Aug 9th, 10:15 AM - 12:00 PM

The Use of chloramines to eradicate quagga mussel larvae

Trea LaCroix
University of Nevada, Reno

Kumud Acharya
Desert Research Institute, Kumud.Acharya@dri.edu

Repository Citation

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
The Use of Chloramines to Eradicate Quagga Mussel Larvae
Trea LaCroix¹ and Kumud Acharya²
¹University of Nevada, Reno (trealacroix@gmail.com)
²Desert Research Institute, Las Vegas (kumud.acharya@dri.edu)

Abstract
Quagga Mussels, Dreissena bugensis, are a growing problem in the western United States, particularly in their ability to infest under-water infrastructure such as clog water intake pipes and screens of power and treatment plants. Chlorine has been found to be the most effective chemical to get rid of veligers (planktonic larval form of quagga mussels) in the pipes. However, chlorine leaves a residue called trihalomethanes, which is a carcinogen at higher concentrations. The purpose of this project is to test the effectiveness of an alternate chemical, chloramines (chlorine and ammonia), which leaves behind little to no residual (intracellular level of chloramines in the food web. Quagga Mussels are highly polymorphic and have the ability to adapt rapidly to extreme environmental conditions. Veligers (planktonic larval form of quagga mussels) allow for easier indirect exposure. Researchers have hypothesized that chloramines (chlorine and ammonia) instead of chlorine can be used as an effective alternate disinfectant with little to no residual trihalomethanes. Results of this project will not only provide important information on the use of chloramines but also have potential to develop a new economical and safer way of treating veligers in water treatment facilities.

Introduction
Quagga Mussels were discovered in Lake Mead Nevada in 2007 and have since spread to other western waterways (CA, NV, AZ, UT, CO); the highest densities being in Lake Mead and Lake Meave. Once the mussels have established themselves in an aquatic system they obstruct underwater infrastructures such as dams and can clog water intake pipes and screens reducing pumping capabilities for power and treatment plants, costing companies, industries and communities millions. Quagga mussels are prodigious water filters that have the ability to reduce the phytoplankton causing changes in water transparency ultimately resulting in trophic level changes in the food web.

Discussion
Both experiments display differences in percentages between the control and the dosed veliger water indicating that the chloramines are having a negative impact on the survivality of the veligers (tables 1 and 2).

• In the first experiment the statistical analysis of the percentages swimming shows that there is a significant (p < 0.05) effect of the treatment, however effects varied between the dosages (figure 1). 1.0 mg/L had the highest effect after 5 minute exposure time.
• In the second experiment both 0.50 mg/L and 0.75 mg/L display no significant difference between the control and the dosed water after 5 minutes.
• NI Three dosages are significantly different from the control in 10 minute exposure dose.
• 4 hours after exposure, all three dosages are significantly different from the control. 0.75 is similar to both 0.50 and 1.0, but 0.50 and 1.0 are significantly different from each other.
• Most effective treatment dose in both experiments proved to be 1.0 mg/L. Each replicate either had 0 swimmers or only 1 swimmer which was of larger size and was clearly negatively affected by the chemical because swimming was reduced and only the movement of cilia was observed.
• After 24 hours there was a complete mortality in all dosages.

Results

A one-way analysis of variance (ANOVA) was performed to test overall effect of treatments on veligers. Tukey’s HSD post test was used to compare the effect of different dosages on veliger activities. Statistical analysis was done separately for each treatment (5 min, 10 min and 4 hrs). Values < 0.05 (95% confidence level) were considered significant. The differences were indicated in different letters (capital for 5 min, bold capital for 10 min and small for 4 hrs) in the figures 1 and 3. Percentages of veligers swimming were calculated on the basis of number of swimming out of the total number present. This percentage was then corrected with the average control percentage for each of the time periods.

Table 1: Percent of swimming veligers for experiment #1.

<table>
<thead>
<tr>
<th>Dose mg/L</th>
<th>5 minutes</th>
<th>10 minutes</th>
<th>20 minutes</th>
<th>24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>62%</td>
</tr>
<tr>
<td>0.75</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>62%</td>
</tr>
<tr>
<td>1.0</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>62%</td>
</tr>
</tbody>
</table>

Table 2: Percent of swimming veligers for experiment #2.

<table>
<thead>
<tr>
<th>Dose mg/L</th>
<th>5 minutes</th>
<th>10 minutes</th>
<th>20 minutes</th>
<th>24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>62%</td>
</tr>
<tr>
<td>0.75</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>62%</td>
</tr>
<tr>
<td>1.0</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>62%</td>
</tr>
</tbody>
</table>

• The chlorine residues for the control and dosed veliger water follow a similar trend (figures 2 and 4). Chlorine concentrations in dosed water was stable for both duration.
• The chlorine residues for the control and dosed veliger water follow a similar trend (figures 2 and 4). Chlorine concentrations in dosed water was stable for both duration.

Conclusions
With the significant differences in swimming between the controls and the dosed water it can be concluded that chloramines are toxic to veligers. It can also be concluded that 0.50 mg/L, 0.75 mg/L and 1.0 mg/L will cause complete mortality above 1.0 mg/L to achieve complete mortalit of veligers in a system.

Methods
Three dosages of chloramines (0.50 mg/L, 0.75 mg/L, and 1.0 mg/L) were tested on veligers These dosages were chosen through communication with Southern Nevada Water Authority (SNWA), the agency providing water services to the city of Las Vegas, and preliminary trial and error experiments. There were three replicates of each dosage and 3 controls (with veligers) without the chemical addition. There were also two chemical controls for each dosage (6 total) without veligers.

The first experiment focused mainly on a short term exposure time (5 and 10 minutes). This is due to the fragile nature of the animals, and unstable nature of chlorine for long periods of time in carbonate rich Lake Mead water. The 24 hour reading was taken to ensure that the system did not naturally become 100% mortal. The second experiment looked at an intermediate exposure time (4 hours) to see the difference after a longer time period compared to the shorter exposure.

Veligers were sampled from the Lake Mead Marina in the mornings of the day of the experiments. Vertical tows were conducted using a 63 µm plankton net by submerging the net approximately 10 meters below the surface of the water from the deck. Approximately 20 tows were performed depending on veliger density on the sampling day. The samples were then placed in 250 ml sample bottles and transported back to the lab in a cooler. The lights were turned off while handling the animals and for the duration of the experiment to reduce stress on the animals. Water from the tows was then filtered with a 120 µm mesh filter to eliminate macro zooplankters. The filtered water with veligers was then pooled into a large container to homogenize the sample and then was concentrated by settling for 48 hours each, filtered to 250 µL. The cones were then treated with chloramines with desired residual chlorine concentration. A Hack pocket colorimeter was used to measure C1 residual after the addition of veligers and at 5 min, 10 min, 20 min, 4 hrs (Exp. 2) and 24 hours after exposure. The Number of live and dead veligers are counted using a gridted slide 5 and 10 minutes after exposure to allow the veligers to become comfortable enough to swim on the slide. They are also counted after 4 hours and 24 hours to check for survivability over time. Each treatment is staggered to ensure that each is exposed for the same amount of time.

References

Acknowledgments
This research was funded by the NSF Research Experience for Undergraduates (REU) Site A Broad Based Research Experience for Undergraduates in Zebra Mussel Monitoring at the University of Nevada, Las Vegas (DRI 08052125). Thanks to Todd Tietjen and Julia Law of SNWA and Sachkio Sueki of Dr. Acharya’s Lab.