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ABSTRACT
Spectral Analysis of Pathological Acoustic Speech Waveforms
by
Priyanka Medida
Dr. Eugene McGaugh, Examination Committee Chair
Associate Professor of Electrical Engineering
University of Nevada, Las Vegas

Biomedical engineering is the application of engineering piasiand techniques to
the medical field. The design and problem solving skills of engmgedre
combined with medical and biological science, which improves medisalddr
diagnosis and treatment. The purpose of this study is to develop amaded
procedure for detecting excessive jitter in speech signals,hwisicuseful for
differentiating normal from pathologic speech. The fundamental mmtivébr this
research is that tools are needed by speech pathologists amgblagysts for use in
the early detection and treatment of laryngeal disordemsugtical analysis of speech
was performed to analyze various features of a speech signdkr Easearch
established a relation between pitch period jitter and harmomdwdth. This
concept was used for detecting laryngeal disorders in speeehpstimlogic speech
has been found to have larger amounts of jitter than normal speech.

Our study was performed using vowel samples from the voice disorder
database recorded at the Massachusetts Eye and Ear InfiiMiEEl) in1994. The
KAYPENTAX company markets this database. Software developmentenducted
using MATLAB, a user-friendly programming language which theen applied
widely for signal processing. An algorithm was developed to coenpatrmonic
bandwidths for various speech samples of sustained vowel sounds. Opensaad cl

tests were conducted on 23 samples of pathologic and normal spegibssaath.



Classification results showed 69.56% probability of correct detedf pathologic

speech samples during an open test.
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CHAPTER 1
INTRODUCTION
1.1Motivation for Study

Biomedical engineering is the application of engineering jpies and
techniques to the medical field. The design and problem solving skeisgofieering
are combined with medical and biological science which improvedical disorder
diagnosis and treatment. The fundamental motivation for this réseaitat tools are
needed by speech pathologists and laryngologists for use inrtiiedetection and
treatment of laryngeal disorders. Physicians usually dé&egigeal pathologies by
means of a laryngoscope or endoscope which involves inserting a dewoethe
throat of a patient. These procedures represent effectiventyasive methods of
detecting laryngeal disorders. In the past, researchers leavedble to distinguish
people who have some vocal fold problems from those who do not by agatlyein
acoustic speech waveforms. It is intended that the researclkbddsarthis paper will
be of value to the medical industry for the detection of laryngatilologies through
the use of a non intrusive method.

It has been determined that a key factor in the speech of paients with
laryngeal pathologies is excessive amounts of pitch period [fkeditter is the time
variation between pulses in a periodic signal. Many studies Hawensthat the
voiced speech of patients with laryngeal disorders was found to haegittesrwhen
compared to people without laryngeal disorders. Therefore, g#tierby used as a

factor for detecting abnormal speech.



1.2 Goals of Study

The main goal of this study is to develop an automated procedure dotiadgt
excessive jitter in speech signals which is useful for diftteaéng normal from
pathologic speech. This procedure could be used in the early detectamyngfeal
pathologies and in monitoring their treatment. Software developméhtbev
conducted using MATLAB, a user-friendly programming language lwhias been
applied widely for signal processing.

1.3 Literature Survey

Much research has been done in the past to detect laryngealedss by
analyzing acoustic speech waveforms, which is the visual repagisas of speech
vibrations. Philip Lieberman conducted early reseanci963to measure jitter in
continuous speecli8]. By measuring the differencesetween the durations of
adjacent fundamental periods, pitch perturbations were computed &oonded
acoustic waveforms. Laryngeal mirror was used to take high spetohnpictures of
the vocal cords. It was observed that pitch perturbations refleativas in the shape
of the glottal area wave, and also variations in glottal perigdicihe pitch
perturbations of 23 speakers with pathological larynges wereuneeladt was found
that the speakers who had pathologic growths on their vocal cords gad péch
perturbations than did normal speakers with the same median fundaperdds. It
was concluded that certain types of laryngeal conditions could textel@ by
measuring the perturbation factor [1].

The variations in pitch period length in the human voice, has attraistof
the researchers attention. Koike’s [2] research’s main purposdowiagprove the
procedure developed by Lieberman in measuring pitch perturbationd; wbiald

help in evaluating laryngeal dysfunction. Sound was extracted thrbegbkin and



tissues by using a contact microphone placed on the throat. Retaterage
perturbations (RAP) were determined from the distance of pitclodsefirom a
smoothed trend line of fundamental pitch periods. RAP is given by :
1 N=] Tﬂ'“ IJ+TOT."]+TGU|]}
N-2& 3
RAP = - &
_Z To'™
N i=]

~To®

.......................... 11
where N is the number of pitch periods To [2].

It was observed that pathological voices showed significarglyenivalues of
RAP, which also depended upon the nature and degree of the disorder.

Childers and Bae [3fiscuss two procedures for the detection of laryngeal pathology:
1) a spectral distortion measure using pitch synchronous and asynchnoethosis
with linear predictive coding (LPC) vectors and vector quantizatit@) (and 2)
analysis of the electroglottographic signal using time interasatl amplitude
difference measures. The procedures were conducted on 29 pathobkryic&l2
normal voices. These procedures yielded 75.9% and 69.0% accuracies velgpecti
with a 9.6% false alarm probability for normal subjects.

Cesar and Hugo [4dddress issues like the clinical procedures for laryngeal
examination being invasive in nature. They also emphasize the dadra#erest in
the acoustic analysis of normal and pathological voices for resdeecause it is
nonintrusive in nature and provides quantitative data within a reasoaahlgsis
time. In the same article they have described the implemamtafi a system for
automatic detection of laryngeal pathologies using acousticsaasalf speech in the
frequency domain by using different techniques like cepstrum, npstraen, delta

cepstrum and FFT. Using neural networks they could distinguish betweeaalrsord



pathological voices. Their research indicated that this kind of amgbysvides a
noninvasive way of characterizing pathological condition and thétsegrovide an
alternative support tool for the diagnosis of pathologies. A 93.5% of agcuvas
obtained using their method.

Mitev and Hadjitodorov’s [5]research is aimed at the development of new
methods of fundamental frequency determination of voiced signal dittgrpatients
with severe laryngeal disorders. They mention the unsatisfactswyts in cases of
severely distorted periodicity of the signal in the acousticevaigalysis by classic
methods. Autocorrelation and cepstral methods are proposed in this papeth8se
methods gave higher accuracy of fundamental frequency determinatigraced to
the most commonly used methods, they were combined in a systermofmstia
analysis and screening of pathological voices and thus this systeised in the
everyday clinical practice.

Stefen, Boyan and Bernard [@[dress issues such as the classification of
normal and pathological patients. An approach based on modeling of the |iybabi
density functions of the input vectors of the normal and pathologuesksrs by
means of two prototype distribution maps (PDM), respectively, is prdpase later
applied in a consulting system for laryngeal pathology detectioe. ddtabase
consisted of 100 normal voices and 300 pathological voices recordedihdhmtric
Department of the University Hospital in Sofia, Bulgaria. 95.@P4classification
accuracy was achieved.

