

The Economics of Lotto: Design, Income, and Problem Gambling in the UK

Rob Pryce*, Ian Walker⁺ and Rhys Wheeler⁺

* SCHARR, Sheffield University UK + Lancaster University Management School

Email ian.walker@lancaster.ac.uk for slides

Triple act

- 1. How much do we love Lotto? (Rhys)
 - We are agnostic on why people play
 - Call it "fun". Lots of it £1b pa (£5b sales)
- 2. But lotto is highly "taxed" (Rob)
 - And its highly regressive
 - More than most "sin" taxes
 - Tax spoils a quarter of the fun (£¹/₃b pa)
- 3. Problem gambling? (Me)
 - We attempt to place a value on this
 - £5.5b pa "upper bound" for DSM PG
 - £1.2b pa "upper bound" for PGSI PG

Outline of Act 1

- Provide a simple analytical model of lotto

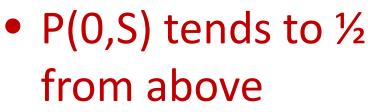
 Estimate this on 200+ draws of UK lotto
- Focus on estimating causal effect of "price" — And overall *shape* of prize distribution
- Find backward looking behaviour
 - Strong "habituation" => LR effect > SR effect
 - Addiction?
- Infer "fun" from estimated "price elasticity"
 Calculate lost fun due to lotte takeout
 - Calculate lost fun due to lotto takeout

Lotto background

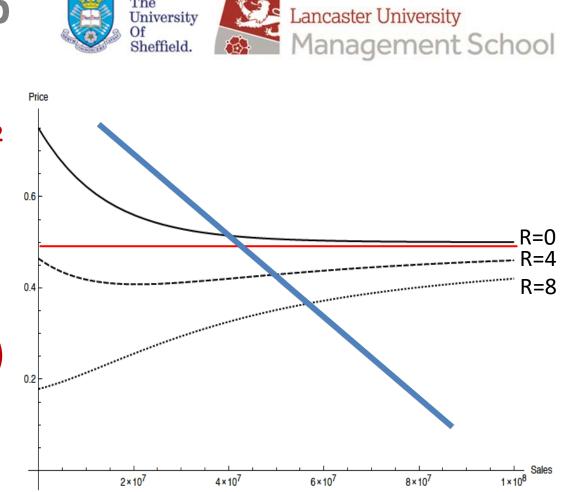
- UK context
 - -GGY is about \$20b \approx \$400 pppa
 - Lotteries most prevalent form of gambling
 - NL accounts for about \$5b of GGY in UK
- Lotto is a distinctive form of lottery — Pari-mutuel
- Pick your own numbers

 Allows for "conscious selection"
- "Rollovers" occur
 - More so because of conscious selection
 - -Generates spikes in sales

General structure of lotto games


- Each player chooses (or Lucky Dips) n from N
- Prize pools shared by all players who match, n balls (jackpot), n-1, etc.
 - If no *n*-ball winner at t-1 then J_{t-1} added to J_t
 - -Multiple rollovers possible
- Game design n, N, takeout rate, prize pools
 Design (given S) determines Prob(R>0)
- Game design implies P, R and S related
 P(R,S) : focus here on P, rather than R directly

