSN-era

activity (Figure 3-2) in the northwest NTS region consists of induced seismic events associated with

underground nuclear tests conducted during the years 1978 through 1992. It is possible that they

may even be aftershocks induced by high-yield, underground nuclear explosions (UNE) in the late
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1960'sand early 1970's (Hamilton etal., 1972). Many of these UNE events had magnitudes near or

over 6.0; for a comparable M 5.6 earthquake at Little Skull Mountain in 1992, aftershocks are still

be located at the rate of about 2 per day.

Since October 1, 1995, the seismicity within the Yucca Mountain region has been located with the

SGBDSN, and a map of the activity in the period starting then and continuing until September 30,

2001 is shown in Figure 3-3. For this era the figure shows the continued dominance of aftershocks

of the June 29, 1992, M 5.6 Little Skull Mountain (LSM) earthquake; they constitute roughly one-

half of the SGBDSN catalog. This figure also illustrates the diffuse zone of activity associated with

the M 4.7,27 January 1999 Frenchman Flat earthquake and the continuing aftershock sequence east

of LSM. A diffuse, approximately N-S trending, line of earthquakes between 116.8 W and 116.6 W,

as also seen in the SGBSN plot of Figure 3-2, is reflected in the SGBDSN plot of Figure 3-3. The

zone of activity near 37.2 N, 116.6 W seen in Figure 3-3 (called the Thirsty Canyon swarm) was

preceded by earlier activity in Figure 3-2. In view of the fact that this swarm occurred near the end

of a lineation in Figure 3-2 extending from northwest NTS, we speculate that this swarm activity

may be related to earlier large underground nuclear tests in the northwest part of the NTS. Activity

near the northeast corner of the NTS has been notably higher since the inception of SGBDSN

monitoring when Figures 3-2 and 3-3 are compared and the differing time periods (18 years and 6

years, respectively) are taken into account. This was the area of the M 4.1 Groom Lake earthquake

of 04/26/1999.

For the period of this report (FY02), Figure 3-4 shows the epicenters of the 5172 earthquakes located

with the SGBDSN. (This figure presents Q data, with DID # 012DV.014.) The same epicenters, but

without scaling by magnitude, are shown on a map of shaded elevation in Figure 3-5. The notable
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features of the FY02 seismicity pattern are: 1) the large number of aftershocks near Little Skull

Mountain (roughly 20 km southeast of the ESF), most of which are related to the M 4.4 earthquake

there on 06/14/2002; 2) the cluster of events to the northeast of the LSM aftershocks in the Cane

Springs Wash area, and 3) the cluster of mostly M > 1 events at the edge of the network (37. IN,

117.0W). The second cluster described here is in an area of only slight activity prior to FY02. The

third cluster occurs in an area of diffuse activity prior to FY02. This may reflect the fact that the

location of events in this area is probably improved significantly since the installation of station

HEL (Figure 2-1) and since the conversion of station TYM from CMG-40 to S-13 sensors. Lastly,

some activity near 37.2 N, 116.6 W, which is the site of the Thirsty Canyon swarm in 1996-1997, is

still apparent in FY02.

The largest event in the FY02 catalog was the M 4.4 earthquake on 14 June 2002 in the Little Skull

Mountain aftershock zone. We have named this event the "Little Skull Mountain II" earthquake.

This event's symbol on Figure 3-4 is mostly obscured by the numerous aftershocks that followed it.

Section 4 of this report will discuss that sequence in detail. The only other events with M > 3 in the

FY02 catalog were a M 3.09 earthquake in the LSM aftershock zone on 5 May 2002 and an M 3.13

earthquake on 18 June 2002. (Note that another apparent M > 3 event at 36.5N, 116.6W is actually

M = 2.94 but the plotting program puts it in the M > 3 class.) A total of 26 events had 2 < ML < 3 in

FY02; almost all of which were aftershocks associated with the M 4.4 event.

3.2 Moment Rate

In the previous annual report (von Seggern and Smith, 2002), we discussed the fact that the moment
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rate had significantly decreased in the past few years in the vicinity of Yucca Mountain and

postulated that this may be the start of a longer-term trend. The M 4.4 event on 14 June 2002 was

therefore somewhat unexpected. We extend our previous plot through the end of FY02 as shown in

Figure 3-6. (This data is derived from the seismicity catalogs listed in Appendix 1 and is non-Q

because it includes the non-Q 1978-1 992 portion.) This plot only uses events with M > 3 and within

65 km of Yucca Mountain (station RPY, to be precise). The effect on the cumulative moment of

neglecting all ML < 3 earthquakes is less than 1 0%. Seismic moment is computed from magnitude

by the Hanks and Kanamori (1979) formula:

= 1.5(ML+10.7)

The total moment is dominated by the LSM earthquake of 29 June 1992. Note that the seismic

moment rate is extremely low prior to the LSM earthquake. No events with ML > 3.4 occurred

within the 65-km radius circle in the 13 years prior to the LSM earthquake. The period between the

LSM and FF earthquakes has a notably greater rate than prior to the LSM earthquake. From the time

of the Frenchman Flat (FF) earthquake (01/27/1999) until the Little Skull Mountain II earthquake,

the moment release rate has been low compared to the few years prior to the FF earthquake, but not

especially low compared to the years prior to the LSM earthquake.

The data in Figure 3-6, as was pointed out in von Seggern and Smith (2002) using data through

FYO 1 , do not strongly support the idea that an unusually long period of quiescence is underway; and

the occurrence of the M 4.4 event on 14 June 2002 has further lessened support for any inference

that a long-term quiescent period is underway. The longevity of the trend, if it might exist, will only

be established with continued monitoring.
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3.3 Depth Distribution

For the FY02 catalog, the distribution of hypocenter depths is shown in Figure 3-7 (Q data, based on

DID # 012DV.014). Due to the dominance of LSM seismicity, the catalog was subsetted into LSM

and non-LSM groups and separate depth distributions were formed. The LSM aftershock zone was

defined as the rectangle (36.68, -116.35) to (36.78, -116.20). This graph is very similar to that for

the previous year (von Seggern and Smith, 2002), except that the number of LSM events is much

larger. Overall, non-LSM events occur in a broad source zone of 4-12 km. The number of events at

0-4 km depth for this group is probably biased by a significant number of events whose depth was

not well determined; however, many earthquakes in the Rock Valley area, south of Little Skull

Mountain, are known to have shallow depth. Specifically, the significant number of events overall

with depth < 2 km, approximately 230 or 4% of the catalog, is probably a result of poor location

quality and not indicative of actual shallow depth of faulting. Depths for the LSM events are more

narrowly distributed, mostly in the 8-12 km range. Due to the dense station coverage in the LSM

area, depths are more accurately computed than for the SGBDSN area as a whole, with very few

having depths < 4 km.

The depth distributions shown on Figure 3-7 are not significantly different than those shown in

previous SGBDSN seismicity reports. Moreover, the distribution of very shallow and relatively

deep events (not shown) is also very similar to the distribution of the previous year (von Seggern

and Smith, 2002). These events tend to lie in less dense areas of station coverage. The plot of

hypocentral error versus event depth in von Seggern and Smith (2002) shows that the large majority
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of the events have fairly well-determined depths but that many of the hypocenters computed to be

shallow actually have large vertical error bars, indicating that the hypocentral depth is not well

determined. It is likely that their true depths would fall in the range of > 4 km. It is important to

note that the events with relatively deep hypocenters, say > 12 km, have fairly typical vertical errors

(von Seggern and Smith, 2002); thus, we conclude that their computed depths are close to actual.

3.4 Magnitude Distribution and Threshold

As discussed in Section 2, the SGBDSN catalog magnitudes were computed using the original

Richter (1935) ML formula and attenuation relation, except for the fact that SGBDSN velocity

seismograms were converted to pseudo-Wood-Anderson seismograms. Analysis of SGBDSN

magnitudes in von Seggern and Smith (1997) showed that the Richter ML formula applies

sufficiently well to the SGBDSN region of coverage and should not introduce any bias. A good

check on SGBDSN magnitudes can be made by comparing magnitudes of larger earthquakes with

published magnitudes from the NEIC (National Earthquake Information Center, Golden CO)

catalog. A summary of comparison data was made in von Seggern and Smith (2001); the conclusion

was that there was no more than +0.1 unit bias for the SGBDSN magnitudes relative to the NEIC

ones. Due to the recent low seismicity rate and consequent lack of adequately sized earthquakes, the

only additional comparison for FY02 was the 14 June 2002 earthquake at Little Skull Mountain.