Campbell and Reynolds [7] address to the issue of using a stapdah sorpora
for the development and evaluation in automatic speech processagctredt allows
researchers to compare performance of different techniques on cotataorSpeech

data produced at Massachusetts Eye and Ear Infirmary is thecomignercially



available database and is distributed by the KayPENTAX comfanyeven though
this database is used, there may be differences in the wWadgdtare chosen. To get a
better comparison of two methods, one must use the same data that others have used.
Alireza, Shikanth and Narayanana [7] focused on a robust, rapid amehtacc
system for automatic detection of normal voice and speech patholdgeds
frequency filter bank cepstral coefficients and measures oh mliynamics were
modeled by Gaussian mixtures in a Hidden Markov Model classii¢otal of 700
subjects of normal and pathological voices were used to evaluatmethed. The
Massachusetts Eye and Ear Infirmary (MEEI) database veasfasthe research. The

authors claimed a method 99.44% correct classification rate.



CHAPTER 2
SPEECH PRODUCTION MODEL FOR SUSTAINED VOWELS
2.1 Introduction
We speak everyday without concentrating on the process of speech

production. The movement of the lips, tongue, and other organs is amaupthest

and most adept of any actions performed by human beings. Here,usdise
mechanism of speech production which includes the human vocal organs and the
discrete-time speech production model.

2.2 The Physiology of Speech Production

Figure 2.1 is a diagram of the human vocal organs.

LUNGE

DIAPHE A GM

Figure 2.1 Human Vocal Organs



2.2.1 Lungs

As shown in the Figure 2.1 human speech is produced by vocal organs. The
lungs and diaphragm are the main source of energy. Air entersatied from the
lungs. Air flow is forced through the glottis between vocal condhe larynx to the
pharynx and oral and nasal cavities which are three main cawitithe vocal tract.

From the oral and nasal cavities the airflow exits through the andemouth,
respectively.
2.2.2 Larynx

The larynx is the most important organ for generating speetth Bnd
volume are manipulated there. The glottis which is a V-shaped gpbatween the
vocal cords is the most important sound source in the vocal systeml. dtwda
modulate air flow by rapid opening and closing which causes a bugaumg. From
this buzzing sound vowels and voiced consonants are produced. The fundamental
frequency of vibration depends on the mass and tension and is about 110 Hz, 200 Hz
and 300 Hz with men, women, and children, respectively [10]. Consideaslecfar
stop consonants: the vocal cords act suddenly from a completely glosigon, in
which they cut the air flow completely, to totally open position produeinght
cough or a glottal stop. For unvoiced consonants like /s/ or /f/, thay be
completely open. An intermediate position may also occur with eample
phonemes like /h/ [9].

2.2.3 Vocal Tract-Pharynx, Nose, Mouth

From Figure 2.1, it is seen that the pharynx connects the larythe oral cavity. The
pharynx has nearly fixed dimensions, but its length may be changgdlysiby
raising or lowering the larynx at one end and the soft palate at the other end. €he rout

from the nasal cavity to the pharynx is either isolated or coatdwut the soft palate.



The epiglottis at the bottom of pharynx prevents food from reachintatiex and
isolates the esophagus acoustically from the vocal tract. Thettisi the false vocal
cords and the vocal cords are closed during swallowing and open durimglnor
breathing [9].

Now, let us consider the oral cavity which consists of the lips, vghatate,
tongue and teeth. Its size, shape and acoustics can be variectyjisnent parts.
Especially the tongue is very flexible, the tip and the edges lwe moved
independently and the entire tongue can move forward, backward, umand The
lips control the size and shape of the mouth opening through which spemcts aire
radiated. Unlike the oral cavity, the nasal cavity has fixed aléoas and shape. Its
length is about 12 cm and a volume of 60 .cithe soft palate controls the air stream
to the nasal cavity. The pharynx and oral cavity are referred to as the vacal trac

Figure 2.2 shows the external structure of the larynx and Figure 2.3 slhaws t

internal structure of the larynx.

Figure 2.2 Front View of the Larynx



Figure 2.3 Internal Structure of the Larynx

As seen from the Figure 2.3, the space between the vocal corddeds tba

glottis. The vocal cords are wide open during quiet respiration preceding speech.
2.3 Continuous- Time Speech Production Model for Vowel Sounds

2.3.1 Introduction
A general continuous-time speech production model for voiced and unvoiceth spee
is shown in Figure 2.4. For most of the speech sounds, we can assuthe gemneral
properties of excitation and vocal tract are fixed over a perid® ef 20 msec. Vowel
sounds are usually used for laryngeal function assessment bétawseal folds are

vibrating at a sustained frequency.



Gatn for voice source m(f)

Pitch _

Perod | Impulse x(t) | Glomt
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Figure 2.4 General Continuous Time Speech Production Model

Two reasons for using sustained vowels are:
1. They reflect the physical condition of vocal cords.
2. They can generally be treated as realizations from alntetsbrmry stochastic
processes.
The speech production model consists of the excitation function whieprssented
by a periodic impulse train Bj. The glottal pulse, vocal tract and lip radiation are
represented by @l),V(») and Rf) respectively. The glottal excitation x(t), which is
the input to the glottal pulse model, is produced from a finite sequenogulses,
e(t), having unit strength, which is modulated by function m(t) ssming the
strength of each pulse, as shown in Figure 2.5.

The expression for x(t) is given by

X(t) = Nofmna(t ~t)) 2.1)

10



where n = 0,1,2,3................. N1 are the times at which impulses occur and m

represents impulse strength [29].

e(t) x(t)

v

m(t)

Figure 2.5 Glottal Excitation Modulation

2.3.2 Glottal Pulse Model

Glottal pulses have a short time duration with \&rgrt rise and fall times. A

simple model of the glottal pulse shape filter ingguresponse, is given by

git) =G, (t+)e ", O0<t<w (2.2)
whereGeand ¢ are constants. This model was derived bilahagan [17]. The

Fourier transform of a sampled band limited repnegen of g(t) is given by

G

S Cemery

(2.3)

where T is the sampling period in seconds.

11



X(t)

»
»

d i A no-k

Figure 2.6 Glottal Excitation Pulse Train

2.3.3 Vocal Tract Modeling

The vocal tract impulse response v(t) is a fumctid the actual shape of the vocal
tract and can be considered to remain stationagy ®® millisecond intervals during
utterances of sentences [17]. However, for the csistained vowels v(t) can be
assumed to remain stationary for the total timeatiom of the vowel. Also, for
sustained vowel sounds the vocal tract is modeded Bnear time-invariant system
with resonant frequencies called formants. The ueegy location of formants is
determined by the shape or configuration of theal/diact and consistently occur
within certain ranges with respect to specific etsv Generally, the first three or four
formants are sufficient for speech recognition. Thecal tract is relatively
independent of other speech production componeéetsg{ottal pulse excitation and
lip radiation). The Fourier transform of a bandited sampled version of v(t) is given

by:

K
1

Viw) = ;l;[“_ — gile—wdy(] — ilw+wdy

(2.4)

where K corresponds to the number of formant frages«: [23].

