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LAXMI GEWALI*, NAVIN RONGATANA*, 

HENRY SELVARAJ*, JANB. PEDERSEN* 

FREE REGIONS OF SENSOR NODES 

We introduce the notion of free region of a node in a sensor network. Intuitively, a free region of a node is the connected set of 
points R in its neighborhood such that the connectivity of the network remains the same when the node is moved to any point in R. 
We characterize several properties of free regions and develop an efficient algorithm for computing them. We capture free region in 
terms of related notions called in-free region and out-free region. We present an O(n2

) algorithm for constructing the free region of 
a node, where n is the number of nodes in the network. 

Keywords: sensor network, node relocation, free region 

1. Introduction 

Consider n sensor nodes V], v2, •. . , Vn deployed on 
a terrain surface, which is taken as a two dimensional 
plane. The location of node vi is represented by point 
qi with coordinates xi and yi, respectively. The trans­
mission range r of all sensor nodes is assumed to be 
identical and the implied transmission region is taken 
as the transmission disk TD(i) of radius r. The circle 
of the transmission (i.e. , perimeter) is denoted as TC(i). 
We can imagine a network obtained by connecting all 
pairs of nodes within each others' transmission range. 
Such a network is often called Unit Disk Graph 
(UDG) [1 , 12] and we denote it by G(V, E), where V 
and E are the set of nodes and the set of edges, respec­
tively. Figure 1 shows an example of the unit disk 
graph induced by 14 nodes, where the disk with dashed 
boundary indicates the transmission region corre­
sponding to node v1• 

A pair of nodes vi and v1 are called neighbors or 
adjacent if they are within each others' transmission 
range (e.g. , v1 and v3 in Fig. 1). Similarly, a pair of 
non-adjacent nodes vi and v1 are called adjoining if 
their transmission disks TD(i) and TD(j) intersect 
(e.g., v2 and Vs in Fig. 1 ). 

Now, consider what happens to the connectivity of 
the network when a node, say V], (in Fig. 2) is moved 
slightly. It is likely that the connectivity will remain 
the same, and thus not induce any chances in the Unit 

Disk Graph. However, if we continue to move the node 
in some direction two kinds of events can occur. 
A node that was within the transmission region of v1 at 
the beginning may fall outside the range. For example, 
if node v1 is moved upwards in they-direction, node v4 

will fall outside the transmission region of v1. We call 
such event an excluding event. If the node continues to 
move further upwards in they-direction, node v5, which 
was outside the transmission range of v1 at the start, 
will appear within the range. We call this type of event 
an including event. This observation leads us to model 
free region for nodes as follows in Defmition 1. 

I 
I 

, , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 

\ 

--------
/ 

', 
' ' ...... 

Fig. I . An example of a Unit Disk Graph, 
and a Transmission Disk TD( I) for v1• 
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Fig. 2. The free region of node v1• 

Definition 1. The free region of a node v;, denoted by 
FR(i), is the open connected set of points in its neigh­
borhood that preserves the connectivity of the net­
work, that is, the area in which the node can move 
freely without altering the connectivity of the Unit 
Disk Graph. 

A free-region FR(i) of a node v; is called maximal 
if it is not a proper subset of any other free-region 
of v;. Figure 2 illustrates a free-region for node v1• The 
region bounded by thick edges is the free region. It 
can be verified that this free-region in Fig. 2 is also 
maximal. 

2. Preliminaries 

Consider the outer circle OC(i) of radius 2r centered 
at node v; as shown in Fig. 3. The outer circle together 
with the transmission circle form the annulus ANL(i) 
induced by node v;. Sensor nodes lying within the 
transmission disk TD(i) are referred to as the inner 
nodes of v;. Similarly, nodes lying between the trans­
mission circle and the outer circle are referred to as 
outer nodes of v;. In Fig. 3, there are three inner 
nodes (v2, v3, v4) and five outer nodes. 