The SGBDSN magnitude (ML) of 4.42 is somewhat higher than the NEIS mb of 4.3 but is below the

Berkeley (BRK) ML of 4.6. We have recognized that California network estimates of magnitudes in

southern Nevada tend to be larger than Nevada network ones, and we are investigating this bias on a

continuing basis.
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For the 5172 earthquakes in the SGBDSN FY02 catalog, Figure 3-8 (Q data based on DID #

012DV.014) shows the cumulative recurrence curve. The threshold of complete detection appears to

be approximately ML -0.3. This is somewhat below, by 0.2 or 0.3, that stated in previous SGBDSN

seismicity reports. The explanation is surely due to the large preponderance of FY02 events in the

LSM area where the current station density is quite high. As shown in von Seggern and Smith

(1997), the threshold for events near the perimeter of the network is significantly greater, more on

the order of ML = 1.

The b value in the equation

logio(N) = a - b ML

was determined by the method given in Aki (1965) for the data in Figure 3-8. The estimated slope

of 0.94 appears to fit the data well until the tail at higher magnitudes. The slope of 0.94 agrees well

with the slopes of 0.91 and 0.95 computed for the FY01 and FYOO data, respectively (von Seggern

and Smith, 2001; von Seggern and Smith, 2002). The fit to the FY98-99 data by von Seggern et al.

(2001) gave b = 0.86, and the fit to the FY96-97 data by von Seggern and dePolo (1998) gave b =

0.77. Thus the current data suggest a higher b-value than the earlier SGBDSN results. We note

again that the number of relatively large earthquakes in FYOO, FY01, and FY02 is significantly less

than in previous years of SGBDSN monitoring, and this lack of larger events tends to give a higher

b-value.
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4. Analysis of the June 14, 2002, M 4.4

Little Skull Mountain, Nevada, Earthquake

4.1 Introduction

The June 14,2002, M 4.4 earthquake that occurred within the aftershock zone of the M 5.6 June 29,

1992, Little Skull Mountain (LSM) earthquake can be interpreted to be the largest aftershock of the

LSM sequence. This event took place approximately 20 km southeast of Yucca Mountain (Figure 4-

1). The data of Figure 4-1 come from two sources: 1) the non-Q background is the relocation dataset

of Smith et al., 2001, and 2) the FY2002 Q data is from DID # 012DV.014. As a result of an order

of magnitude increase in the sensitivity and detection capability of the digital seismic network that

was installed around Yucca Mountain in the mid-1990' s, around 2900 aftershocks of the event were

determined through September 30,2002. In contrast, an equivalent number of events were located

for the entire 1992 Little Skull Mountain sequence (mainshock M 5.6) based on data from the older

analog network. We summarize the geometry of the aftershock distribution, present interpretations

of the aftershock locations within the context of the seismotectonics of the LSM sequence and

southern NTS region, and make interpretations from the regional strong-motion records regarding

local site effects at Yucca Mountain relative to the LSM source region. Smith et al. (2001) and

Meremonte et al. (1995) have written on the 1992 LSM sequence, and the 2002 earthquake can be

interpreted as an aftershock to that earthquake. One interpretation from the present analysis is that

the June 14 event is a complex source, most likely composed of two sub-events. This conclusion is

based on a comparison of waveforms from several earthquakes recorded at the Lathrop Wells strong-

motion station that show variable complexity in the time-series records. The peak acceleration for
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the earthquake was recorded at the Little Skull Mountain station directly above the earthquake and

its aftershocks (84 cm/s2).

4.2 Distribution of 2002 Earthquake Activity

Early aftershock locations are of good quality due to the dense distribution of seismic stations

surrounding the LSM area. In particular, a recently installed station on Paleozoic rocks at Stripped

Hills south of LSM shows especially good signal-to-noise and closes the location gap to the south

for the sequence. Minimal location gap (the largest solid angle in the epicenter stations distribution

geometry) is a key parameter for confidence in earthquake locations. Figure 4-2a shows the

distribution of early post June 14 earthquake activity plotted on relocations of the 1992 LSM

aftershock sequence from Smith et al. (2001) and on the remainder of locations (from DID #

012DV.014) through 09/30/2002. Although the 2002 data plotted here is Q (DID # 012DV.014), the

1992 relocated data is not. This period of aftershock activity clearly shows the relationship to the

more extensive 1992 aftershock zone. It also illustrates that 2002 activity primarily extended the

entire LSM aftershock zone southward toward the Stripped Hills and the Rock Valley fault zone.

Although this region of the LSM aftershock zone was active during 1992, it did not represent the

primary zone of faulting during the June 1992 M 5.6 LSM mainshock. Figure 4-2b shows the entire

set of 2002 aftershocks that were located with HYPOINVERSE, about 2900 events (from DID #

012DV.014). Again, these are Q data from DID # 012DV.014. The orientation for the perspective

view (Figure 4-3) is also shown on Figure 4-2a. The recent activity is confined to the western edge

of the 1992 LSM aftershock zone. From this relationship, the June 2002 sequence can be interpreted

as additional LSM aftershocks. Note that the June 14 M 4+ event itself occurred near the hypocenter

of the 1992 M 5.6 LSM mainshock and at nearly the same depth (LSM mainshock 11.7 km depth



27

from Smith etal., 2001). The NE-striking, SE-dipping 1992 LSM mainshock fault plane is defined

by the NE alignment of aftershock activity extending NE from the 1992 LSM mainshock epicenter

(Figure 4-2a) and 2002 activity; this seismicity forms the primary fault plane of the 1992 mainshock

(striking NE and dipping steeply to the SE).

A perspective view (Figure 4-3) of June 2002 activity implies that the recent sequence has involved

two faults within the LSM aftershock zone. This figure shows the best 349 events from a double-

difference algorithm (Waldhouser, 2001) applied to the 2900 located earthquakes of the 2002

sequence. (This non-Q dataset is contained in the file /ymp5/ympev/operations/FY2002/catalog

/selected.reloc.) One structure strikes NE and may represent the western extent of 1992 mainshock

faulting, and another strikes approximately NS while dipping at a high angle (60-70 degrees) to the

east. This subsidiary structure to the mainshock fault plane was suggested by Smith et al. (2001)

from the distribution of LSM aftershocks and the NS-striking, normal-faulting focal mechanism of

the 13 September 1992, M 4.5 aftershock. The 13 September 1992, event appears to have taken

place on this structure and the 14 June 2002 event may have involved slip on this same structure as

well. The sources used to construct the composite source below are also shown on Figure 4-2a (Evt

#1; May 25, 2002, and Evt #2: June 18, 2002). The epicenter of the 14 June 2002 mainshock is

between Evts #1 and #2. Therefore it appears that Evt #1 was on the 1992 mainshock fault plane

and Evt #2 occurred on the subsidiary NS-striking structure to the south. This interpretation is

consistent with the 14 June 2002 mainshock being a composite of faulting on two structures, as will

be described in more detail below.

We now discuss the waveform data for these events. The weak-motion and strong-motion data from

these events was gathered under IPR-001 and IPR-004. Programs involved in the data reduction to
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obtain data for the figures in this section and for the remaining figures of this chapter are:

TERRA2SAC(STN# 10642-2.0), REF2ORB(STN# 10640-1.6), and SAC (STN # 10085-00.46).

Figure 4-4 shows the near-source stations that were used to calculate the local magnitude. The

program MLCALC (STN # 10081-2.0) was used in this calculation. (The data for the magnitude

calculations came from MOL # 20020912.0548 for the permanent seismic network, including the

telemetered strong-motion stations.) Most near-source velocity instruments clipped on the record,

and local telemetered strong-motion stations were mainly used to determine the event magnitude.

Figure 4-5 summarizes a number of fault-plane solutions for the mainshock and two other principal

events of the most recent activity, as listed in Table 4.1. Figure 4-5a shows the U.C. Berkeley

regional moment-tensor solution developed from broadband recordings. The complex faulting

process suggested above based on the geometry of the aftershock distribution may result in the large

CLVD component of the UC Berkeley moment-tensor solution (Figure 4-5a), where the regional

waveform mechanism reflects faulting on two fault planes. Figure 4-5b shows a first-motion, short-

period focal mechanism for the June 14 event. This plot and the ones for the subsequent figures 4.5c

and 4.5d were made with the program FPFIT (STN # 10083-1.0). The strike of north-trending fault

plane is rotated 15 degrees westward relative to the LSM mainshock mechanism of Meremonte et al.

(1995) and Smith et al. (2001). This is consistent with the general N-S alignment of the 2002

aftershock activity. Figure 4-5c is the short period mechanism for the May 25 event and Figure 4-5d

is that of the June 18 aftershock. From these well-constrained, near-source mechanisms, it is clear

that the May 25 earthquake is on a separate structure than the June 14 mainshock and June 18

aftershock.