12
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Figure 2.7 Cross-Section Area vs Vocal Tract frolotiiz to Lips

The vocal tract transfer function shows resonarateeps across the spectrum for a

particular articulation. A typical vocal tract spegn is shown in the Figure 2.8

Magmtude

0 1 2 3 4
Frequency (kHz)

Figure 2.8 Vocal Tract Resonance Pattern

2.3.4 Glottal Excitation Modeling

Figure 2.9 represents a typical glottal excitatsmguence associated with a
sustained vowel wheregNs the number of pulsesihrough {,, represents the times

at which the pulses occur. Glottal pulses occurnvhecal cords quasiperiodically

13



open to release short puffs of air which causevstizal tract to resonate. The duration
of each cycle in the speech waveform is called glottal pulse or pitch period

length. We represent the length in time of thdtglgulse or pitch period as shown

in Figure 2.9
e(t)

A A Ar Ar A A
—

— % »le >

-
T, T, Ta No
To 11 o 3 INo-1  INo > t

Figure 2.9 Glottal Excitation Timing

Since the vocal cord openings are independentsagnae that the time period
between the glottal pulsestd be independent. If we assume these time petembs
random variables from the same probability distidouwith a mean Jand variance
o1 these periods can be expressed as [22]

Ti =Tot+§ (2.5)
where T is constant and; is a normal random variable with mean zero anthwae
GZT.

If to,= 0, then,

14



ti= Z Tn i=1......... N (2.6)

= 4 (To +En) (2.7)
= T0+Zi: & (2.8)
= (i+zi_:(§_n) To (2.9)

Wherea =&l To
Note that Whilef_n are independent, ¢ are dependent.

Let the estimated meahand variancé&?; be computed in the following manner.

T=1N, i T, @1
S = 1/(No-1) Nz (Ti-T)? (2.11)

Sr=/S%r (2.12)
where S is the sample standard deviation.

The estimate of jitterﬁ for the speech signal is the ratio is the of sampl
standard deviation to the sample mean.

J=syt (2.13)
J is the consistent estimate for the actual jitteo dhat,

J= lim S/T

N~ o

= GT/TQ (2 . 14)

Jitter amounts in sustained vowels produced by lpesiph no laryngeal
disorders have been found to be less than 0.0kwahiounts greater than 0.02 have

been measured in vowel sounds produced by peopehede abnormal growths or
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masses on their vocal cords [18]. So the techrigugtter detection must allow the
user to consistently discriminate between vowelalg having these quantities of
jitter present.
Assumptions abou and t have been made for modeling speech signal pramucti
[22]. These assumptions are:

(1)Glottal pulse periods can be treated as statiticedependent random

samples.
(2)Glottal pulse period samples can be treated asiganormal distribution.

These assumptions were validated by comparingdhepspectrums of
synthesized speech, having the above propertiéstinatpower spectrums of real
speech and finding that their characteristics aresistent with the real speech signal.
The results of these experiments will be discussted.

2.3.5 Lip Radiation Modeling

The lip radiation filter represents the converssbthe volume velocity waveform at
the lips to the sound waveform s(t). Davis [21]idedl a simplified frequency
response of this function given by

Llw)=L, (1 — e~ 7%) (2.15)

where g is a gain factor. The continuous time interpretatf (2.15) is that the
sound waveform is a scaled derivative of the volwelecity waveform at the lips
with respect to time.

2.3.6 Combined Filter Response

Graphic representations of the individual filtesponses are shown in Figures 2.11
(a),(b) and (c) and and the combined filter respphf{w), is shown in Figure 2-11(
d).

H(w), is given by
16



H{w) = 6(@) - V(w)- L(w) (2.16)

G(w) (a)
o 1 2 3 4 5
|
s [ AANA A Yo g
.:; o 1 2 2 4 5
? I —
.‘ // L (o) ©
u] 1 2 3 g =
H(®) (d)
W

u} 1 2 3 q 5
Frequency(27k rad/sec)

Figure 2.10 Vocal System Filter Frequency Responses
where G @) is the glottal pulse response, &) (s the vocal tract response, )(is
the lip radiation response and ) (s the combined response.
o €THjo) Y2 (1 orie
H(w) = GOKLO(l ° J-er) (2.17)
[[-e fr-ei=)

i=1
Since cT is much less than unity (c = 28@c), two of the numerator terms cancel

allowing H(®) to be expressed as an all-pole filter :
GDLD
(1— e~(cT+jw))=2 H?;L(l _ ei(ﬁd—fﬂ:‘)) (1 _ e;'(wmf)) (2.18)

H(w) =
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An alternative version of the speech production eh@égishown in Figure
2.11. The speech signal output response&)Sig related to the other model

components through the expression
S(ew) = ;"f[:-!dj - E(Er_ﬁ:l - [’rl:-:r_:l:] - L) (2.19)

_X(w) - B(w) (2.20)

where Xlew) = E{co) = M ().

The purpose of this speech model is to facilitateiaderstanding of the
speech power spectrum so that it may be used thological assessment. A power
spectrum expression of the glottal excitation fiorcwvill be derived in the next
chapter based on its assumed mathematical affegibttal excitation spectrum
analysis model representation. &) (vill be considered for its affect on glottal

excitation spectrum analysis.

m(t)
M(w)
o x() h() 50
g H(o) ~ S)
E(w) X(w)

Figure 2.11 Simplified Speech Production Model
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CHAPTER 3
SPECTRAL ANALYSIS OF SPEECH SIGNALS
3.0 Introduction
Techniques for spectrum estimation can generallditieled into parametric
and non-parametric methods. The parametric appesagabsume that the underlying
stationary stochastic process has a certain steugthich can be described using a
small number of parameters (for example, usinguan-gegressive or moving average
model). In these approaches, the task is to estithat parameters of the model that
describes the stochastic process. By contrast,pacametric approaches explicitly
estimate the covariance or the spectrum of thegsaevithout assuming that the
process has any particular structure. The peri@ogis a classic non-parametric
technique
3.1 Fourier Analysis
The periodogram is an estimate of the power sgedeasity (PSD) of a
signal. Usually, the periodogram is computed frorfinge-length digital sequence
using the Fast Fourier transform (FFT). The Fouransform is used to transform a
continuous time signal into the frequency domain.ptovides the continuous
spectrum of a time signal. Let x(t) , Ot< L, be a finite-length continuous-time

signal of length L in seconds. The continous-tiReeirier transform of x(t) is given

by:

L
X(o) = j x()etdt, <o <wm
0

where o is the analog frequency in radians per seconde iflverse Fourier

transform of X() is given by:
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x(t) = 1/% ]0 X(w)d®! do
The Discrete Igzurier Transform
A time sampled version of x(t) is given by xfhWhere T is the sampling period and
0<nTs< (N-1)Ts. L =NTswhere N is the total number of time samples offign

The discrete-time version of ¥f is given by:

N-1 )
X(k2rn/NTy) = z X[nTS]e-Jk(Zn/NTs)nTs
n=0
Using just the time and frequency indices alone discrete-time version of

X(k2n/NTg) can be expressed as

N-1 _
X(k)= > x[ne”™™N where 0 %k <N-1

n=0

This is the Discrete Fourier Transform (DFT) of x[n
N-1 _

The inverse DFT is given by x[n] = /Y. X[kle ™™™ where 0 <n <N-1.
n=0

The Fast Fourier Transform

The Fast Fourier transform (FFT) is simply a class of special algorithms
which implements the discrete Fourier transformhwadonsiderable savings in
computational time. It must be pointed out that B is not a different transform
from the DFT, but rather just a means of computimg DFT with a considerable

reduction in the number of calculations required.

