Validation of WAIMSS incident duration estimation model

Wei Wu
Virginia Polytechnic Institute and State University

Pushkin Kachroo
University of Nevada, Las Vegas, pushkin@unlv.edu

Kaan Ozbay
Rutgers University - New Brunswick/Piscataway, kaan@rci.rutgers.edu

Follow this and additional works at: http://digitalscholarship.unlv.edu/ece_fac_articles

Part of the Applied Mathematics Commons, Controls and Control Theory Commons, Databases and Information Systems Commons, Systems and Communications Commons, Transportation Commons, and the Urban Studies and Planning Commons

Citation Information
http://digitalscholarship.unlv.edu/ece_fac_articles/129

This Conference Proceeding is brought to you for free and open access by the Electrical & Computer Engineering at Digital Scholarship@UNLV. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Validation of WAIMSS Incident Duration Estimation Model

Wei Wu
Center for Transportation Research
Virginia Tech, Blacksburg, VA 24061

Pushkin Kachroo
Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24061

Kaan Özbay
Department of Civil & Environmental Engineering
Rutgers, the State University of New Jersey
Piscataway, NJ 08855-0909

ABSTRACT
This paper presents an effort to validate the incident duration estimation model of WAIMSS – Wide Area Incident Management Support System (WAIMSS). Duration estimation model of WAIMSS predicts the incident duration based on an estimation tree which was calibrated using incident data collected in Northern Virginia.

The validation process started with collection of new incident data which was conducted by video taping incident management processes in Northern Virginia and keeping detailed incident logs of actual incidents at Northern Virginia Traffic Control Center. The collected incident data was then partitioned into a number of subsets according to the structure of the original estimation tree. Due to the limited sample size, a full scale test of the distribution, mean and variance of incident durations was performed only for the root node of the estimation tree, while only mean tests were executed at all other nodes whenever a data subset was available. Further studies were also conducted on the model error and tree structure issues especially related to complex incidents – incidents with multiple major discriminating incident characteristics.

The statistical analyses in general, strongly supported WAIMSS estimations of incident duration distribution, mean and variance. The error analysis provided encouraging results based on the distribution of estimation errors and estimation error percentages.

A major structural deficiency of the current model was also revealed. While WAIMSS duration estimation model is effective in dealing with incidents with one important characteristic, for complex incidents with more than one discriminating characteristic, only the most significant incident characteristic is used by the current model and others are simply ignored. Thus, data analysis shows a trend of under-estimation for complex incidents. Alternatives to improve this shortcoming of the current model along with several other possible improvements are also recommended.

1. INTRODUCTION
Recent research efforts at Virginia Tech Center for Transportation Research for developing a real-time incident management system that is capable of managing traffic flow and roadway infrastructure in the event an incident resulted with an hybrid expert-GIS Wide-Area Incident Management Support System (WAIMSS) [1]. WAIMSS combines the powerful spatial data handling capabilities of a Geographic Information System (GIS) with the rule-based logic of an expert system in a fully integrated Expert-GIS framework to provide interactive content and group process support for incident management operations.

One of the major functional components of WAIMSS [2], is the incident duration estimation module. The core of this module is a tree-structured incident duration estimation model (referred to as WAIMSS model later). The derivation of the WAIMSS model was based on a good understanding of incident characteristics and the factors affecting the incident clearance times. It was found that the incident duration was determined mainly by the incident type, severity, and clearance characteristics. Those factors were then used to develop estimation/decision trees for each incident type using a variant of the tree-structured regression method. Statistical analysis of data had also shown that the duration of incidents was normally distributed for homogenous sub-groups of incidents that were categorized according to the most significant affecting factors. This property of incidents was then used to estimate the likelihood of an incident to last more than a specific period of time.

WAIMSS model was developed by analyzing historical incident data (referred to as C-data as it was used for model calibration) which was collected by the Northern Virginia (NOVA) incident management personnel. B-data contained over 5000 incident cases occurred in Northern Virginia, provided a sound basis for the development and calibration WAIMSS model. As the incident duration is a vital decision-making factor in a wide range of incident response and traffic control operations, it is of critical importance to conduct a further study on WAIMMS model in order to implement it online in a real world scenario. The research presented here is an effort to validate the existing WAIMSS model and identify some of the potential improvements.