4.3 Faulting Within the Aftershock Zone
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From the aftershock and focal mechanism data, the 1992 LSM mainshock and the June 14 event may

have both initiated at the intersection of the two structures identified in both the 1992 and the 2002

aftershock distributions. Also, the LSM mainshock may have been a complex faulting event

involving down-dip motion on the primary NE-striking, SE-dipping fault plane with a small

component of down-to-the-east dip-slip motion on this subsidiary structure (Smith et al., 2001). The

left-slip component in the LSM mainshock focal mechanism (Smith et al., 2001) and the June 14

mechanism (Figure 4-5b) may both be reflecting this faulting process. In this interpretation, both the

1992 M 5.6 and 2002 M 4.4 initiated at the intersection of a NE-striking, SE-dipping fault and N-

striking, E-dipping structure. These events are less than 1 km epicentral distance apart and are at

nearly the same depth (locations suggest a difference of 200 meters in depth). Whereas the 1992

event involved primary moment release on the NE-striking fault, the 2002 event was primarily

confined to the N-striking fault. It is likely that the events included faulting on both of these

structures. Displacements on these structures are inconsistent with the geometry and sense of

motion for local mapped Quaternary faults on LSM and may therefore represent a modern style of

deformation. This is consistent with the low slip rate tectonics of the southern NTS region. This

faulting mechanism would result in difficulties in modeling the near source spectra based on the

assumption of a co"2 Brune (1971) source model as well as in determining the regional moment

tensor; the source mechanism may involve two distinct events, possibly on different structures, in a

complex faulting process.

4.4 Constraints on a Complex Faulting Model
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In comparing the waveforms from the strong-motion station at Lathrop Wells, Nevada (Figure 4-1),

the 14 June 2002 mainshock record (Figure 4-6) can be reproduced as a composite of the May 25

and June 18, 2002, M 2.8 events, also recorded at Lathrop Wells. (The data for this figure comes

from MOL # 20020920.0275.) Both of these M 2.8 earthquakes show simple waveforms whereas

the 14 June 2002 mainshock is clearly a complex record (Figures 4-6, 4-7). Time shifting Evt #2

relative to Evt #1 by 0.8 seconds with respect to the P-wave arrival time and scaling the amplitudes

appropriately for each and simply adding the time-series records, we can nearly reproduce the

mainshock records even at high frequencies (Figure 4-6). Figure 4-7 shows the fit at long periods.

In previous studies in the Yucca Mountain area, we have measured the slope of the spectra at high

frequencies from local earthquakes to estimate the parameter 'kappa', a measure of near surface

attenuation and therefore a critical parameter for estimates of potential ground shaking from larger

earthquakes. Significant events, such as the June 14 earthquake, are therefore important for

establishing 'kappa' estimates for less frequent M > 4 local earthquakes. However, because it is

demonstrated that the June 14 earthquake involves a complex source , kappa estimates, whose

typical calculation is based on assumptions of a simple source model and simple spectral shape, have

not been determined for the June 14 strong motion records.

4.5 Strong-Motion Records and Ground-Motion Observations

The June 14 earthquake was recorded on all 9 stations of the Yucca Mountain strong-motion

network that consists of 16-bit standalone (non-telemetered) triggered accelerometers as well as 9 of

the 10 SGBDSN telemetered stations recently configured with accelerometers (YCW was down).

SGBDSN stations record triggered 16-bit acceleration time-series. Table 4-2 is a summary of the
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peak accelerations and the station distances from the Yucca Mountain area for the June 14

earthquake. Figure 4-8 is a compilation of the peak ground accelerations (PGA) recorded at Yucca

Mountain area strong-motion stations in cm/s2. Largest peak accelerations were recorded at the

Little Skull Mountain cliff station (84 cm/s2) and at Lathrop Wells (45 cm/s2). Figure 4-9 shows the

attenuation of PGA with distance for the June 14 data along with a predicted attenuation curve from

Yucca Mountain PSHA activities (Wong and Stepp, 1998) with respect to an M 4.4 event. It is

emphasized that there is no one single prediction of PGA from that study because those predictions

were developed by several "experts". In Figure 6-1 of that report, the Somerville prediction line is

somewhat of a median prediction among the six experts, with perhaps ±30% range in all the

predictions. Therefore, for purposes of simple comparison with the actual PGA's, we used the

Somerville regression coefficients at listed in Appendix I of that report as "Horiz PGA". The

prediction equation is taken from eq. 6-la of the PSHA study; this equation is applicable to small

earthquakes for which M < 6.25:

H. = ai + a2 (M - 6.25) + a6 (8.5 - M)2 + [a3 + a5(M - 6.25)] ln[(R2 + a82)I/2] + a7F

where

u= ln(PGA) in g

M = event magnitude

R = "rupture" distance (km)

F = 1 (a switch to give a? weight for normal faults)

In this case, the magnitude of the 14 June 2002 LSM earthquake is 4.42. Although eq. 6-la contains
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two terms for weighting the hanging-wall versus the foot-wall side of a normal fault, they are

actually zero due to the relatively small magnitude of this event (see eq. 6-2 of the PSHA study) and

so not used here. Due to the small area of the rupture plane for this earthquake (< 1 km2), the

"rupture" distance is well approximated by the hypocentral distance, using the location depth of 11.9

km. Using the Somerville coefficients and converting hypocentral distance to epicentral distance r,

we get simply:

H. = 1.234 - 1.800 ln[(r2 + 196.4) '/2J

Conversion to acceleration a in linear units of cm/s2 gives:

a = 980 exp{ 1.234 - 1.800 ln[(r2 + 196.4) /2]}

This expression was computed at coarse intervals of 10 km for Figure 4-9. The fit to the actual data

must be viewed in light of the fact that the PSHA study predicted the ground motion at repository

level, with the overburden stripped off, presenting a medium with a free surface at repository level.

Thus the free-surface effect is in both the actual and predicted points, but the attenuation effect of

the repository overburden is not. The attenuation effect of this roughly 300-m overburden is not yet

well determined. The PSHA curve agrees somewhat well with the PGA's for the 14 June 2002

event, but one cannot attach much importance to this conclusion due to the fact that the PSHA did

not predict true surface accelerations. Variability in actual PGA's reflects differences in site

conditions at local strong-motion stations; such real effects make it even more difficult to compare

this data with PSHA results.
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Figure 4-10 shows the acceleration time history from the YMP Strong Motion Network station at

Lathrop Wells and two components of the strong-motion records at SGBDSN station LSC on the

crest of Little Skull Mountain (the north component was not operating). Station LSC is nearly

directly above the hypocenter of the June 14 earthquake. It is located on Pliocene basalts forming

the north-trending, gently dipping slope of Little Skull Mountain; these basalts overlay the Miocene

tuff sequence. Station LWLS is located on a thick section of sediments (probably on the order of

300-600m) that compose the northern extent of Amargosa Valley at Lathrop Wells. The base of the

sedimentary section is most likely Paleozoic based on the local Paleozoic outcrops to the east of

Lathrop Wells. These two distinct geologic conditions are most likely reflected in the waveforms at

the respective stations. Typical of LSC records for LSM earthquakes, the June 14 waveforms are

complex and the S-wave train shows multiple pulses that could represent multi-pathing in the

shallow tuff sheets and/or an underlying Paleozoic geomorphic surface that was buried by the

Miocene tuffs. The LSC record is also likely conditioned by the topographic effect imposed by the

steep, south-facing LSM escarpment. In contrast, due to the thick sedimentary section at Lathrop

Wells, records at this station often show clean and simple S-wave pulses for many events. This may

also result from the lack of Miocene tuffs along the ray path to Lathrop Wells. On the other hand,

significant high-frequency attenuation is expected from the thick sedimentary section that will be

complicated by amplification, at relatively longer periods, in the low-velocity sedimentary section.

Lathrop Wells is about 11 km epicentral distance from the sources. Contrary to many recordings on

tuffs in the Yucca Mountain area, simple pulses from LSM earthquakes are often observed at

Lathrop Wells.

Figure 4-11 shows the corresponding acceleration spectra with the Lathrop Wells and LSC time-

series records. Spectra for all events in this report are determined from 5-second time windows that
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are demeaned and tapered prior to performing the FFT. Spectra were determined in the SAC

processing system (STN 10085-00.46). The relative differences in the high-frequency component of

the spectra at LSC and LWLS are apparent in the comparison of the spectral amplitudes.

Figure 4-12 shows the velocity time-series from station AL5 (in the ESF at Alcove 5) at a depth of

about 300 meters from the surface and surface station RPY in the repository. The relative

amplitudes between RPY and AL5 are due to the free-surface effect that increases the RPY surface

amplitudes relative to those on underground records at AL5. The amplification of RPY relative to

AL5 is due to the low surface velocities balanced by the seismic attenuation and scattering in the

upper 300 meters. Differences in the AL5 and RPY waveforms result from the complexities in the

structure of the tuff sequence and local surface conditions at RPY. Station AL5 is richer in high-

frequency energy, and the slope in the decay at high frequencies is relatively less than at station RPY

(Figure 4-13). Also, the spectral amplitude in the 2-10 Hz band at RPY is larger, reflecting the free

surface and near-surface amplification effects. Figure 4-14 shows the RPY/AL5 spectral amplitude

ratio.