3.1.1 Power Spectrum Estimate for Finite Lengtm8isg)
In the speech production, parameters like averdgh frequency and vocal
tract shape vary with respect to time, becausechpsignals generally fall in to the

category of non stationary random processes. Incése of long sustained vowel
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sounds at a constant average pitch frequency aed famount of jitter, the signals
can be treated as almost stationary and ergodis. 8dsumption allows one speech
signal to be used for determining the amount ¢érjitvhich is always present in the
speech produced by a particular person.

We shall now initiate the spectral analysis oftaued vowel speech signals by
deriving power spectrum expressions for finite t@ngignals. Hp) represents the
combined response of the speech production mdtksisfiof Figure2.11. The Fourier
transform of a vowel of length L can be expressed a

3 L(®) = Xi(0)*H (o) (3.1)

where X (o) is the Fourier transform of the excitation fuoatix(t).

It follows that the power spectrum estimate [2X]tfee finite length s(t) is

Ps(w)=1/L 1S | (o)f

= Z[X, (0)H, (o)

1 2 2
:I|xL(w)| IH ()
=Py (0) - H@)? (3.2)
Whereﬁx(w) = %|XL(a))(2 is the power spectrum estimate for x(t).The synibois

indicates that the power spectrum results aregistéinates of the true power spectrum
of infinite length versions of the signals. Equati(3.2) shows how the glottal
excitation and the speech filter, &)( power spectrum combine to form the speech
signal power spectrum.

The expected value of the speech signal powetrspeenay be expressed as

E[Ps(w)] = E[P, (@)} |H, (@) [ (33)
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The expected value okfb) as expressed in Equation(3.3) is equivalent toprding
the average over an infinite number of power specsr of infinite length vowel
sound signals with the same statistical parameters,

K
K
(3.4)

where&™ (@) js the power spectrum estimate of thesicord.
3.1.1.1 Derivation of Expected Power Spectrum flmti@l Excitation
To derive expression fcﬁ‘x(m) and its expected value, let us assume that all

glottal impluses have unit strength(no shimmerptBgquation (2.1) becomes
No-1

x(t) =Y s(t-t,) (3.5)
n=0

and the Fourier transform of x(t) is

Ne—1
X@)= ) ejorn

= (3.6)

It follows that

Rw=%mwfan

12 Y
_ y J % k
D128 28" e

where t is the same ag tn Equation(2.6),i.e.,

t,=(n+ ié) To (3.9

P, (o) = {NO+Z'%EICOS@(k—n+i§— .n

nzk

@n%e&m
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If we assume thazfi has a normal distribution with zero mean and vaeari then it

can be shown that the expected valuédfn) may be expressed as [22]

E[P, (w)] = {N + ZZcos[coT (k —n)]e " )k ”"2} (3.11)

n=k
A discrete representation of (3.11) is obtaineddypling it at intervals of

Aw = ZTﬁ This allows samples of &{(«) Jto be taken at = w, = MAw.

m=0,1,23,............ , as follows.

~ 1 (A2 (6T- Plken
E[R((a):a)m)]zt{l\lo +ZK:ZCOS'MWT0(‘<—”)]9 U VZ} (3.12)

L is chosen such that L =N, where T is the mean pitch period length.

E[P,(m)] = {N +ZZcos[<2—>T (k- n)Je '} (3.13)

nzk

(k= n)le Ko '} (3.14)

E[P,(m)] = {N +ZZcos[(2

nzk

where m is a frequency indexing number which reterthe frequencZyL—mn. Since

(3.14) is an even function of k and n, it can beritten in the following form:

Np-1 ~EM2(5 2
ELRMI =T {No+ > [Nyl [lcose e ™ (315
0

1=—(No-1)
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where | = k-n. Obviously, a considerable amountamputation time is saved by

using (3.15) in place of (3.14)

3.1.2 How Jitter Affects the Power Spectrum of @lettal Excitation

Figure 3-1 shows a sketch of Equation 3.15, whmfsists of a periodic sequence of

“bell” shaped pulses(harmonics) centered at integaultiples of i—”(mean
0

fundamental frequency). The bandwidth of theseqsuis proportional to the variance

of the random variabIeEi and increases at higher frequencies. Also, theepuls
amplitudes decay with frequency at a rate propoalito the variance o} .. To show
that the width of the “bell” shaped pulses incrsaag the variance 01‘;_3i increases,

consider what happens around the first harmonl?:[é’& (m)] or E[I5X (m=N,)], as

shown in Figure 3.2.

Figure 3.1 Expected Value of the Excitation Powge@rum Estimate
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ELP, (M= No)l = = X [Ny~ | lcos{2r | e~

(3.16)

At one frequency increment away from niNg or m= N, £1

1 2 2
~ 1 ﬂ'l (=) (2ox)°)2
BB (M= Ny #0) = T S No- [ feosEi e

It can be shown that as’increases, the difference between (3.16) and (3.17)

diminishes which implies that the magnitude of #iepe of the harmonic pulses

diminishes asr” increases and bandwidth of these pulses incresitiesncrease in
jitter which is represented in Figure 3.2

A MATLAB program was written to plot Equation 3.58 a function of jitter. Three
first harmonic pulses for different jitter valuegne generated. Figure 3.2 shows that

as jitter increases, the harmonic bandwidths alsease.

20 T T T
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Figure 3.2 Relation Between Harmonic Bandwidth Jitter

3.2 Maximum Entropy Spectral Analysis

3.2.1 The Concept

In 1967, Burg developed a nonlinear procedure pacsal estimation with
increased resolution called the maximum entropy hotet(MEM). The major
attraction of this procedure is that it provideghhresolution spectral estimates for
relatively short record lengths without using windfunctions. Methods used prior to
this method, basically calculated the auto con@ta¢stimate and then windowed the
autocorrelation function estimate ,appended zewy] performed the Fourier
transform. The window is optimized to give as muesolution as possible with little
leakage.

In MEM method suggests instead of appending zerasctease the length of
the estimated autocorrelation function, that themeged autocorrelation function
should be extrapolated beyond the data limited eanbhe principle used for
extrapolation is that either the spectral estimatedt be the most random or have the
maximum entropy of any power spectrum which is &iaat with the sample values
of the calculated autocorrelation function [19].

The Burg algorithm is probably the most widelyolum AR spectral estimation
procedure. Because of its derivation in the contéxhaximum entropy methods, the
algorithm is sometimes designated "MEM". The pracedcomputes the AR
coefficients directly from the data by estimatidge treflection coefficients (partial
autocorrelations) at successive orders. Since timapuated coefficients are the
harmonic mean between the forward and backwardaparitocorrelation estimates,

the Burg procedure is also known as the "Harmoaligdrithm.
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3.2.2 Predictor Filter Coefficient Calculations

The linear prediction method predicts tfavalue of the sequence by

p
k=1

x=Yax,

where P represents the number of past samplesinldta and they are presumed
known.