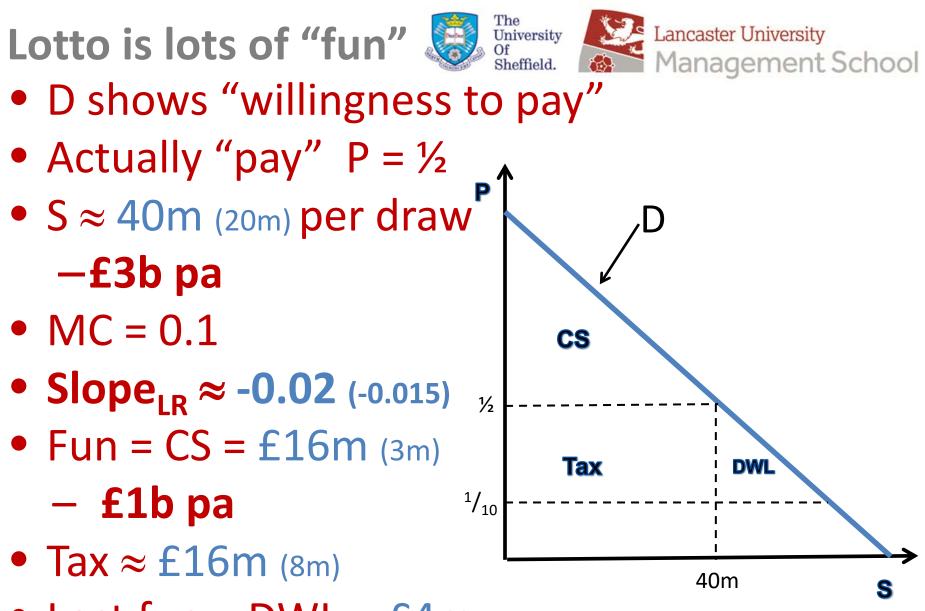
P, S and R


- Peculiar economies of scale (Clotfelter and Cook AER 1993)
 - -Higher S, lowers rollover prob
 - Raises current value of ticket (so reduces P)
 - asymptotes to take-out rate ($\approx \frac{1}{2}$) from below
 - -So P asymptotes to ½ from above
- Rollover draws (Walker Econ Policy 1999)
 - $-J_t$ includes J_{t-1} like adding a "raffle" prize in t
 - Raffle prizes are fixed (don't depend on S_t)
 - -But if $R_t > 0$, then J_{t-1} worth less the higher is S_t
 - Because higher S_t lowers chance of winning J_{t-1}

P(R,S) relationship for 6/49

- But rollovers shifts P down
 - -P(8,S) and P(4,S)
 - -tend to ½ from below
- Rollover changes P, at any given S

 - Price elasticity


The

- Sticker price £1, 35k outlets, twice weekly $-n = 6, N = 49, \tau \approx \frac{1}{2}$
 - Tax (12%) + "good causes" (28%) + costs (10%)
 Winnings tax free! Paid as lump sum!
 - Prob matching 6 is $n!/N!(N-n)! \approx 1/14m$
- UK game also has 5+B, 5, 4 ball prize pools
 -3-ball fixed prize, not a pool £10 (Prob ≈ 2%)
- Jackpot
 - $-\approx \frac{1}{2}(S/2 + rollover 10.w_3)$
- Wed rolls over into next Sat and vice versa

- Existing research estimates simple models
 - $-S_t = a + b.P_t + otherstuff_t$
 - Estimate for Weds and Sats separately
 - Expect **b** < 0
 - Otherstuff_t includes S_{t-1}
- Take-out from draw t depends on
 - Take-out rate, τ fixed
 - -Rollover size, R_t depends on S_{t-1}
- Use other determinants of R_t
 - As source of **exogenous** variation in P_t
 - Unexpected variation in number of 3 ball winners
 - Small and medium numbers in winning n

• Lost fun = DWL $\approx \pm 4m$ (2½m) -Tax spoils $\pm \frac{1}{3}b$ pa of the fun