Figures 4-15 and 4-16 compare the records at strong-motion station MDVS (Midway Valley) and

WHBS (Waste Handling Building). MDVS is located about 300 meters east of the ESF pad on

Midway Valley sediments, and WHBS was installed on the 50x150 foot concrete slab of the sheet

metal shop facility near the proposed Waste Handling Building. WHBS shows a clear resonance

near the 10 Hz band (Figure 4-16) that dominates the waveforms. These amplitudes are largest on

the north component, which is the longer aspect ratio of the structure and may be reflecting the

concrete slab itself. This resonance may also be the result of engineered fill on the ESF pad. The

amplitudes at WHBS are higher by about a factor of 2 relative to MDVS. In spite of this resonance,
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WHBS implies stronger attenuation in high frequencies (steeper roll-off in the 10-50 Hz band -

Figure 4-16 WHBS), again possibly due to the pad or the engineered fill material. This resonance at

10 Hz is not seen on any other strong-motion records and is obviously some type of local shallow

site effect unique to WHBS. Recently installed strong-motion instruments on the ESF pad will

better resolve the local site effects.

Figures 4-17 and 4-18 compare closely located stations TYMS and SYMS. TYMS is located on the

crest of Yucca Mountain and SYMS is about halfway down the steep, west-facing wall of upper

Solitario Canyon. These stations are within about 1 km of one another. The time-series at upper

Solitario has higher amplitude than that for the station at the crest of Yucca Mountain and is

distinctly richer in high frequencies. This station may be incorporating resonances in the drainage

sediments in Solitario Canyon, or this difference may reflect the location of the station on a steep

slope. In other words, these stations incorporate different local topographic effects: TYMS on the

crest of the mountain and SYMS on a steep slope. Whatever the case, this comparison illustrates the

complexities in generalizing ground motion effects over large areas when very local effects,

including source azimuths relative to local structures, ultimately control the frequency content and

peak ground motions at a site.

4.6 Comparisons with 1992 Strong-Motion Recordings atLathrop Wells

Figures 4-19 and 4-20 compare time-series and acceleration spectra from the 14 June 2002 and 13

September 1992 Little Skull Mountain M 4.4 and M 4.5 earthquakes, respectively. The 1992 event

was recorded on the Blume strong-motion network station that is co-located with the modern station

at Lathrop Wells. (Although the 2002 data is Q data, the status of the 1992 Blume data is non-Q.)



36

These events show similar focal mechanisms, hypocentral depths, and magnitudes (Smith et al.,

2001, discuss the 13 September 1992 event). The relative complexities in the sources are apparent

in the time series (Figure 4-19). The simple S-wave pulse in the 13 September 1992 record implies

a simple source; whereas, in comparison, the 14 June 2002 event clearly indicates a complex event.

Therefore, it is apparent that simple events in the Little Skull Mountain source region can be

identified at Lathrop Wells and that we can therefore use this station to make first-cut assessments of

the complexities of LSM sources. Comparisons of the acceleration spectra for these events at

Lathrop Wells also indicate the relative differences in the frequency content of the sources.

Therefore, generalizing about source mechanism parameters in the Little Skull Mountain area may

underestimate the necessity for evaluating source complexities in isolating ray-path and site-

attenuation parameters with respect to the resulting ground-motion estimates at Yucca Mountain for

earthquakes in this source region.
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5. Death Valley Seismicity

Earthquakes in the Death Valley region had been reported by the USGS (Harmsen 1994, and

references therein) from 1978 through September 1992. In October 1992 NSL obtained the seismic

monitoring task for the Yucca Mountain Project. The record of seismicity in Death Valley has been

somewhat non-uniform since 1992 because of the transition from the analog network to the site-

specific digital network in late 1995. The analog stations in Death Valley National Park were

retained after this transition though. We only began to again treat Death Valley seismicity in the

FYOO and FY01 seismicity reports (von Seggern and Smith, 2001; von Seggern and Smith, 2002);

this report discusses the seismicity for FY02.

In January 2000 NSL combined its digital and analog stations into a single system, called Antelope,

for data collection and analysis, as discussed earlier in this report. Event location was notably

improved in the Death Valley region due to the availability of the Yucca Mountain digital stations in

routine analysis. In addition, it was now possible to compute Richter local magnitudes for most

events in this region. Especially in the past year, the addition of digital stations HEL and LEG

within the eastern portion of the park has improved location capability for the Death Valley region.

We have created an Antelope-derived catalog for FY02 for the southern Great Basin, including the

Death Valley region. (This catalog was derived from the Antelope "reno" tables in the directory

/ymp!6/catalog of machine "electrum".) Local magnitude ML was used if available; in those few

cases where only duration magnitude was available, we converted it to local magnitude using the

relationship given in von Seggern and Smith (1997):
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ML= -1.24 + 1.31MD

The Death Valley earthquake locations and magnitudes used here are not Q data; this data is in DID

# 012DV.018. The epicenter plot of this dataset is shown in Figure 5-1 on a shaded digital elevation

map so that the relation of seismic activity to tectonic features can be more easily seen. Except for

M > 3, all earthquakes are plotted with the same symbol size. Within the current boundary of the

park as shown, the largest event in FY02 was the 02/25/2002 M 3.4 earthquake in the southern part

of the park. In addition, another M > 3 earthquake occurred just within the park at the north end. A

cluster of events occurred just outside the southwestern part of the park and near the northern tip of

the Slate Range. The largest event in this cluster was an M 4.3 event on 09/28/2002, and it was

preceded by an M 4.0 event on the same day.

The prominent cluster of events near (37° 20' N, 117° 10' W) is the continuing aftershock sequence

of the 08/01/1999 M 5.7 Scotty's Junction earthquake (von Seggern et al., 2001). There are two

other small clusters southwest of the aftershock sequence; and these align with the Scotty's Junction

sequence along an azimuth of roughly N30E, which is nearly in agreement with the azimuth (~

N20E) of the preferred fault plane of the Scotty's Junction earthquake. This orientation would be

consistent with a conjugate plane for the Furnace Creek Fault that nearly parallels the park's eastern

border (California-Nevada line); however, there is no particular support for this interpretation from

the topography in Figure 5-1. Neither is there any apparent expression in the seismic activity of the

well known Furnace Creek and Death Valley Faults. Overall, except for the clusters mentioned

here, the seismic activity in Death Valley National Park and its immediate surroundings is diffuse.

Moreover, it does not readily relate to physiographic appearances.
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6. Earthquakes Near Yucca Mountain

From May 1995 through September 2001, 21 earthquakes have been documented within 10 km of

station RPY which is located directly above the ESF (von Seggern and Smith, 2002). Figure 6-1

shows a plot of the seismicity in FY02 within roughly 15 km of station RPY. (This figure presents

Q data from DID # 012DV.014.) For FY02 we located five more earthquakes within the radius of

10 km from station RPY; these were all east of the ESF tunnel. All had magnitudes < 0.0. One

additional earthquake was located within the southern Yucca Mountain block and one in Crater Flat;

both had M < 0.0. The five inside the 10-km radius and the 2 additional events in the south Yucca

Mountain block and in Crater Flat are listed in Table 6-1. Depths of these events fall in the range of

roughly 4-8 km, except for one (03/11/2002) at 12 km. The event with the anomalous 12 km depth

was carefully reviewed, and its depth was judged to be correct. Station coverage (Figure 2-1) is

excellent for all of these earthquakes, with one or more stations within one focal depth; therefore

hypocenters are well constrained. Due to the small size of the FY02 events in Table 6.1, focal

mechanisms could not be determined for any of them.

The recurrence rate established by earthquakes within 10 km of Yucca Mountain (centered at station

RPY) was examined in von Seggern et al. (2001) and shown to be significantly less than for the

entire area enclosed by the SGBDSN or for the southern Great Basin as a whole. The three

additional events of FY01 and the five additional ones in FY02 do not significantly add to the total

event list, are roughly what is expected, and thus do not change this conclusion. After seven years of

monitoring, the average rate in the 10-km circle is roughly three events per year, with most

magnitudes being less than zero.



40

7. Focal Mechanisms

The determination of focal mechanisms for earthquakes in the SGBDSN FY02 catalog was done in a

manner closely following that reported in von Seggern and Smith (1997) using observed P-wave

polarities. The actual program used for determining focal mechanisms is FPFIT, VI .0 (STN 10083-

1.0) (Reasenberg and Oppenheimer, 1985).