2. WAIMMS DURATION ESTIMATION MODEL
Several other studies on incident duration estimation were conducted in the past. Jones et al. [3] developed a multivariate statistical model for incident frequency and duration based on State Police Dispatch records over a two-year period. Golob et al. [4][5] developed a log-normal incident duration model based on theoretical considerations of the incident process. Effort by Wang et al. [6] at Northwestern University attempted to develop an initial capability to provide incident duration estimation which improves as the incident process proceeds. Another effort at Northern University by Sethi et al. [7] developed an incident duration estimation diagram based on detailed study of incident data from Northwest Central Dispatch.
WAIMSS model was developed based on the concept of tree
structured regression, where the tree is constructed by
partitioning the data set into a sequence of gradually more
homogeneous subsets, called node. Each node produces a
response, a variable or a prediction based on the node data
subset. In WAIMSS’ model, this prediction is the mean of
the node data subset, i.e.:

\[\hat{y}_k = \frac{y_i}{N_k} \]

where \(N_k \) is the number of incidents in node \(k \), and \(y_i \) is
the duration of \(i \)th incident in node \(k \) and \(\hat{y} \) is the predicted
incident duration. Approximating incident duration in node
\(k \) by \(\hat{y} \) minimizes the squared errors in node \(k \) as defined by:

\[\text{Cost} = \sum_{i=1}^{N_k} (y_i - \hat{y}_k)^2 \]

At the root of the estimation tree, level 0, is the category of
all incidents without any classification. From this root
node, several sub-nodes branch out, such as Road Hazard,
Property Damage, Personal Injury, Disabled Truck, Vehicle
Fire, Hazmat, Weather Related, and Car Breakdown. These
first level sub-nodes are further branched to next level sub-

Property Damage incident type is divided into Truck
Involved and Cars Only types: Cars Only type is further
divided into 1-3 Cars Involved and 4 and More Cars
involved types. As this process goes on, more information
about the incident may be obtained, therefore the prediction
precision can be refined over the incident process.

3. STUDY APPROACH
As the goal of the study is to test the validity of the existing
model and identify likely improvements, this research is
conducted in three basic steps:
• Data collection
• Statistical testing of assertions made by WAIMSS’
model
• Identification potential improvements based on
both analytical and statistical studies.
These steps are discussed in more detail in the following
sections.

4. DATA COLLECTION
As a result of a meeting with Virginia Department of
Transportation (VDOT) and Federal Highway
Administration (FHWA) officials, it was decided that new
real world data should be used for validation purposes.
Since VDOT’s NOVA Traffic Management System Control
Center has a CCTV traffic monitoring system which covers
portions of I-395, I-66 and other road segments in
NOVA, the Center was chosen as the best location for data
collection.

The first phase of data collection which produced a data set
go of 46 traffic incidents was conducted from March 3, 1997 to
March 22, 1997. For each traffic incident, data gathered
include:
• Videotape recording – By remote maneuvering, field
cameras were zoomed to the incident scene whenever an
incident was reported or identified. The camera then
was used to keep track of all the activities at the
incident scene, and the traffic queuing process
whenever possible. All these video clips were
captured on a VCR.
• Incident log – Traffic controllers at the NOVA Traffic
Management System Control Center also kept a written
description of the incidents, which outline the details
of incidents and corresponding emergency responses
and traffic control operations.

![Classification Tree of V-D]a (Number of cases)

The dual information sources are complementary to each
other and provided a complete description of each incident.
The data synthesis was conducted by compiling information
contained in video tape recordings and in the written logs,
which provided us with us the validation data set (referred
to as V-data or simply sample). Before statistical tests were
performed, V-data were partitioned into smaller subsets
based on the structure of the original WAIMSS estimation
tree. Each of these subsets is called a node sample. Figure 1
displays the resultant data classification tree.