The notion of a free-region can be captured in 
terms of the transmission disks of (i) node v;, (ii) its 
inner nodes, and (iii) its outer nodes. The region of 
intersection of transmission disks of inner nodes gives 
the region in which node V; can be relocated without 
disconnecting with its adjacent nodes, even though 
some new nodes may become adjacent. This region 
which we call in-free-region IFR(i) (Fig. 4) can be 
expressed in terms of the intersection of transmission 
disks as given in equation (1). 
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IFR(i) = n TD(j) 
j 

where j = i or VJ is a neighbor of v;. 
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Fig. 3. Showing annulus, inner, and outer nodes. 
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Fig. 4 . Formation of in-free region (IFR) for node v1• 
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The portion of the transmission disk TD(i) that 
overlaps with the transmission disks of its out-bound 
nodes is referred to as fringe region. The region ob­
tained by removing fringe regions from TD(i) is called 
out-free region (see Fig. 5). The out-free region can 
be formally expressed as 

OFR(i) = TD(i)- U TD(j) (2) 
j 

for all outer nodes v1 of nodes v;. 

It is noted that as long as a node stays within its 
out-free-region, the set of nodes that were outside its 
transmission range at the initial position will continue 
to remain outside. The free region FR(i) of node v; is 
given by the intersection of its in-free region and out­
free region. In fact, the (maximal) free region shown 

Free regions of sensor nodes 

in Fig. 2 is the intersection of free regions shown in 
Fig. 4 and Fig. 5. Free region FR(i) of node i can be 
expressed as shown in equation (3). 

' ' 

FR(i) = nc OFR(i),IFR(i)). 
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Fig. 5. Formation of the out-free region (OFR) of node v1• 

(3) 

Remark 1. Both OFR(i) and IFR(i) are bounded 
regions whose boundary consists of arc-chains. 
Such regions are essentially special polygons whose 
edges are circular arcs and we refer to them as arc­
gons. 

3. Incremental algorithm 

An algorithm for computing OFR(i) for a node v1 can be 
developed by using an incremental approach in which 
outer nodes are processed one at a time. The outer nodes 
are first angularly sorted about v;. Let the angularly 
sorted list of outer nodes be v; , v,. , v. , ... , v; . These 

l 2 l 3 k 

nodes are processed one at a time in the order they 
appear in the sorted list. Initially, the transmission 
disk TD(i) is taken as OFR(i), whose boundary con­
sists of just one arc, namely the transmission circle 
TC(i). The region of intersection between OFR(i) and 
the disk TD(i 1), denoted as IR(i 1) is subtracted from 
OFR(i) to account for the cover of node v;. The second 
node is processed similarly to update OFR(i). The 
process of updating OFR(i) incrementally, one node at 
a time, is continued for all outer nodes. At the j-th 
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stage, the intersection region IR(i1) between OFR(i) 
and TD(i1) is subtracted from the running OFR(i) to 
account for the cover from node v; . . 

J 

It is noted that at the j-th stage the arc-gon repre­
senting the running OFR(i) can have at most 2} arcs. 
When the j-th out-bound node is processed, transmis­
sion disk TD(i1) may not intersect with the running 
OFR(i), for a certain class of node distributions. On 
the other hand, for some other class of node distribu­
tions, the transmission disk TD(i1) could possibly in­
tersect with O(k) arcs of the arc-gon representing the 
boundary of the running OFR(i), where k is the num­
ber of out-bound nodes of V;. The arcs of OFR(i) that 
lie completely inside TC(i1) are called interior arcs. To 
update OFR(i), interior arcs and intersecting arcs are 
removed from it. 

The arcs of OFR(i) that lie completely inside 
TC(i1) are called interior arcs. To update OFR(i), inte­
rior arcs and intersecting arcs are removed from it. Up 
to three new arcs are formed by the intersection: one 
each corresponding to the intersecting arcs and one is 
the arc of TC(ij) between the intersecting arcs. The 
newly formed arcs are inserted into OFR(i) to update 
it. A formal sketch of the algorithm is listed as the 
INCR-OFR Algorithm in Fig. 6. 