Act 1 Conclusion

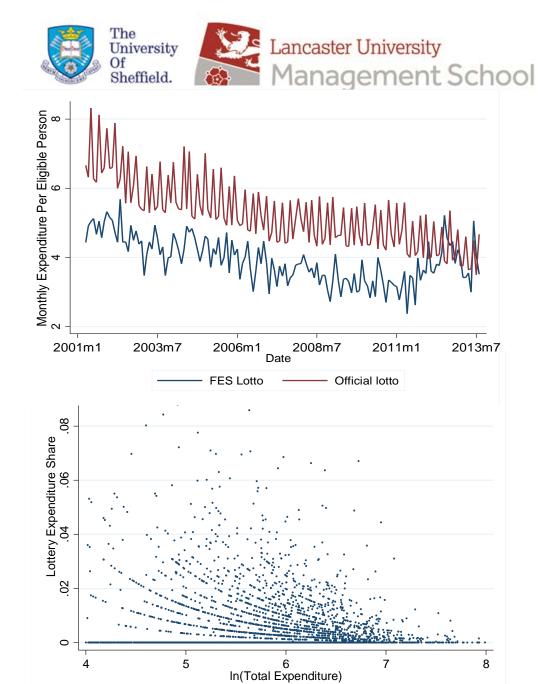
Management School

- **Bigger estimated P effects Weds than Sat** Long run $\varepsilon_{\text{Sat}} \approx -\frac{2}{3} (0.05)$, $\varepsilon_{\text{Wed}} \approx -\frac{1}{2} (0.13)$
- Set τ to ensure that $\varepsilon = -1$ to max revenue
 - So "money left on the table"
 - So raise Wed's prizes at expense of Sat's
- Exactly what UK operator did (2013/15)
 - Added large raffle prizes to both draws
 - But these are worth more on Weds than Sats
- Not yet enough data to see if this has worked
- **QUESTIONS?**

Outline of Act 2

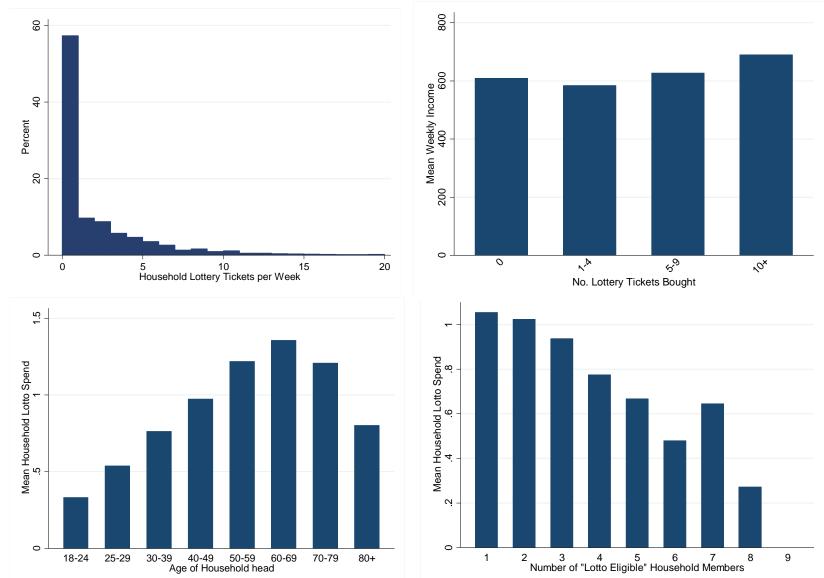
- Taxes on "sin" popular with governments

 Moral high ground
- Taxing a "necessity" is regressive
 So poor bear a larger tax burden than rich
 - Determined by "income elasticity" of D, η
 - "Impact of a 1% rise in income on demand
 - Estimate this using data on purchases and income
- Estimate how demand varies with income
 - "Luxury" good, $\eta > 1$
 - Budget share rises with income (entertainment)
 - "Necessity", $0 < \eta \le 1$
 - Budget share falls with income (food, fuel)



- "Incidence" of "tax" on lotto
 - -Is tax regressive?
 - -Estimate relationship between D and income
- We have 13 years of UK FES data (2001-13)
 Huge and detailed survey 69k hh in our data
 Important feature of data is lots of zeroes
- "Parametric" model
 - Lottoshare_h = c + d. Log (Totexp_h) + other stuff_h
 - Simple way of incorporating zeroes (Tobit)

FES vs NL data

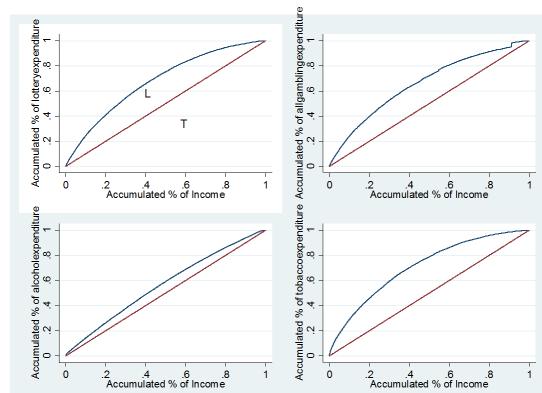

- FES lotto
 spending tracks
 NL series OK
 -30% under
 reporting
- But OK

 Methodology
 robust to ME in
 demand

Spending patterns in FES data (weekly)