Error between predicted value and true value is

A A

u:Xn—Xn
or

Xn=% + U
15K

Xn_k + Un [19]

The predicted value is calculated by convolving Bhgrediction filter” coefficients
& with the past P values of the dataxxThis shows that the MEM spectrum is
modeled as an all pole spectrum with P poles. L&) Ke the z-transform of,>and

assume thatus unit white noise.
o k2

IX@)f=1/11) az' [19]
1

The fundamental equation to be solved for the aiﬁn‘lék are
P

ék R|i-k| = R E'S P

k=1
where R are autocorrelation coefficients estimated frome thata record. These
equations will be recognized as the discrete coypaet of the Wiener prediction
filter equation [19].

The MEM finally leads to the auto correlation pittin equations:
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p
R= Y &R .l 2P+l
k=1

where thelfé1 (I > P+1) are the predicted autocorrelation values.
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CHAPTER 4
CLASSIFICATION
4.1 Introduction
Laryngeal pathology detection requires classificabetween normal and pathologic
speech. Classification is based on the featureaetetl from measurements of the
data. It mainly depends on selecting a good fedhatcan significantly contribute to
classification performance. Classifier selectionaiso important. As mentioned in
Chapter 3, the speech spectral harmonic bandwitBh\() is our selected feature.
4.2 Discriminant Function

Discriminant function analysis is used to assipe feature measurements into
categories. Only if the discriminant function arsadyis effective for a set of data the
classification estimates will yield a high perceygaf correctness.
The main purpose of the discriminant analysis is

1. To classify samples into groups.

2. To test the classifier by observing whether samptescorrectly assigned to

groups.

The Discriminant score is the value resulting frapplying a discriminant
function formula to the data for a given case. Shmples are classed based on the
discriminant score.

4.3 Classifier Performance Evaluation.
Performance of a classifier is decided based enathount of false alarms or the
misclassification it is producing. After the cldsg=i is designed for the samples
selected, tests are performed on the classifiepd3e of the test is to observe how

correctly the classifier can distinguish betwees o categories (classes). With the

29



prior knowledge of the class, a sample is chosenpaissed through the classifier for
identification.

For n samples from each class for test, if k sample correctly classified then the
percentage of correct detection of the classifigjiven by (k/n)*100 %.

The classifier performance is evaluated based enalue of the above percentage.

Higher percentage shows that the classifier is good

4.4 Bayes Decision Criterion

4.4.1 Maximum Likelihood Classification
The Bayes decision theory has three distinct space

1. Observation (measurements)

2. Parameters (unknown)

3. Decisions
The main criteria used for the selection is maximiikelihood criterion. Without
prior information we use the maximum likelihood emgch. It is a model that
maximizes the probability of correct detection.
The likelihood function is calculated for the fe@wx extracted from a k dimensional
class as
g =p (hlx)
where p (h| X) is the posterior conditional density of the slgarameter vector, for
class i given feature vector x.

This is calculated using Bayes rule

p (h %)= p(h)*p(x | h)
p(x)
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where p(k) is the a priori density of class i and [bh() is the a priori conditional
density of x given the parameter vectofdn class i and p(x) is the probability density

of the features.

If the parameter vector; fof the a priori conditional density is unknown, ig
estimated from the feature vectors belonging to ¢hess using the maximum
likelihood technique. The estimate maximizes thedaonal density p(>|<hi). If the a
priori conditional densities are assumed to havenab distributions, the likelihood

function is expressed as,

g(x) = /Wexr{—llz(x;”jz}

1 N
wherep= WZ X;
i=1

2

1 N
o’ = N . (Xi _ﬂ)
4.4.1.1 Likelihood Ratio
In statistics likelihood ratio is the ratio of theaximum probability of a result under
two different hypotheses. It is used for a stat#tiest to make a decision between
two classes. For a two class problem the likelih@oiderion is expressed as a
likelihood ratio by,
9(x) = @(X)/g()=[Pa(hu | X)V[p2(hz | X))
where p=1-p,
4.4.1.2 Threshold

Class one is chosen if the ratio is greater thaa. d’he decision rule can be

alternately stated by as, choose class ong(it [pl)]/[pz(x | hy)] >T
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where T is a threshold value chosen to maximizeptbbability of correct detection.
If a threshold value is varied over a range andltesre tabulated, any false alarm
probability may be realized.

4.4.1.3 Logarithm of Likelihood Ratios

If the logarithm of likelihood ratio is taken then,
log { [pa(x | h)lp2(x [ )T} > logey
dh(x) —cb(x) > logey
where

di(x) ={-log(ws) + ([x-my]*/wy)} /2

da(x) = {-log(wy) + ([x-mg]*wy) }/2

When xis the feature from one class; and w are variances of classes one
and two class respectively.jmnd m are the mean values computed for the features
from class one and two respectively.

When d(x) and d(x) are computed the decision can be made basdteon

threshold value chosen.
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CHAPTER 5
PROCEDURE
5.1 Introduction

This chapter describes how optimum speech powestrsjpe estimates were
produced and the classification of the spectralltesAn algorithm was developed to
compute harmonic bandwidth, which is the pre-setbdeature. A relation between
this feature and jitter was established in Sec3idn2. The algorithm processes speech
to compute the HBW which can differentiate normatexh from abnormal speech.
The Maximum Entropy power spectrum requires optatan of the filter order and
signal length parameters for the best spectrallugsn. Optimum filter order and
signal length were determined using synthesize@apeClassification of spectral
measurements is shown in Chapter 6. All the expartmwere initially conducted on
a synthesized speech because speech parametefgnitleenental frequency, signal
length and jitter could be controlled for the signAHarmonic bandwidth was
computed for different amounts of jitter. Once optm spectral parameters were
determined, they were applied to real speech san@lassification was performed
as discussed in Chapter 4 and the results are simo@imapter 6.

5.2 Data Description

5.2.1 Development and Use of the Exponential Poéspience

As previously mentioned, synthesized speech wasl tige experimental
purposes. To produce a synthesized speech sigmaxponential pulse train was
developed using MATLAB. The"i pulse of the exponential pulse train may be
expressed as:

—(nAt—t;_;)
qny=A¢€ % ta<mt<t (5.1)

where A- amplitude
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n- time index
At — sampling interval in time

a — time constant
t=>T (62
k=1

where T, is the time duration of thékpitch period.

A synthesized speech record can be generated yanwanber of pitch periods
No. Mean pitch period length,= 1/K, where F is the fundamental frequency. The
sampling frequency is given by & 1/At. A Gaussian random number generator was
used to add desired levels of jitter to the pitenigds & previously described by
Equation 5.1. An exponential pulse train samplahewn in Figure 5.1. Once the
exponential pulse train x(n) was generated, spectnalysis was performed. The

spectrum analysis results will be discussed in Grep

Amplitude

1
0 2000 4000 BO0D 8000 10000 12000 14000

Time

Figure 5.1 Exponential Pulse Train
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5.3 Real Speech Data
5.3.1 Kaypentax Database Description

Our study was performed using vowel samples frodatabase consisting of
real speech samples recorded at the Massachusettarid Ear Infirmary (MEEI).
Sustained samples of the vowel /a/ were record®d yoth normal and pathological
speakers who had a variety of pathologies inclugimgal nodules, paralysis etc. The
database was created by Dr. Robert E. Hillman [20].