The entire validation data sample has 46 incident cases,
which are classified into fifteen node samples at four different
layers. Note that some cases are dropped out during the
classification process because:
• they do not fit in the classification adopted by
WAIMSS, or
• there is not enough information for further
classification.
In addition, it is seen that the sample data set does not cover
the entire estimation tree. This obviously presents a need
for more data to be able to study the missing groups.
5. STATISTICAL TESTING

Basically, three types of statistical assertions are made by the original WAIMSS model:

- **Distribution of incident duration** – WAIMSS model assumes that, except for the overall data set, the incident durations of homogeneous subsets of incidents conform to normal distribution.
- **Means of incident duration** – WAIMSS model uses the means of individual duration groups as the estimated incident duration. This is actually the model prediction, which will be tested.
- **Variance of incident duration** – Variance of incident duration is used in computing the probability of incident duration exceeding a certain threshold.

Accordingly, our statistical testing should be performed to test the validity of these statistical assertions. Due to the limited size of node samples, however, testing on distribution and variance is performed only on the overall data set, i.e., the root node, while only mean testing is performed on all node samples. In general, tests on mean follow the strategy shown in Figure 2.

![Figure 2. Strategy for Test of Mean. Source [8].](image)

5.1. Entire Sample

WAIMSS model assertions were based on the statistical results of the calibration data set. Therefore, the test of WAIMSS model is basically a test of the statistical consistency of the calibration data set and the validation data set. Table 1 shows a brief listing of statistics of the validation and calibration samples.

V-data set is also shown to be non-normal and this result supports the first assertion of WAIMSS model, namely the non-normality of the overall incident data. The mean of both data sets are also shown to be very close and this result supports the use of mean as the prediction value by the WAIMSS model. However, there is a large difference between the standard deviations and this is most likely due to the small size of V-data set.

5.1.1. Test of Distribution

To test the normal distribution assumption, Goodness-of-Fit test is performed. The entire V-data (46 cases) were used, and Table 2 listed the data grouped into time intervals.

<table>
<thead>
<tr>
<th>Intervals (min)</th>
<th>Observed Frequency</th>
<th>Expected Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>6</td>
<td>10.18483026</td>
</tr>
<tr>
<td>10-20</td>
<td>8</td>
<td>3.447964734</td>
</tr>
<tr>
<td>20-30</td>
<td>8</td>
<td>3.90249721</td>
</tr>
<tr>
<td>30-50</td>
<td>10</td>
<td>8.438993811</td>
</tr>
<tr>
<td>50-60</td>
<td>6</td>
<td>4.096246202</td>
</tr>
<tr>
<td>60-</td>
<td>8</td>
<td>15.92945742</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

The test statistic is

\[
\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} = 17.15 > \chi^2_{0.005,5} = 16.75
\]

So the normal distribution hypothesis is rejected even at 0.5% significance level. A histogram of the V-data, Figure 3, also shows a clear pattern different from a normal distribution. However, the histogram shows a very similar pattern of C-data, as is shown in Figure 4. The following points are observed from the two histograms:

- While most incidents last less than one hour, the spread of the incident duration is much wider.

![Figure 3. Incident Duration Distribution of the V-Sample](image)

- It shows two significant peaks in incident duration distribution. The global maximum appears around 30 minutes, which is corresponding to the largest cluster of minor incidents; and a secondary local maximum
appears around 60 minutes, which corresponds to the cluster of moderate incidents.

![Frequency vs Time Intervals](image)

Figure 4. Incident Duration Distribution of the C-Sample

5.1.2. Test of Mean
As verified before, the incident duration of the entire data set does not follow the normal distribution. However, according to Central Limit Theorem, we can still assume normal distribution to test the mean because of our large sample size. The test statistic used is

\[z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{N}} \]

where \(\bar{X} \) and \(N \) are the mean and size of the validation sample, and \(\mu_0 \) equals 45 and \(\sigma \) equals 33.85 as asserted by the WAIMSS model. The test resulted in a p-value of 67.78%, a strong indication of the correctness of the original assumption.

5.1.3. Test of Variance

\(F \) test is used in the testing because the incident duration is not normally distributed. The test statistic is

\[F_0 = \frac{S_1^2}{S_2^2} = 1.63 < F_{0.045,649} = 1.75 \]

So, we can reject the null hypothesis that the variances of the calibration and the validation samples are the same at the significant level of 1%. This result supports the fact that the calibration and the validation samples are coming from the same population.