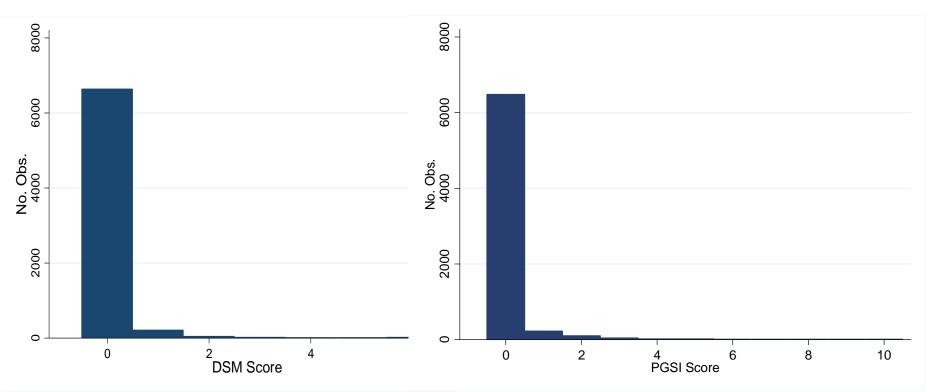
Engle curves

- Standard parametric specification
 - $-Lottoshare_h = c + d. Log (Totexp_h) + other stuff_h$
 - Nice: $\eta = (d/Lottoshare)-1$
 - Easy: linear regression
- Many households have zero lotto share
 - "Tobit" and extensions rather than regression
- Results
 - Tobit 0.0027 (0.0001)
- Semi-parametric analysis

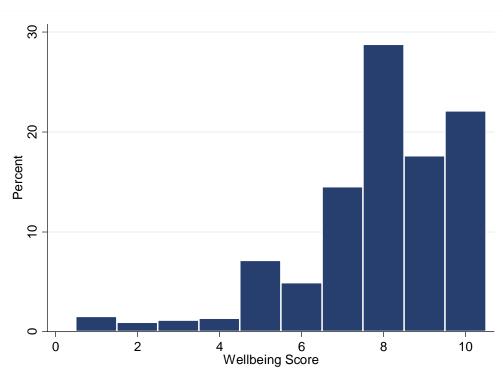

 Implement a SP version of Tobit?

Act 2 Conclusion

- So η = 1 + (-0.0027/0.006) ≈ 0.6 < 1
 suggests lottery tax is regressive
- Suits (AER 1973) regressivity index
 -SI = L/T
- Lotto 0.36
- Gambling 0.32
- Alcohol 0.13
- Tobacco 0.42