Normal speech samples were sampled at a rate ddHzOand abnormal
speech samples were sampled at 25 kHz. The dumttitvese vowel samples was 3s
for normal speakers and 1s for abnormal speakevaeVsamples in the database
appear to include only the stable part of the ptiona

The speech database was acquired from KayPENTAXpaog The file
format was .NSP, which is a Kay Elemetrics fornfie database files had to be
converted into a format compatible with MATLAB. Hen the database files were
converted to wave format. For our experimental psgs we needed two sets of data,
one for the closed test and the other for open befstrmation of these selected data
groups is shown in Tables 5.1 and 5.2 wheyésRhe fundamental frequency and

RAP is the relative average perturbation. RAP msemsurement of pitch period jitter

2].
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Identification Fo(Hertz) RAP
BJVINAL 247.134 0.098
CAD1NAL 302.78 0.156
DAJINAL 210.022 0.285
DFP1NAL 216.849 0.4888
DMAI1INAL 239.3 0.238
DWSI1NAL 184.855 0.266
EDC1INAL 217.661 0.421
EJCINAL 143.738 0.484
FMB1NAL 168.449 0.173
GPC1NAL 132.492 0.37
HBL1NAL 236.561 0.54
JAFINAL 211.764 0.24
JANINAL 260.528 0.279
JAP1INAL 240.484 0.45
JEG1INAL 241.538 0.3
JMC1INAL 173.188 0.166
JTHINAL 298.351 0.131
JXC1INAL 238.614 0.275
KANINAL 122.232 0.111
LAD1INAL 240.883 0.4
LDP1NAL 316.504 0.2
LLAINAL 258.633 0.235
LMV1INAL 303.744 0.38

Table 5.1 Data Group of Normal Speech Samples limsed Test.
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Identification Fo(Hertz) RAP
AAT30AN 104.403 3.049
AAT31AN 103.797 3.287
ASR20AN 106.145 3.965
BRT18AN 303.04 3.078
BSAO8AN 85.254 3.088
BXD17AN 122.161 3.74
CAR10AN 198.78 3.472
CXPO2AN 199.331 3.909
DJIJM28AN 188.485 4.946
EEDO7AN 507.207 3.709
FLW13AN 231.849 4.134
FMCO8AN 195.574 3.211
FRH18AN 148.563 3.595
IGD16AN 178.716 3.217
JCL50AN 170.424 4.344
JID29AN 132.554 3.167
LBA24AN 220.949 3.303

MMDO1AN 225.826 3.714
AMC23AN 196.57 2.277
AXT11AN 184.529 2.305
BMMO9AN 233.269 2.284
CMS25AN 184.001 2.806
CXLOSAN 170.731 0.17783

Table 5.2 Data Group of Abnormal Speech Sample€losed Test.
5.4 Power Spectrum Estimation
5.4.1 Fourier Spectrum
The MATLAB FFT was used to compute the speech p@pectrum estimate. The
results will be discussed in Chapter 6.
5.4.2 Maximum Entropy Spectrum
The predictor error filter coefficients for MaximuBntropy Power Spectrum

estimation were computed using an algorithm deezldpy Burg which is based on a
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least squares solution for the coefficients. Oheecbefficientsy,, are computed, they

are plugged into the expression:

1
P(k) = M _j2rkm (5.1)

|1+Zame Ne |2
m=1

where m is the number of coefficients, k is thegfrency index and c is a constant

which determines the frequency spacing between lgsngd the spectrum, ¢ = 1

provides the typical radian frequency spacing\of = ZWH

where N is the number of samples in the time kcor

The predictor error filter coefficients for MaximuBEntropy Power Spectrum
estimation were computed as discussed in Sectidn BATLAB has an inbuilt
function PBURG, which can perform Burg spectrumlygsia on speech signals. This
function was used for obtaining the power spectafrour speech signals. The ME
method requires parameter optimization.

5.4.2.1 Maximum Entropy Spectrum Optimization

The ME spectrum optimization procedure involveded®ining the best
analysis parameter values of signal length andrfitirder for spectrum estimation.
This method consisted of classification on data @es obtained with known
characteristics. In optimizing the spectrum paramsetfor harmonic bandwidth
measurements, exponential pulse train samples Wihand 2% jitter were used in
closed tests. Sequence length N was always selectszlin integral multiples of the
mean pitch period To (i.,e . , N = No*To). This bles the observed harmonic

bandwidths to be strictly a function of jitter atlte number No of pitch periods,
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alone. This was performed by varying the filtererérom 0.9*To to 1.3*To, where
To is the number of points in the pitch period.
5.5 Classification

A MATLAB program was written for speech classificat based on the Bayes
decision criterion as discussed in Chapter 4. TMMSTLAB program accepts two
groups x and % which are the harmonic bandwidths of normal (1%en and
abnormal (2% jitter) speech, respectively. Featnean and variance are computed
for each group. As discussed in Chapter 4, thignar uses Bayes decision criteria.
Based on the threshold given it classifies a giwgout harmonic bandwidth sample
as either normal or abnormal.
The probability of correct detection (PCD) is céétaed based on the number of
correctly assigned samples. The results are shohapter 6.

5.6 Measurement of Harmonic Bandwidth

5.6.1 Fast Fourier Transform

The MATLAB FFT was used to compute the power speatestimate for the
synthesized speech signal. The FFT power spectrstiae was performed on
exponential pulse train samples containing 1 % 2an& jitter values. Once the
spectrum was obtained, first harmonic bandwidthOattb below the peak was

calculated as shown in the Figure 5.2.
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Figure 5.2 First Harmonic Bandwidth Measurement

5.6.2 Maximum Entropy Harmonic Bandwidth

Maximum Entropy spectrum estimates were computadguthe method
described in Section 5.4.2 The best parameter salmre selected by using the
method discussed in Section 5.4.2.1 The input dantaisted of 60 exponential pulse
trains with 1% jitter and 2% jitter levels. Agaifirst harmonic bandwidths at 10 db
below the peak were measured. Once the harmonidwidih measurements for
synthesized speech were completed, real speechw@atgprocessed. Classification

was performed as discussed in Chapter 4 for alll#t@ acquired.
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CHAPTER 6
RESULTS AND DISCUSSION
6.1 Introduction

This chapter presents the results obtained usimgepures described in
Chapter 5. ME-spectrum parameter optimization dadsdication testing results for
synthesized speech are given.

6.2 FFT Results.

As discussed in Chapter 5, the FFT power spectrusms womputed for
synthesized speech for 4000 FFT points and sonutsese shown here. Figure 6.1
shows the first harmonic for 1% jitter and Figur2 8hows the first harmonic for 2%
jitter.