We have combined data from the SGBSN analog network with that from the SGBDSN digital

network to obtain improved datasets for determination of focal mechanisms. Since 01/01/2000 when

we began processing all data through Antelope, combining data from the two networks is simply

automatic because both networks are processed together. Note, however, that the number of analog

stations that were available in the southern Great Basin became small by FY02 (Figure 2-2).

Due to the concentration of events in the LSM area after the 14 June 2002 event, it was decided to

not develop focal mechanisms for events in this area, except for the three already covered in Section

4. A very large number of focal mechanisms already exist for this area (von Seggern et al., 2001),

and any further information developed from the FY02 data would be mostly redundant. Excluding

the LSM area then, a preliminary list of 108 events was made by searching the final FY02 catalog

for events larger than M = 1 with greater than 15 stations associated to them. The input data for

FPFIT, including the first motions, were taken from the HYPOFNVERSE "arc" output. Before

running FPFIT though, a thorough review of all first motions was done because the initial first

motions are computer-generated. In this review roughly a quarter of the first motions were changed.

Also, some first motions at additional stations, not initially picked, were found to be satisfactory.
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Changes and additions were hand-entered into the "arc" file. A few events (19) were found to have

insufficient data or to not have a large enough azimuthal range of data to provide reliable focal

mechanisms, and these events were removed.

Program FPFIT was run on the data of the 89 events. Details describing the methodology of this

program are given in von Seggern and Smith (1997). After an initial run of FPFIT, not all

mechanisms were well defined. Most of the events showing multiple solutions were rejected.

However, in a few cases it was reasonable to prefer one solution over the other(s). For instance,

where only one of the multiple solutions was tectonically viable (for instance, no near-horizontal

fault plane), this solution was accepted. Another situation in which one solution might be

objectively preferred over the others is when one or more critical stations with clear first motions

agrees with only one of the solutions. A few discrepant first motions were reviewed and changed if

thought to be wrong, and a final run of FPFIT was made.

Table 7-1 lists the 46 events for which acceptable focal mechanisms were determined, including the

three LSM ones previously mentioned. This table uses the "fps" format in which FPFIT outputs its

results. Figure 7-1 shows all the focal mechanisms listed in the table. (Both the table and the figure

are Q data from DID #012DV.015. Note that magnitudes on the figure are incorrectly listed as "0.0"

whereas Table 7.1 lists them correctly.)

We plot the azimuth and dip of the tension and pressure axes in Figure 7-2 on the lower focal

hemisphere. (These data are derived from the data of DID # 012DV.015 by a simple 3-D

trigonometric transformation and are thus Q.) These new mechanisms generally agree with the

overall trend established by a review of over 400 mechanisms in von Seggern et al. (2001); this trend
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is approximately WNW-ESE for the tension axes. However, there are several mechanisms with their

tension axis rotated towards the north from the mean reported in von Seggern et al. (2001). These

mechanisms happen to all be associated with the seismic activity in the north-central part of the

Nevada Test Site on Figure 3-4 at approximately 37.15°, -116.25°. One event (05/28/2002) on

Figure 7-2 has a very anomalous tension axis at roughly 10° east of north. Because it is well

constrained by the first motions (Figure 7-1), this result is acceptable. The particular event

associated with this mechanism plots on Pahute Mesa near roughly 37.3°, -116.4° in the northwest

part of the Nevada Test Site on Figure 3-4.
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8. Observed Explosions

In previous years, explosions were routinely observed within the southern Great Basin on the

seismic recordings of the SGBDSN stations. These explosions were recognized simply by their

signal character in almost all cases and were generally ignored in post-processing. A few special

cases, such as known tests on the Nevada Test Site, were located and analyzed to varying degrees.

Signal features characteristic of explosions include: 1) all compressional first arrivals, 2) emergent

arrivals due to ripple-firing in quarry blasting, 3) "ringing" appearance due to the same ripple firing,

4) prominent surface waves due to very shallow or surficial sources, 5) lack of clear S waves, 6)

similarity among the envelopes of the traces on all three components and 7) a depleted high-

frequency component relative to earthquakes. The three-component recording of SGBDSN stations

has made it simpler to positively identify blasts as compared to the predominantly single-component

SGBSN analog network.

During FY02 the following approach was used in treating possible explosions seen on SGBDSN

records. Using the automatic list of Antelope events, analysts identified events with the above

characteristics as blasts and attempted to locate them in all cases, constraining the depth to zero.

Only a few were unable to be located. When all of FY02 was processed by the analysts, a search of

the Antelope catalog was made for events that were identified as blasts by the analysts and that fell

within 65 km of station RPY at Yucca Mountain. Appendix 4 lists the 36 events found, and Figure

8-1 shows a plot of their epicenters. (These data, taken from the preliminary event lists, are non-Q;

they are contained in DID # 012DV.017). The presumed blasts in FY02 are mostly east of Mercury,

Nevada, on the NAFB range and are assumed to be ordnance explosions. Only two blasts measured
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M > 1, with one being on NTS. The presumed blasts on NTS are assumed to be related to

miscellaneous construction activity. The threshold of detection for blasts within the SGBDSN has

been established from a few confirmed blasts to be roughly 100 Ibs of explosive. This threshold will

vary considerably throughout the SGBDSN.
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9. Summary

In FY02 the SGBDSN comprised 30 digital sites and performed at a highly reliable level, with over

99.6% uptime in data collection at the central recording site. For FY02 nearly 5300 earthquakes

were located within the coverage of the SGBDSN network (defined as 65-km radius around station

RPY); of these, 5172 earthquakes were well enough located to be included in the FY02 seismicity

catalog. Aside from the earthquakes detected with the network, 36 presumed manmade events were

identified and located in FY02.

Only one earthquake in FY02, the M 4.4 earthquake on 14 June 2002 near Little Skull Mountain,

was large enough to generate usable data on the strong-motion network. This event caused

accelerations of 0.015 to 0.032 g near the north portal of the ESF, at an epicentral distance of

roughly 18 km, and nearly 0.1 g at station LSC above the hypocenter. The accelerations at the ESF

are roughly in agreement with what is predicted in the PSHA study for Yucca Mountain. This

earthquake occurred within the aftershock zone of the 1992 Little Skull Mountain earthquake; if

taken to be an aftershock, it is the largest since an M 4.5 event on 13 September 1992. The faulting

mechanism of the current event is complex, being somewhat well modeled by the waveforms of two

smaller events with distinctly differing mechanisms. The current event occurred near the apparent

junction of two faults, one being that which was originally ruptured in the 1992 earthquake and

which trends NE and the other being that which is associated with some of the aftershocks since

1992 and which trends northerly and dips steeply.

For FY02 a total of 46 events in the SGBDSN catalog were large enough to have focal mechanisms
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reliably determined. Generally, the tension axes of the mechanisms cluster closely at low dip angles

and at azimuths around 45° west of north, or its opposite at 45° east of south. The pressure axes are

more scattered, showing a broader range of dips, but aligning generally along 45° east of north. This

result generally agrees with focal mechanisms previously reported for the SGBDSN monitoring area,

but includes several events in the north part of the NTS with more north-trending tension axes than

expected.

In FY02 five more earthquakes were located within 10 km of the proposed repository (specifically,

station RPY). None of this group had an ML > 0.0. This low seismicity rate is about normal

compared to the rate established in prior years of SGBDSN monitoring. In addition, one more event

was located within the southern part of the Yucca Mountain block, although at greater than 10 km

from RPY, and another event was located in Crater Flat where activity is generally very low.

Seismicity during FY02 in the Death Valley area included an M 4.3 event just to the southwest of

the park boundary. Two events with M > 3 occurred within the park boundaries. No clear

correlations of seismicity with the prominent faults of this area, Death Valley and Furnace Creek, are

apparent. We judge that hypocenter locations and detection thresholds have improved within the

park area due to the installations of stations HEL and LEG within the park boundaries in the spring

of2002.
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Summary of primary 2002 LSM event locations.
Q data - DID #012DV.014

Origin Time Longitude Latitude Depth ML
5/25/2002 (145) 12:03:32.824 -116.2996 36.7261 9.4 2.79 #1
6/14/2002 (165) 12:40:44.589 -116.2994 36.7175 11.9 4.42
6/18/2002 (169) 16:24:31.533 -116.3090 36.7150 11.2 2.80 #2



Table 4-2.
Peak Accelerations from the June 14, 2002 Earthquake

Q data - derived from source data in MOL #'s 20020920.0275 and 20020912.0548

Peak Accelerations Recorded from the

14 June 2002 Little Skull Mountain Earthquake

Station

LSC

FOCS

SPRS

LWLS

SYM

CAP

FRG

MDVS

WHBS

EXHS

TYMS

SYMS

RPY

AL5

SCF

STO

CRF

WCTS

DIST

km

2.9

7.5

11.6

11.7

13.3

14.2

15.5

18.3

18.5

18.5

20.0

20.2

20.6

21.1

22.2

22.4

23.4

30.0

UP

cm/sA2

85.6

16.4

22.2

24.0

25.4

17.3

5.8

11.3

16.9

11.5

6.1

13.9

9.1

3.1

4.5

18.5

3.5

3.7

N-S

cm/sA2

-

32.0

45.9

44.9

31.9

32.7

10.8

13.5

31.7

12.5

8.5

8.0

9.4

3.7

6.1

20.6

3.7

3.4

E-W

cm/sA2

83.7

27.8

27.6

41.0

21.9

21.8

6.9

14.8

20.6

15.2

9.0

13.7

6.6

2.9

6.2

13.6

4.0

7.4

Notes:

DIST is the epicentral distance.