Input: a. Sensor nodes v~, v2 , ••. , v. 

b. Transmission radius r 

c. Integer i, I :'S i :'S n 

Output: Array Arc[} and its size m representing OFR(i) 

Step I: a. Determine out bound nodes of v; 

b. Angularly sort out bound nodes ofv; 

c. Let the sorted list be V;
1 

, V;
2 

, V;
3 

, ••• , V;k 

Step 2: II Let Arc[2k} be the array to record the arcs of OFR(i) 

a. Arc[O}= TC(O); 

b. m. = I ; II Number of arcs in the arc-gon 

c. for (intj = I ;j <= k;j++) 

d. if (TC(vJ) intersects with arc-gon Arc[] of size m) 

Update(Arc[], m , TC(vi;)) 

Step 3: Output Arc[] and its size m 

Update(int Arc[}, int &m,TC(vi;)) { 

a. Find the intersecting arcs a 1 and a2 

b. Let g be the number of interior arcs. 

c. Remove interior and intersecting arcs from Arc[] 

d. Determine the newly formed arcs b1, b2, and b3 

e. Insert b1 ,b, , and b3 into Arc[} 

f. m=m - gtl ; 

Fig. 6. Incremental OFR algorithm (INC-OFR). 
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Lemma 1. INCR-OFR Algorithm can be executed in 
O(k2

) time, where k is the number of inner and outer 
nodes of the candidate node. 

Proof The intersecting arcs of an arc-gon of size k 
and a circle can be found in O(k) time by simply 
checking the intersection of the circle with each arc of 
the arc-gon. The interior arcs are precisely the arcs in 
the arc-gon lying between the intersecting arcs. Hence 
intersecting arcs and their count can be determined in 
O(k) time. The removal of interior arcs and the inser­
tion of new arcs can be done in O(n) time. Hence the 
Update() function can be done in O(k) time. Since the 
UpdateO function is called at most O(k) time the total 
time of the INCR-OFR Algorithm is O(JC). o 

An algorithm for computing the in-free region 
OFR(i) can be developed by following the incre­
mental approach similar to the one used for computing 
the out-free region. We omit the detail and state it in 
the following lemma. 

Lemma 2. The in-free region IFR( i) of node i can be 
computed in O(JC) time. 

Intersection of In-Free Region (IFR) 
and Out-Free Region (OFR) 
Both OFR and IFR are special polygons whose edges 
are circular arcs and we refer to them as arc-gons. 
Computing the intersection of two arc-gons can be 
done by using the standard tools of computational 
geometry [3, 6]. When we examine the overlay of two 
arc-gons, the arcs of one arc-gon may intersect with 
arcs of the other arc-gon. We call one of the arc-gons 
the red arc-gon and the other the blue arc-gon. Let m 

and n be the number of arcs in the red and blue arc­
gons, respectively. 

Fig. 7. Incremental OFR algorithm (INC-OFR). 
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Let k be the number of intersection points between 
the arcs of the red and the blue arc-gons. In terms of 
the overlay of the two arc-gons, the set of vertices of 
arc-gons and the vertices formed by the intersection of 
arcs can be distinguished into three sets: A vertex of 
one arc-gon that lies in the interior of the other arc­
goo is called an internal vertex. Similarly, a vertex of 
one arc-gon that lies in the exterior of the other arc­
goo is called an external vertex. Lastly, vertices 
formed by the intersection of arcs are referred to as 
cross vertices. Figure 7 shows the overlay oftwo arc­
gons where the internal vertices are drawn filled the 

' external vertices are drawn unfilled and the cross ver-
tices are drawn as little squares. 

Definition 2. In the overlay of two arc-gons, the 
maximal arc-chain of one arc-gon that lies completely 
inside the other arc-gon is referred to as an interior 
arc-chain. 

It may be noted that the end vertices of a maximal 
interior arc-chain are both cross vertices. 

Observation 2. The boundary of the intersection of 
two arc-gons consists of a sequence of interior arc­
chains. 

Based on Observation 2, the intersection of the 
two arc-gons (the red and the blue arc-gons) can be 
determined by traversing the boundary of the red arc­
goo and the blue arc-gon in an alternating manner by 
following a carefully formulated strategy. 