FFT failed to give good results even after incnegshe number of FFT points
and using optimum windowing techniques like Gaussiad Hamming. It failed to

allow clear differentiation between signals with jifter and 2% levels of jitter.
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Figure 6.1 First Harmonic Obtained Using FFT for dfter
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Figure 6.2 First Harmonic Obtained Using FFT for pér

The above two Figures 6.1 and 6.2 are very sinaitat there is no difference
in 10 dB harmonic bandwidth measurements. It shinassufficient resolution is not
obtained using the FFT.

Non-parametric methods like FFT require long sigriat good resolution and
more over there is spectral leakage when usingtamgular window. When we use
other windows we may reduce the leakage but in ghigess we will degrade the
resolution.

6.3 ME Spectrum Optimization Results

As discussed in Chapter 5, ME harmonic bandwidthsueements were taken
on synthesized speech. ME filter orders ranged f0®To to 1.3*To for a constant
record length of 30 pitch periods. After determgitihe optimum filter order, that
value was used to find the optimum signal lengtte Signal length was varied from

20 to 40 pitch periods. Closed test classificatiwas performed using zero dB
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threshold value. Figure 6.3 shows graph of norredliiiter orders versus PCD for a
fixed signal length of 30*To for filter orders 0.8, 1.0*To, 1.1*To, 1.2*To and

1.3*To.
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Figure 6.3 PCD vs Normalized Filter Order (lengthfiTb).

Table 6.1 shows probability of correct detectionluea for different

normalized filter orders Fo for a fixed length @f @itch periods.

Fo(*To) | PCD(%) 2% jitter | PCD(%) 1% jitter
0.9 26 100
1 65 100
1.1 56 100
1.2 76 100
1.3 60 100

Table 6.1 PCD Values for Different Normalized Fil@rders Fo (length 30*To).
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From the Table 6.1, we see that 1.2 is the beshaled filter order. In order to
optimize the length, the same experiment is repleaseng different signal length for
the fixed filter order of 1.2*To. A plot of PCD vwsormalized signal length is shown

in Figure 6.4. Best results are achieved for a matimed signal length of 40 pitch

periods.
—— PCD(%)2% jitter === PCD(%)1% jitter
<120 -
S
c
5100 - . ’ >
3 -
2 80 A e -
° a—
@ 60 - — -
S 40
o)
>
= 20 A
o]
©
S 0 - - - - - -
15 20 25 30 35 40 45
Normalized Signal Length(*To)

Figure 6.4 Normalized Signal Length vs. PCD

6.3.1Relation Between Filter Order and Power SpectrusoRigion
The graphs in Figure 6.5 and Figure 6.6 show tlegtioea between resolution and
filter order in a power spectrum for synthesizedesih and real speech respectively. It

shows that the resolution increases as the filderancreases.
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Figure 6.6 Inverse Filter Spectra as a FunctioRiltér Order using Real Speech

6.4 Burg Spectrum Estimate Results
The FFT failed to produce a useful power spectrgtimate for our analysis.
One second of speech is not long enough to prosudicient FFT resolution. A

minimum of 10 seconds of speech is required to igeoWw.1 Hz of FFT spectral

46



resolution. It is difficult to sustain a vowel salror 10 seconds to produce a
stationary signal. Optimized filter order and sigieagth which were chosen in order
to get the best spectral performance from the PBURR@er spectrum. From the
results shown in Section 6.3, it is clear thattarforder of 1.2 and a length of 40 is
an optimum selection for the Burg analysis. Hetloese parameters were included in
PBURG for real speech. Once the spectrum was autaiharmonic bandwidth
calculations were made on the first harmonic atdhO below the peak value.
Harmonic bandwidth in terms of digital frequencyl®Is obtained from the plot. To
convert Dhb into analog frequency, it was multiglley R/2, where Eis the sampling
frequency. This algorithm was used to compute tlaembnic bandwidth for
synthesized speech samples with jitter levels ofattd 2%, using PBURG. Figure
6.7 is a plot of probability of correct detectioarsus threshold values obtained from

classifying synthesized speech samples with 192&hdevels of jitter.

2%jitter - - - - - - 1%jitter
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[a]
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o
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T T T T T O T T T T 1
-25 -20 -15 -10 -5 0 5 10 15 20 25
Threshold

Figure 6.7 PCD vs. Threshold Values for Synthes&peech - Closed Test
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From Figure 6.7, it is clear that using the optimparameter values, 100% PCD
results were obtained. Hence, the same test wdsrped using real speech data
which is discussed in section 6.5
6.5 Real Speech Results

Using MATLAB's inbuilt function, the wave files werread and speech
signals in the time domain were plotted. In ordecompare normal and abnormal
signals, normal signals which were originally saeapat 50 kHz, were down sampled
so that both groups would have the sampling rat€2®fkHz. Bandwidth was
computed for real speech signals containing 40odsri As discussed in Chapter 5
closed test and open test were performed and Babland 6.3 show the normal and
abnormal harmonic bandwidths for 23 samples of spakech for each, where 0
the fundamental frequency and RAP is the relativerage perturbation. RAP is a

measurement of pitch period jitter [2].
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Identification Fo (Hertz) RAP BW(Hertz)
BJVINAL 247.134] 0.098 0.09007
CADI1NAL 302.78 0.156 0.2523
DAJINAL 210.022] 0.285 0.18593
DFP1NAL 216.849 0.4888 0.192
DMA1NAL 239.3 0.238 0.2991
DWSI1NAL 184.855 0.266 0.1059
EDC1NAL 217.661 0.421 0.136
EJCINAL 143.738 0.484 0.0672
FMBI1NAL 168.449 0.173 0.11407
GPC1NAL 132.492 0.37 0.9385
HBL1NAL 236.561 0.54 0.24643
JAF1INAL 211.764 0.24 0.35297
JANINAL 260.528) 0.279 0.1628
JAPINAL 240.484 0.45 0.17537
JEGINAL 241.538 0.3 0.33967
JMC1NAL 173.188 0.166 0.06313
JTHINAL 298.351] 0.131 1.5384
JXCINAL 238.614  0.275 0.12427
KAN1NAL 122.232 0.111 0.3756
LADINAL 240.883 0.4 1.70627
LDP1NAL 316.504 0.2 0.41213
LLAINAL 258.633 0.235 0.1213
LMV1NAL 303.744 0.38 0.17403

Table 6.2 Harmonic Bandwidths for Normal Speech
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Identification Fo(Hertz) RAP BW (Hertz)
AAT30AN 104.403 3.049 16.0176
AAT31AN 103.797 3.287 14.99107
ASR20AN 106.145 3.965 1.6751
BRT18AN 303.04 3.078 3.56707
BSAO8AN 85.254 3.088 1.93153
BXD17AN 122.161 3.74 1.27887
CAR10AN 198.78 3.472 1.37697
CXPO2AN 199.331 3.909 0.46713
DIJM28AN 188.485 4,946 0.31413
EEDO7AN 507.207 3.709 4.75507
FLW13AN 231.849 4.134 1.41283
FMCO8AN 195.574 3.211 0.76397
FRH18AN 148.563 3.595 1.60763
IGD16AN 178.716 3.217 0.1955
JCL50AN 170.424 4.344 1.5793
JID29AN 132.554 3.167 5.4057
LBA24AN 220.949 3.303 0.33373