Peak Accelerations are estimated from one half the maximum

peak to peak values on the accelerograms.

Table 6-1



Earthquakes Near Yucca Mountain in FY2002
(Q data from DID #012DV.014)

date
year
2002
2002
2002
2002
2002
2002
2002

mo
03
05
07
08
08
09
09

da
11
15
03
02
04
11
16

hr
02
16
08
01
15
04
17

time
mn
33
39
16
24
50
42
21

sec
12.
48.
00.
07.
22.
11.
34.

54
54
00
44
59
36
17

latitude
deg
36
36
36
36
36
36
36

min
51
51
50
49
44
51
49

.83

.04

.80

.54

.49

.35

.81

longitude
deg
116
116
116
116
116
116
116

min
20
22
23
34
27
20
22

.74

.75

.34

.32

.99

.94

.76

depth
(km)

11
7
3
4
6
4
5

.75

.65

.54

.54

.07

.27

.18

mag.
ML
-0.32
-0.27
-0.42
-0.25
-0.29
-0.19
-0.50



Table 7-1
Focal Mechanisms for FY2002

(Q data—DID #012DV.015)

date origin time latitude longitude
Fj nobs avwt stdr deltaA

hhmm sec deg min deg min

depth

(km)

mag

ML

# gap del TT

rms

hor

err

ver

err

dip dip rake

dir ang
strdiprak

20011214
0.02 21
20011220
0.06 16
20011223
0.00 19
20011225
0.02 18
20020119
0.06 34
20020124
0.05 31
20020127
0.00 15
20020128
0.08 18
20020202
0.00 41
20020203
0.06 24
20020207
0.02 37
20020218
0.00 20
20020304
0.02 24
20020311
0.09 19
20020323
0.00 17
20020328
0.00 26
20020329
0.12 28
20020329
0.04 19
20020329
0.04 18
20020330
0.04 18
20020403
0.08 21
20020407
0.02 28
20020408
0.08 19
20020413
0.02 21
20020414
0.00 19
20020418
0.00 24
20020419
0.05 27
20020422
0.06 20
20020428
0.04 30
20020505
0.09 25
20020509
0.07 21
20020512
0.03 23
20020525
0.00 50
20020528
0.00 18

1917 35.
0.12 0.
1309 15.
0.12 0.
1307 17.
0.06 0.
0228 09.
0.09 0.
1506 38.
0.21 0.
1949 35.
0.20 0.
0853 58.
0.15 0.
0410 00.
0.17 0.

2307 25.
0.14 0,
0231 59.
0.21 0.
1358 02.
0.15 0.
2328 12.
0.14 0.

1212 11.
0.13 0.

1010 29.
0.22 0.

1549 35
0.07 0.

1407 51.
0.13 0.

1150 20
0.24 0.

1203 21
0.12 0

1803 16.
0.19 0

2136 47
0.14 0

1452 46
0.24 0

0917 57
0.08 0

2036 59
0.16 0

1602 32
0.11 0

1801 47
0.07 0

2159 47
0.11 0
0105 39
0.18 0
0603 55
0.14 0
0513 48
0.15 0

1011 41
0.18 0
1127 59
0.15 0
0719 44
0.11 0
1203 33
0.10 0
0517 53
0.06 0

01
.66
34
.64
,10
.62
.52
.61
.60
.74
.13
,73
,61
.63
,31
.81
.17
.80
,61
.79
.05
.81
.12
.92
.58
.79
.36
.59
.48
.75
.02
.66
.90
.74
.87
.77
.44
.74
.62
.58
.50
.62
.94
.75
.72
.52
.36
.72
.10
.45
.12
.65
.75
.67
.18
.54
.69
.60
.32
.62
.43
.67
.70
.46
.09
.69
.18
.86

36-57.
0.00
37-00.
0.00
37-18.
0.00
37-12.
0.00
36-48 .
0.00
36-48.
0.00
36-59.
0.00
36-48.
0.00
36-30.
0.00
36-30.
0.00
36-23.
0.00
37-12.
0.00
36-39.
0.00
37-17.
0.00
37-07,
0.00
37-07,
0.00
37-07,
0.00
37-07
0.00
37-07,
0.00
37-07.
0.00
36-51
0.00
37-07
0.00
37-07
0.00
36-49
0.00
37-07
0.00
37-07
0.00
37-07
0.00
37-12
0.00
37-01
0.00
37-08
0.00
37-07
0.00
37-07
0.00
36-42
0.00
37-17
0.00

10
20
.57
8
01
3

.65
8

.82
35
.73
38
.34
30
,80
30
.56
23
.91
20
.67
23
.63
25
.72
30
.38
20
.48
8

.62
15
.63
25
.30
15
.57
25
.67
8

.60
23
.26
8

.69
5

.11
10
.58
3

.34
13
.58
13
.89
5

.15
8

.10
8

.46
10
.67
10
.88
8

.95
20

116-39.
20 45
116-12 .
10 10
116-22.
8 20
116-20.
10 30
116-04.
33 30
116-04.
28 50
116-03.
13 20
116-04.
38 55
116-35.
40 60
116-35.
33 45
116-53.
53 50
116-34.
63 70
116-20,
23 40
116-11,
25 70
116-15
45 25
116-15
33 60
116-15
35 70
116-15
40 50
116-15.
45 40
116-15
13 40
115-56
30 20
116-15
45 30
116-15
10 10
116-04
20 15
116-15
5 5
116-15
43 40
116-15
43 40
116-30
15 10
116-22
18 10
116-14
20 20
116-15
30 35
116-15
5 5
116-18
35 35
116-21
40 50

26

.70

.50

.91

.47

.47

,63

.35

.17

.07

.54

.91

.38

.58

.51

.35

.33

.56

.41

.73

.39

.32

.58

.16

.52

.22

.53

.35

.64

.01

.62

.36

.25

.74

9.
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Table 7-1 (cont'd)
Focal Mechanisms for FY2002

Column definitions:
columns 1-50 are usual HYP071 hypocenter parameters and magnitude
tt = number of P and S phases with weights > 0.1
gap = maximum azimuthal gap in degrees
del — distance (km) to nearest station
TT rms = rms travel-time residual fs)
hor err = horizontal standard error (km)
ver err = vertical standard error (km)
dip dir = direction of the fault plane dip (90° from the strike angle of fault plane)
dip ang = dip of the fault plane from horizontal
rake = angle at which the hanging wall moves relative to foot wall, counterclockwise from
horizontal
Fj = misfit function (0 to 1, with 1 best)
nobs = number of first-motion observations
avwt = mean data weight (0 to 30, with 30 best)
stdr = station distribution indicator (0 to 1, with 1 best)
delta strdiprak = 95% confidence region for strike angle (str), dip angle (dip), and rake (rak)
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Figure 2-1. Stations of the Southern Great Basin Digital Seismic Network.
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Figure 2-3. Seismic telemetry nodes for the SGBDSN.
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Figure 2-4. Displacement response of the SGBDSN S-13 and CMG-40 weak-motion
instruments and of a strong-motion instrument. (For corroborative use only.)
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Figure 2-6. Data Flow for the SGBDSN seismic recording and processing.
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Figure 3-1. Historical seismicity (1868 to 1978) of the Yucca Mountain area.
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Location of earthquakes near Yucca Mountain for the FY2002
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Figure 3-5. FY2002 seismicity plotted on shaded elevation background, with events not
scaled by magnitude.
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Figure 3-7. Density of reported depths in the FY2002 SGBDSN catalog. The density has
been computed separately for "LSM" = Little Skull Mountain and "non-LSM"= all other
earthquakes.
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Figure 1

Figure 4-1, Base Map showing locations of the 2002 sequence (red) and the 1992 Little
Skull Mountain sequence relocations from Smith et al., 2001, (white) and Yucca
Mountain. The location of the June 1411 mainshock is shown as the large dark symbol.
Reference for Figure 4-2a is shown as a dashed box. (por corroborative use only.)
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Figure 4-2a. Close in view of sequence showing the details of the 2002 activity with
respect to the geometry of the 1992 sequence. Waveforms for Evt. #'s 1 and 2 are used
to construct a composite of the mainshock. (For corroborative use only.)