The strategy is to traverse only along the interior 
arc-chain in each arc-gon; the traversal starts from any 
cross-vertex. From the initially picked cross-vertex, 
the traversal proceeds along the boundary that corre­
sponds to the internal arc-chain. When the next arc­
vertex at the end of the currently traversed arc-chain is 
encountered, the traversal switches to the boundary of 
the other arc-gon (say, the red arc-gon). This alter­
nating traversal continues until the starting cross ver­
tex is reached. 

At the start of the traversal it is necessary to check 
whether or not the next vertex is inside the other arc­
goo to determine the interior arc-chain. Point inclu­
sion checking in simple polygons is a well known 
technique in computational geometry [3, 6]. We can 
use a similar technique to check point inclusion in an 
arc-gon which can be accomplished in O(m + n) time. 
After the first interior arc-chain is determined, it is not 
necessary to check for point inclusion to determine the 
other interior arc-chain. This is due to the fact that the 
maximal interior arc-chain occurs in an alternating 
manner in red and blue arc-gons. If one of the interior 
arc-gon is in the red arc-gon then the next interior arc­
goo occurs on the boundary of the blue arc-gon. A for-
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Input: Red and blue arc-gons arc-gon-r and arc-gon-b of size m and n, 

respectively. The arcs in arc-gon-r and arc-gon-b are available in arrays. 

Output: Arc-gon-i, representing the intersection of arc-gon-r and arc-gon-b . 

Step 1: /*Determine cross vertices */ 

a. For each arc arc-i in arc-gon-r do 

b. For each arc arc-j in arc-gon-b do 

c. If arc-i and arc·j intersect 

d. Set cross-vertex W to the intersection of arc-i and arc-j 

e. Split arc-i, arc-j at W 

f. Record the references of arc-i and arc-j in record of W 

g. Insert W in arc-i and arc-j 

Step 2: /* Find the starting inner arc-chain */ 

a. Traverse the boundary of arc-gon-r until a cross vertex cv; is found 

b. Select the interior arc-chain arc-chain-i incident at cv;; 

c. arc-gon-i = arc-chain-i; 

Step 3: /*construct intersection arc-gon arc-gon-i *I 

a. While (the other end point of arc-chain-i is not cv; ) do 

b. Set arc-chain-i to the next interior arc-chain at the end of the 

current arc-chain; 

c. arc-chain-i = arc-gon-i u arc-chain-i; 

Step 4: Output arc-gon-i as the required intersection. 

Fig. 8. The Red/Blue Intersection Algorithm (RBIA). 

mal sketch of the algorithm is listed in Fig. 8 as the 
Red Blue Intersection Algorithm (RBIA). 

Lemma 3. Red-Blue Intersection algorithm executes 
in O(n2

) time. 

Proof Assume without loss of generality that m = n. 
Step 1 has two nested loops each of which executes 
O(n) time and hence the time for Step 1 is O(n\ Step 
2 takes O(n) time. In Step 3, the traversal is done only 
on the boundary of the interior arc-chain and hence 
this step takes O(n) time. Thus the total time com­
plexity is O(n2

). 

From Lemma 1, Lemma 2, and Lemma 3, we find 
that in-free region, out-free region, and their intersec­
tion can be computed in O(n2

) time. Hence we have 
the following theorem. o 

Theorem 1. Free region of a sensor node can be 
computed in O(n2

) time. 

4. Conclusion 

We presented a characterization of the free-region of 
a sensor node. The notion of free-region is use for 
relocating sensor nodes without compromising con-

nectivity of the network. We presented a centralized 
algorithm for constructing the free-region of a sensor 
node in a network which executes in O(JC) time where 
k is the number of inner and outer nodes of the candi­
date node. We have established [7] that the problem of 
computing free region of a sensor node has lower 
bound O(n log n). It would be interesting to design 
efficient approximation algorithms for constructing 
the free-region. We have made some progress in this 
direction and the result will be reported in the future. 
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