MMDO1AN 225.826 3.714 0.63517
AMC23AN 196.57 2.277 0.36857
AXT11AN 184.529 2.305 0.12493
BMMO9AN 233.269 2.284 0.63177
CMS25AN 184.001 2.806 0.0767
CXLO8AN 170.731 0.17783 0.17783

Table 6.3 Harmonic Bandwidths for Abnormal Speech

Once the harmonic bandwidths were computed, cleasdn was performed
at different threshold values. Table 6.4 showstlineshold values and the probability
of correct detection values for close test. Figbu®e shows the graph plotted for the

values in Table 6.5.
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Threshold| PCD(%) Abnormal| Threshold PCD(%) Normal
-20 30.434 -20 100
-18 30.434 -18 100
-16 30.434 -16 100
-14 34.78 -14 100
-12 34.78 -12 100
-10 43.47 -10 100

-8 47.82 -8 100
-6 52.17 -6 100
-4 52.17 -4 100
-2 52.17 -2 100
0 56.52 0 100
2 82.6 2 100
4 100 4 60.86
6 100 6 0
8 100 8 0
10 100 10 0
12 100 12 0
14 100 14 0
16 100 16 0
18 100 18 0
20 100 20 0

Table 6.4 PCD vs Threshold for Closed Test.

PCD(%)

Abnormal HBW ------ Normal HBW
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Figure 6.8 PCD vs Threshold Values for Real Speédlosed Test.
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From the Figure 6.8 it is clear that closed testits gave 82.6% results for abnormal
speech and 100 % results for normal speech aeshblid value of 2.

The same tests were performed on another set ofamae bandwidth values
shown in Table 6.5 and Table 6.6 respectively forntal and abnormal speech
samples. Table 6.7 shows the probability of detactialues and threshold values for

open test. Figure 6.9 shows the graph plottedhiewvalues in Table 6.7

Identification Fo(Hertz) RAP BW(Hertz)

LMWI1NAL 224.929 0.382 0.2226
MCB1NAL 257.011 0.209 0.8701
MFMINAL 151.24 0.324 0.1645
MJUINAL 140.49 0.214 0.27807
MXZ1NAL 230.232 0.545 0.2758
NJSINAL 241.156 0.418 0.1884
OVKINAL 121.102 0.199 0.3406
OVKI1NAL 121.102 0.199 0.3406
PBDI1NAL 247.085 0.376 0.3346
RHM1NAL 120.394 0.087 0.22573
RJSINAL 124.716 0.229 0.37677
SCTINAL 225.387 0.494 0.35217
SEBINAL 237.029 0.372 0.53087
SISINAL 129.366 0.086 0.18867
SLCINAL 240.885 0.251 0.33873
SXVINAL 188.554 0.137 0.07857
TXNINAL 122.293 0.147 0.64967
VMCINAL 219.61 0.17 0.2745
DJG1NAL 121.805 0.849 0.406
JKRINAL 240.348 0.641 0.1377
MAMINAL 250.87 0.218 0.13067
WDKI1NAL 146.242 0.224 0.10667
RHGI1NAL 132.452 0.443 0.4989

Table 6.5 Harmonic Bandwidth Values for Normal SjreeOpen Test
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Identification Fo(Hertz) RAP BW(Hertz)

CXM14AN 221.94 2.203 0.52017
CXN14AN 221.94 2.203 0.52017
DGL30AN 205.131 2.29 0.22437
DRG19AN 111.804 2.179 0.5474
EDG19AN 188.345 2.513 1.16737
EEB24AN 160.206 2.807 0.9512
EGW23AN 217.944 2.984 0.61297
EXSO07AN 212.004 2.623 5.76383
GEKO02AN 130.997 2.016 1.15987
GLB22AN 96.46 2.402 0.55263
GSB11AN 159.759 2.022 0.17473
HMGO3AN 180.268 2.055 0.2441
JABO8SAN 128.523 2.452 0.34807
JAF15AN 143.896 2.645 0.29227
JCL20AN 149.002 2.58 0.22503
JLCO8AN 189.058 2.466 0.5613
JXS09AN 106.108 2.339 8.74813
KCG23AN 240.922 2.093 0.22583
KIJMO8SAN 130.756 2.017 0.37457
KMC19AN 210.304 2.802 0.43813
LBA15AN 231.476 2.583 0.09643
LCW30AN 190.973 2.872 0.30833
MABOG6AN 200.338 2.726 0.14607

Table 6.6 Harmonic Bandwidth Values for Abnormaé&gh -Open Test
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Threshold PCD(%) normal Threshold PCD(%) abnormal
-20 100 -20 43.47
-18 100 -18 47.82
-16 100 -16 47.82
-14 100 -14 52.17
-12 100 -12 52.17
-10 100 -10 52.17

-8 100 -8 52.17
-6 100 -6 52.17
-4 100 -4 52.17
-2 100 -2 52.17
0 100 0 69.56
2 0 2 100
4 0 4 100
6 0 6 100
8 0 8 100
10 0 10 100
12 0 12 100
14 0 14 100
16 0 16 100
18 0 18 100
20 0 20 100

Table 6.7 Threshold vs Probability of Correct Datatfor - Open Test.

54



PCD(%)
[e2]
o

D

-25 -20 -15 -10 -5 0 5 10 15 20 25
Threshold

Figure 6.9 Probability of Correct Detection vad$hold Values for Open Test.

From Figure 6.7, it is shown that for a threshaddlie of 0 a PCD of 69.56%

resulted for abnormal speech and 100% resulteddonal speech.

55



CHAPTER 7
CONCLUSIONS AND FUTURE WORK

The objective of this research was to develop ahatetof detecting certain
laryngeal pathologies through harmonic bandwidttasneements in speech signals.
It has been determined that laryngeal disorderspech can result in excessive
amount of pitch period jitter in speech which cause widening of harmonic
bandwidths. Because of the narrow harmonic bandhidf speech, high resolution
power spectra are required for discriminating betwspeech containing normal and
abnormal levels of jitter. This research focusedpooducing high resolution power
spectrum estimates of speech signals and the faassin of their harmonic
bandwidth measurements. The FFT periodogram wasuseful for providing
sufficient spectral resolution for discriminatingttveen signals containing 1% and
2% levels of jitter. After optimizing the filterrder and record length parameters of
the Burg Maximum Entropy spectrum using synthessg@ekch, we achieved a closed
test probability of correct detection (PCD) of 8a.@nd an open test PCD of 69.56 %
using real speech with 0.3 % false alarm rate. dhlithe real speech data was
acquired from the KayPENTAX Company. Jitter valuesthe form of Relative
Average Perturbation (RAP) quotients were listadefach speech record which were
/ah/ vowel sounds. We did not confirm these RAPuesl through our own
measurements. Any future work with this databaseilshinclude some confirmation
of the jitter values, because some of spectrallteedor real speech were not

consistent with results obtained for comparabldlmsized speech.
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