5.2. Summary of Statistical Tests
Statistical tests using the V-data set in general support WAIMSS incident duration estimation model, and whenever data allows, WAIMSS assertions on incident duration distributions, means and variances are verified to be statistically acceptable at large margins in most of the scenarios. For example, results of mean test of Property Damage incident duration that are partitioned into five different nodes at three different levels, provided useful insights. Except for one node - Property Damage with 1-3 cars involved and 2 police cars responded, all other node data show very strong consistency with the WAIMSS model, with p-values varying from 92.8% to 25.6%. In general, the average p-value is 42.8%. A summary of the mean tests is shown in Table 3.

<table>
<thead>
<tr>
<th>Node Description</th>
<th>Model Prediction (min)</th>
<th>Sample Mean (min)</th>
<th>P-Value (%)</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Sample</td>
<td>43</td>
<td>45.03</td>
<td>67.8</td>
<td>46</td>
</tr>
<tr>
<td>Property damage</td>
<td>42</td>
<td>36.2</td>
<td>60.4</td>
<td>7</td>
</tr>
<tr>
<td>Truck involved</td>
<td>42</td>
<td>44.00</td>
<td>92.8</td>
<td>1</td>
</tr>
<tr>
<td>No track</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3 cars</td>
<td>38</td>
<td>13.00</td>
<td>25.6</td>
<td>1</td>
</tr>
<tr>
<td>1 police car</td>
<td>38</td>
<td>13.00</td>
<td>25.6</td>
<td>1</td>
</tr>
<tr>
<td>2-3 cars</td>
<td>46</td>
<td>25.00</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>2 police cars</td>
<td>46</td>
<td>25.00</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>1-3 cars</td>
<td>65</td>
<td>74.00</td>
<td>33.8</td>
<td>1</td>
</tr>
<tr>
<td>3+ police cars</td>
<td>65</td>
<td>74.00</td>
<td>33.8</td>
<td>1</td>
</tr>
<tr>
<td>Road hazard</td>
<td>27</td>
<td>6.00</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>Breakdown</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars only</td>
<td>27</td>
<td>26.82</td>
<td>97.5</td>
<td>11</td>
</tr>
<tr>
<td>Vehicle fire</td>
<td>43</td>
<td>57</td>
<td>18.4</td>
<td>4</td>
</tr>
<tr>
<td>Personal injury</td>
<td>51</td>
<td>49.4</td>
<td>82.6</td>
<td>14</td>
</tr>
<tr>
<td>1-2 injuries</td>
<td>49</td>
<td>49.36</td>
<td>96.1</td>
<td>14</td>
</tr>
<tr>
<td>1 police car</td>
<td>42</td>
<td>67</td>
<td>12.4</td>
<td>2</td>
</tr>
<tr>
<td>2 police car</td>
<td>52</td>
<td>46.20</td>
<td>64.3</td>
<td>5</td>
</tr>
</tbody>
</table>

6. OTHER ANALYSIS

6.1. Error Analysis
Even though the previous statistical test results have shown a good agreement with WAIMSS model estimations, especially from the perspective of a traffic controller the error of an individual prediction is of great importance. Since anormal distribution assumption was used by WAIMSS' model for most of the homogenous incident categories, the risk of having a particular error can be calculated using normal distribution and its associated parameters. However, due to the limited V-data size, as an alternative approach, we directly use the differences between the predicted duration and the observed duration in our error analysis.

Figure 5. Distribution of Estimation Errors
For incident cases which fit different nodes at different levels, the prediction from the most terminal node is used. We define the Estimation Error as:

\[
\text{Estimation Error} = \frac{(\text{Observed Duration}) - (\text{Predicted Duration})}{\text{Predicted Duration}}
\]

and Estimation Error Percentage as:

\[
\text{Estimation Error Percentage} = \frac{100\% \times (\text{Estimation Error})}{(\text{Predicted Duration})}
\]

The average absolute Estimation Error is 14.2 minutes, and the overall sum of Estimation Error is -134 minutes, which is an indication of under-estimation. The distribution of the Estimation Error which is shown in Figure 5 categorizes the Estimation Errors into three main time intervals. It is shown that three-eighths of the prediction errors are less than 10 minutes, and three-fourths are less than 20 minutes. And all the errors are less than half an hour. However, the Estimation Error Percentage does not look as good as the Estimation Error. Figure 6 shows the Estimation Error Percentage for each incident used in this analysis.