Earthquake Location from June through September 2002
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Figure 4-2b. Locations of all events in the Little Skull Mountain area from June through
September 2002.
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Figure 4-3. Perspective view showing the geometry of the 2002 activity and the relative
locations of the mainshock (dark o) and Evt. #'s 1 and 2. Perspective is used to capture
the geometry of dipping fault planes. (For corroborative use only.)
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Figure 4-5a. UC Berkeley broadband regional moment tensor solution for the June 14th

mainshock. (For corroborative use only.)
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Figure 4-5b. Short period focal mechanism of the June 14, M 4.4, mainshock.
Parameters of mechanism fit (applies to all short period first motion solutions)
RMS: RMS error from the location.
DMIN: nearest station; minimum distance
AZM GAP: station geometry gap in location determination.
# FM: number of first motions used in location.
ERH: horizontal error in location
EHZ: vertical (depth) error in location
MSFIT: degree of fit; uncertainty in unique solution
STDR: degree of station coverage relative to the solution (0-1).
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Figure 4-5c. Focal mechanism of the May 25, 2002 earthquake within the Little Skull
Mountain aftershock zone.
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Figure 4-5d. Focal mechanism of the June 18, 2002 earthquake within the Little Skull
Mountain aftershock zone; an aftershock of the June 14 mainshock.



Comparison of Maimhock and Composite
and Two M2.8 Events used to Construct Composite
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Figure 6

Figure 4-6. Waveforms of the primary events of the mid-2002 sequence. All records are
from the YMP Strong Motion station at Lathrop Wells. The composite time-series record
is constructed by summing and time shifting Evt. #'s 1 and 2 records to best approximate
the observed mainshock record at Lathrop Wells.



Mainshock and Composite Bandpass Filtered at 1-8 Hz

18
Seconds Figure 7

Figure 4-7. Filtered composite and mainshock record showing that the composite time-
series captures the mainshock record in the 1-8 Hz band.
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Figure 4-9. Relationship between Peak-Ground-Acceleration and distance from strong
motion recordings of the June 14, 2002, earthquake.



Strong Motion Records and Acceleration Spectra:

Three-component records with the station name shown in the plots that are not referenced
to a channel orientation are in Vertical-North-East orientation.
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Figure 4-10. Time-series records of the June 14th earthquake from Lathrop Wells and
Little Skull Mountain strong motion stations. The North component at the Little Skull
Mountain crest station, LSC, was not operating properly.
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Figure 4-11. Acceleration spectra from 3 components at Lathrop Wells and two
components at LSC strong motion stations.
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Figure 4-12. Velocity time-series records from SGDSN stations AL5 (Alcove 5 at a
depth of 300 meters) and RPY (almost above the repository and Alcove 5). Shows the
relative amplitude differences between the free surface and ESF records.
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Figure 4-13. Acceleration spectra at AL5 and RPY for the June 14 earthquake.
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Figure 4-14. Raw and smoothed spectra ratios between RPY and AL5. RPY/AL5
spectral ratio.
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Figure 4-15. Comparison of acceleration time-series records; WHB (near location of
proposed waste handling buildings on ESF Pad on thick concrete pad) and free-
field station on sediments in Midway Valley about 300 meters east of the ESF Pad
and station WHB.
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Figure 4-16. Acceleration spectra of WHB and Midway Valley strong motion records.
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Figure 4-17. Comparison of acceleration time-series records at strong motion stations at
the crest of Yucca Mountain and the Upper Solitario Canyon station that is midway
between the Yucca Mountain crest and the base of Solitario Canyon on tuff on the west
facing slope above trenches exposing the Solitario Canyon fault steep slope. The Upper
Solitario Canyon station is midway between the Yucca Mountain crest and the base of
Solitario Canyon.
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Figure 4-18. Acceleration spectra from the Yucca Crest and Upper Solitario Canyon
stations.



Lathrop Wells Strong Motion Records
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Figure 4-19. Acceleration time-series records at Lathrop Wells from the June 14, 2002,
and September 13, 1992 M 4.4 and M 4.5, respectively, Little Skull Mountain
aftershocks. The 1992 event was recorded on the Blume strong motion network and the
2002 event was recorded on the Yucca Mountain network station that was co-located at
the Blume location. Note the clear differences in the complexities of the records for
these two events with similar focal mechanisms (Smith et al., 2001) and hypocentral
parameters. (For corroborative use only.)
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Figure 4-20. Acceleration spectra Lathrop Wells from the June 14, 2002, and September
13, 1992 M 4.4 and M 4.5, respectively, Little Skull Mountain aftershocks. (For
corroborative use only.)
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Figure 5-1. Seismicity in the Death Valley National Park region during FY2002.

(For corroborative use only.)
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Figure 6-1. Earthquakes in FY2002 near Yucca Mountain.
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Figure 7-1. Focal mechanisms for FY2002 earthquakes in the SGBDSN catalog. Up
(crosses) and down (circles) first motions are plotted on the lower fnral hpm;ot,i-,0~-plotted on the lower focal hemisphere.
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Figure 7-2. Pressure and tension axes of the focal mechanisms for FY2002. These are
plotted on the lower focal hemisphere.
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Figure 8-1. Location of blasts in the SGBDSN monitoring region in FY2002.

(For corroborative use only.)



Appendix 1

Status of the Data

In order to produce a final product, seismic data collected for earthquake studies pass through a

number of formats and are moved from file to file, even between computing systems at the NSL

(Nevada Seismological Laboratory). The control and management of this data is described in the

following implementing procedures

IPR-001, Operation of the Yucca Mountain Digital Seismic Network

IPR-002, Determining the Location of Earthquakes Recorded by the Yucca Mountain Seismic

Network

IPR-003, Determining the Magnitude of Earthquakes Recorded by the Yucca Mountain Seismic

Network

IPR-004, Operation of the Yucca Mountain Strong Motion Network

Added details are often contained in the scientific notebook UCCSN-UNR-012 (Development and

Operation of the Hardware and Software for the UNRSL Seismic Monitor ing Network). Together,

these IP's and the scientific notebook cover the electronic control of data recorded and developed in

conjunction with this study, according to UCCSN QAP-3.1 (Control of Electronic Data). Integrity

of the data throughout this process has been documented in that notebook. Methodology described

in this report for seismic monitoring activities meets the requirements of the QARD. Data

collection, reduction, and analysis are governed by applicable UCCSN Implementing Procedures

(IP) listed above and by an approved UCCSN Scientific Investigation Plan (SIP-UNR-004). There

are no "models" treated in this report.



The earthquake location and magnitude data (Appendix 3) and focal mechanism data (Table 7-1) are

the main data in FY02 developed for this report. The location/magnitude data were generated under

appropriate quality-assurance controls; namely, IPR-002 and IPR-003. A preliminary set of this data

has been submitted to the TDMS (Technical Data Management System) under UCCSN #

012DV.014 as "non-Q" data, pending final review and approval of this report. The FY02 focal

mechanism data were submitted to the TDMS under UCCSN # 012DV.015; again, this was

submitted as "non-Q" pending report approval.

This report makes use of prior location/magnitude datasets that have been submitted to the TDMS by

the NSL (or, in the last instance, the TDA); their DTN's and status are as follows:

Period of Data DTN (DID) # Status
FY01 MO0205UCC012DV.008 Q
FYOO UN0106SPA012JB.001 Q
FY98-99 UN0007SPA012DV.002 Q
FY97 MO9906SEISYMNV.OOO Q
FY96 MO970483117412.002 Q
1995 (01/01-09/30) MO0208UCC012DV.012 Q
1994(01/01-12/31) GS950383117412.003 Q
1993(01/01-12/31) GS950183117412.001 Q
1992(10/01-12/31) MO0208UCC012DV.011 Q
1978 (08/08)-1992 (09/30) 012DV.019 non-Q

Other FY02 data shown in graphs and tables herein were generated from the raw source data which

have been submitted to the Records Processing Center under the titles "Raw seismic data collected

by the Southern Great Basin Digital Seismic Network - 10/01/01 to 09/30/02", and "YMP Strong

Motion Network: Data: Period ... to ..." where "..." covers several specific dates within FY02.

These data were collected under appropriate quality-assurance procedures; namely, IPR-001 and



IPR-004. Details of data collection, data flow, and data processing and locations of data files, both

raw and developed, are given in scientific notebook UCCSN-UNR-012. This notebook was last

reviewed in May 2002.

Reference is made to data of the "analog" and "digital" networks within this report. Prior to October

1995, this analog network was the primary monitoring network and all data were collected under

controls of the USGS QA program. After this date the digital network became the primary

monitoring network, and the raw data from the analog network were not used in developing

hypocenters or focal mechanisms. However, in January of 2000 raw data from a greatly reduced

analog network were again used in developing this final data. The analog data collection since that

time is treated in IPR-001 to assure its quality. Only timing and polarity are addressed, and the raw

data of the analog stations are not used in any ground-motion amplitude calculations.



Appendix 2
Station Data and Description for the SGBDSN and Strong-Motion Sites

Q data - DTN #UN0006SPA012DV.001

Permanent Network Monitoring Sites

code

AL5
AMD
BTW
CAF
CRF
DOM
ECO
FMW
FRG
HEL
LEG
LSC
NCF
PUV
PIT
RED
RPY
SCF
SGR
SPG
STC
STH
STO
SYM
TAR
TIM
TPW
TWP
TYM
WLD
YCW
YFT

station name and area latitude
north

Alcove 5, ESF
Amargosa Desert, BLM
Beatty Wash, NAFB
Calico Fan, NTS
Crater Flat, BLM
Dome Mountain, NTS
Echo Peak, NTS
Forty Mile Wash, NTS
Fran Ridge, NTS
Hell'sGate, Death Valley NP
Lee's Camp, Death Valley NP
Little Skull Cliff, NTS
North Crater Flat
Plutonium Valley, NTS
Cinder Pit, BLM
Red Mountain, NTS
Repository, NTS
South Crater Flat, BLM
South Grapevine, DVNP
Specter Range, NTS
Silent Canyon, NTS
Stripped Hills, NTS
Solitario Canyon, BLM
South Yucca Mountain, NTS
Tarantula Canyon, BLM
Timber Mountain, NAFB
Topopah Wash, NTS
Twin Peaks, NTS
Thirsty Mountain, NAFB
Wildcat Mountain, BLM
Yucca Wash, NTS
Yucca Flat, NTS

36.
36.
36.
36.
36.
37.
37.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
37.
37.
36.
36
36.
37.
36
37.
37
36
36.
37

.8596

.4526

.9978

.8391

.8118
,0021
.2108
.9021
.8169
.7246
,5627
.7307
.8899
.9494
.6798
.6895
.8515
.7568
.9805
.6746
.2939
.6457
.8603
.7416
.8680
.0667
.9016
.2047
.1441
.7927
.9224
.0762

longitude
west

116.
116.
116.
116.
116.
116.
116.
116.
116.
116.
116.
116.
116.
115.
115.
116.
116.
116.
117.
116.
116.
116.
116.
116.
116.
116.
116.
116.
116,
116
116.
115.

4547
.2809
.5665
3377
.5340
.4086
.3296
.3688
.4195
.9750
.6896
,3255
.5682
.9633
,4937
.0930
.4563
.5440
.0327
.2030
,4358
.3375
.4742
,4460
.6322
.4694
,2519
.1234
.7208
.6257
.4756
.9735

elevation
km

1.
0.
1,
1.
1.
1.
2.
1.
1,
0.
1,
1.
1.
1.
0,
1.
1.
0.
1.
1.
1.
1.
1.
0
1
1
1
1
1
0
1
1

.0660

.7560

.3910

.1100

.0320
,7110
.2320
.1460
.1550
.7470
.1130
.2380
.1510
.2530
.0850
.1430
.3010
.9090
.5600
.0640
.9600
.0500
.3590
.9950
.2310
.8710
.5730
.5760
.4570
.9300
.4980
.3540

on date

1998252
1997115
1995230
1995034
1995165
1995333
1999197
1995165
1995165
2002175
2002057
1995034
1995034
1995258
2000334
1996037
1996038
1995034
1998127
1996075
1995209
2000179
1995165
1995034
1996023
1996143
1995258
1995205
1996275
1995193
1996032
1999197

seismometer strong
motion'

Mark Products L4
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech
Geotech

S-13&
S-13
S-13
S-13
S-13

GS-13
S-13
S-13
S-13
S-13
S-13
S-13
S-13
S-13
S-13
S-13*
S-13
S-13
S-13S
S-13
S-13
S-13
S-13
S-13
S-13#
S-13
S-13
S-13*
S-13
S-13

GS-13

y
n
n
y
y
n
n
n
y
n
n
y
n
n
n
n
y
y
n
n
n
n
y
y
n
n
n
n
n
n
y
n

+ "y" indicates that a RefTek 133-05 strong-motion instrument has been added at the site
Sstation AMD used a Guralp CMG-40 until 03/06/2002
$station SPC used a Guralp CMG-40 until 02/27/2002
#station TIM used a Guralp CMG-40 until 05/01/2002
*station TYM used a Guralp CMG-40 until 04/10/2002

Management Units:
BLM Bureau of Land Management
DVNP Death Valley National Park
NTS Nevada Test Site, DOE
NAFB Nellis Air Force Base

Independent Strong-Motion Sites

code

SPRS
LWLS
BYMS
SYMS
WCTS
MDVS
TYMS
FOCS
BXHS
WHBS

station name and area

Specter Range Strong Motion
Lathrop Wells Strong Motion
Bottom Yucca Mountain Strong Motion
Side Yucca Mountain Strong Motion
Wildcat Canyon Strong Motion
Midway Valley Strong Motion
Top Yucca Mountain Strong Motion
FOC Strong Motion
Exile Hill Strong Motion
Waste Handling Building Strong Motion

latitude
north
36.6847
36.6433
36.8394
36.8378
36.7986
36.8514
36.8406
36.7778
36.8497
36.8529

longitude
west

116.1800
116.3983
116.4778
116.4725
116.6269
116.4222
116.4683
116.2878
116.4303
116.4249

elevation

1.
0
1.
1
0
1
1
1
0
1

km
.2741
.5639
.2009*
.3625
.7010
.0607
.6612
.0973
.9845
.2730

*BYMS station was removed in January 2002 and relocated at WHBS



Appendix 3

Earthquake Catalog for FY2002

submitted as an electronic dataset (DID # 012DV.014)



Appendix 4

Events Identified and Located As Blasts In FY2002
Non-Q data (DID # 012DV.017)

Date hh:mm:ss.ttt latitude longitude magnitude

10/20/2001
11/16/2001
11/18/2001
11/18/2001
12/13/2001
1/26/2002
2/27/2002
3/03/2002
3/09/2002
4/02/2002
4/02/2002
4/09/2002
4/09/2002
4/09/2002
4/10/2002
4/10/2002
4/10/2002
4/10/2002
4/11/2002
4/12/2002
4/12/2002
4/23/2002
7/05/2002
7/26/2002
8/26/2002
8/26/2002
8/27/2002
8/28/2002
8/29/2002
8/29/2002
8/29/2002
8/29/2002
8/29/2002
8/29/2002
8/30/2002
9/28/2002

18:
17:
16:
17:
08:
22:
21:
21:
07:
03:
03:
02:
03:
04:
03:
18:
20:
21:
19:
02:
03:
00:
01:
15:
23:
23:
23:
23:
03:
03:
09:
09:
09:
09:
06:
21:

39
18
48
07
57
35
35
32
21
48
50
55
46
33
16
42
19
22
26
47
35
56
09
40
38
58
59
58
46
49
25
27
32
35
03
25

:19.
:49.
: 51 .
: 14 .
:23.
:36.
:38.
:42.
:34.
:38.
:36.
: 14 .
: 11 .
:09.
: 19.
:32.
:45.
:30.
: 18 .
: 17 .
: 01 .
:08.
:02.
: 01 .
:49.
:23.
: 13 .
:52.
:06.
:32.
:46.
:45.
:22.
:22.
: 15 .
: 18 .

906
145
012
412
077
992
749
067
243
299
541
760
819
637
789
285
514
367
965
094
977
722
340
964
950
075
995
601
194
322
994
270
547
661
712
724

36
37
37
37
37
36
36
36
37
36
36
36
36
37
36
36
36
36
36
36
36
36
36
37
36
36
36
36
36
36
36
36
36
36
37
37

.6542

.0464

.0303

.0325

.1422

.9882

.6698

.8473

.2944

.7961

.7974

.6658

.6641

.3161

.6770

.7228

.8369

.8276

.6862

.6845

.6664

.5901

.6003

.0217

.6905

.6805

.6753

.6740

.6740

.6912

.6787

.6775

.6665

.6735

.2198

.0891

-116
-116
-116
-116
-116
-116
-116
-116
-116
-115
-115
-115
-115
-116
-115
-116
-116
-116
-115
-115
-115
-115
-115
-116
-115
-115
-115
-115
-115
-115
-115
-115
-115
-115
-116
-116

.0027

.1737

.1655

.1700

.1122

.7271

.0612

.2707

.4356

.8005

.7828

.7998

.8546
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