A number of such situations were encountered in the validation. A natural choice is to choose the incident characteristic that has the most importance, however, by doing that, the effect of the minor incident characteristics are ignored. The choice is harder when an incident can belong to two major categories having comparable importance from the duration point of view. Suppose an incident involving both personal injury and property damage, as the former has a higher importance the incident duration should be dominated by the personal injury characteristic. But, property damage as a secondary incident characteristic should make the incident duration longer than a pure personal injury incident. This fact is also confirmed by V-data.

In V-data set we have 7 cases of only property damage, 12 cases of both property damage and personal injury, and 14 cases of personal injury with or without other features. The duration mean of these three groups, as in Table 4, shows exactly the pattern discussed above.

<table>
<thead>
<tr>
<th>Incident Type</th>
<th>Only Property Damage</th>
<th>Property Damage & Personal Injury</th>
<th>Personal Injury (with or without other features)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (Mins)</td>
<td>26.85</td>
<td>51.3</td>
<td>49.4</td>
</tr>
<tr>
<td>No. of Cases</td>
<td>7</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

For the group of incidents with both personal injury and property damage, we tried two different classification. Figure 8 shows the estimation errors resulted from two different classifications. It is apparent that classifying incident using its most significant incident characteristic results in a better prediction.

7. CONCLUSIONS

This study tested the statistical assertions on which WAIMSS incident duration estimation model is based. Statistical tests using the overall V-data showed that:

- The incident duration distribution of V-data is very similar to that of C-data. Both show a double peak pattern. The global maximum appears around 30 minutes, which corresponds to the largest cluster of minor incidents, and a secondary local maximum appears around 60 minutes, which corresponds to the cluster of moderate incidents.
- While most incidents last less than one hour, the spread of the incident duration is much wider than 1 hour.
Figure 8. Estimation Errors Resulted from Different Incident Classifications

Tests using partitioned V-data subsets showed that:

- Most duration estimations of WAIMSS are accepted with large p-values (average 50%), except for two nodes. One of the two node data subsets shows apparent bias.

- In general, WAIMSS' model estimations are consistent with the observed, the average prediction error of V-data is 14.2%.

- In general, a higher consistency is observed when the subset data size is bigger.

Error analysis and additional studies show that:

- About 38% of all the estimation errors are less than 10 minutes, and about 75% of all the estimation errors are less than 20 minutes, and almost all the prediction errors are less than half an hour.

- About 50% of all estimations have an estimation error percentage less than 50%.

- Estimation errors distribute uniformly within an error percentage ranging from zero to 80 percent. Estimation errors with error percentage higher than 80% are rare.

- For complex incidents, it is better to use the most significant incident characteristics to identify their most appropriate tree node.

7.2. Future Improvements

Tree Structure: In general, the current tree structured estimation model does not make full use of the available incident information, only the information used in locating the proper node contribute to the estimation. In case of a complex incident, only the most significant major incident characteristic is used while other secondary major incident characteristics are ignored. This is very likely to be the cause of under-estimation observed in complex incident cases that were in the V-data set. As a complex incident is a very frequent phenomenon, structural changes in the estimation tree are necessary.

Node Prediction Mechanism: Under the tree structure, the duration estimation at each node is simply the mean of the calibration data subset. Therefore, all the incidents belonging to a node have the same duration prediction regardless of their other features. This might be the reason why we see very close means of V-data and C-data, but still observe considerable errors for some individual cases. To avoid this limitation, more incident features need to be incorporated into the prediction mechanism at each node. A natural choice can be to replace the current mean estimation with a multivariate regression model at each node.

Effect of Congestion: While congestion is considered an adverse factor during incident clearance, congestion is not currently used as a factor affecting incident duration. Congestion lengthens the incident duration mainly by affecting the travel time of response vehicles, and in some cases, affecting operations at incident scene. Visual recordings of incidents show that congestion effects are magnified in certain roadway environments. It is seen that response times to incidents on bridges are substantially extended, and efficiency of incident removal operations on bridges and ramps are reduced by limited space. A special study to determine the effect of congestion on the incident clearance is necessary.

REFERENCES