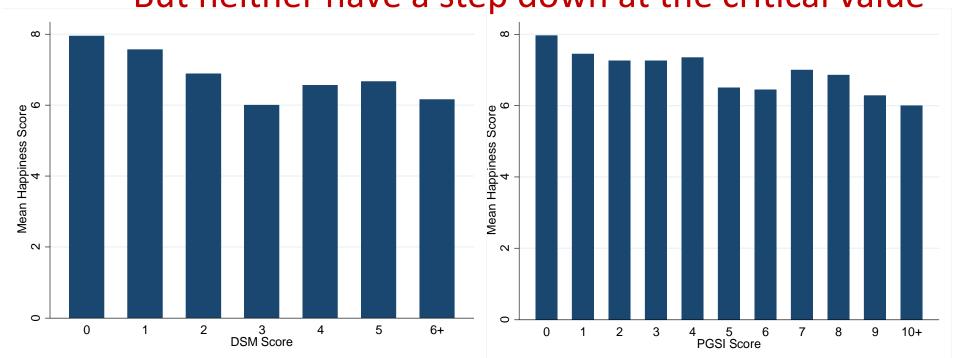


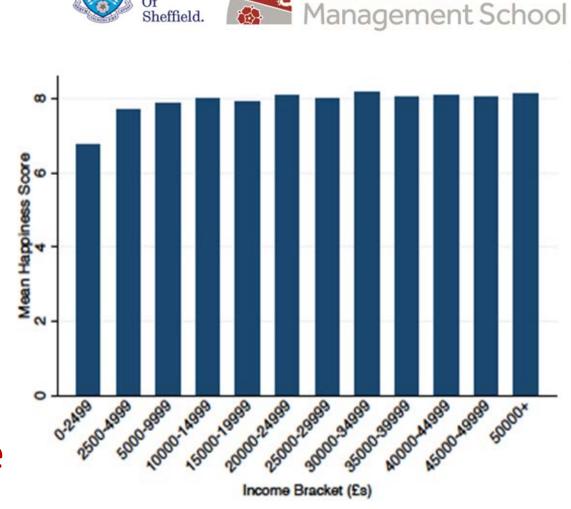
- "Problem" gambling usually defined by aggregating responses to a questionnaire -PG = 1 if score exceeds critical value
 DSM and PGSI
- Allows us to count the number of PGs
 But what does PG "cost" to someone with PG?
- Can we improve the way that PG is defined?
- Can we improve on our estimates?


Problem Gambling The University Of Sheffield. Lancaster University Management School

PG defined in UK GPS 2010 (and later HSE)
 -PGSI > 7 = 0.63% (of 46 m popⁿ = 290k people)
 -DSM > 2 = 0.83% (of 46 m popⁿ = 380k people)

- UK 2010 GPS records "well-being" (W)
 "How happy would you say you are these days"
- UK 2010 only GPS to do this
 W not in HSE
 Nor in other GPS's
- W widely used to value life events
 - Divorce
 - Marriage
 - Unemployment
 - And, now, PG





W falls as PG score rises

 For both DSM and PGSI
 But neither have a step down at the critical value

Income in GPS

Lancaster University

The

Of

University

- GPS records income — in £5k "bins"
 Income makes you happier
 - If you don't
 have much
- Use log Income

 Rather than
 income

- Our methodology increasingly common
 - Estimate W vs Log Income and "event"
 - Event, in this case, is PG=1
 - $-W_i = e + f \cdot PG_i + g \cdot Log Income_i + otherstuff_i$
 - Log income is grouped replace by a prediction from an integer regression
 - -f (<0) tells us how much less W is for PG=1 vs 0
 - -g (>0) tells us effect of doubling income on W
 - -So f/g $\equiv \% \Delta$ income that makes $W_{PG=1} = W_{PG=0}$

- $f/g \equiv \% \Delta$ income that makes $W_{PG=1} = W_{PG=0}$
- For DSM
 - -f = 1.38, g = 2.65 => f/g = 0.52
 - $-PG_{dsm} = 1 \Rightarrow Loss in W (pa) \approx \pm 9 k$
- For PGSI
 - -f = 0.40, g = 2.62 => f/g = 0.15
 - $-PG_{pgsi} = 1 \Rightarrow Loss in W (pa) \approx \pm 2.5 k !$
- Aggregate
 - $-\Delta W_{pgsi} = \pm 0.75 b$ $-\Delta W_{dsm} = - \pm 3.5 b !$

Causal effect

- Our regression estimate of f is likely to be biased because of measurement error in PG
 - Downwards (attenuated towards 0)
 - -Exploit the second PG measure. Then, we get

 $-\Delta W_{pgsi} = - \pm 1.2 b$ or $\Delta W_{dsm} = - \pm 5.5 b$!

- But f also biased because of simultaneity
 - Unhappy people gamble more
 - Upwards so estimates above are "upper bounds"
 - -More difficult in this case working on it

- Conventional measures of PG associated with large/huge reductions in well-being
- Conventional definitions probably flawed

 So who knows what the right answer is?
 Ours is an upper bound on true answer
- Well-being data offers the possibility of — Designing better questions
 - -And better, data-driven, aggregation of answers
 - To get a more defensible PG scale

Take away

- Lotto is a £1b of fun pa
 But taxation reduces the fun by close to 50%
- And the tax is highly regressive
- PG may be a large problem
 Small % of (a large number of) people
 - -Method for "valuing" PG
 - Different values for two popular (similar) measures
 - -Either huge (at most £5.5b)
 - -or just large (at most £1.2b)
 - -But these are "upper bounds"
- QUESTIONS?

Questions?

Lancaster University

Management School

- Unanswered questions
 - Does lotto cause more/less PG? Working on it!
 - Does lotto good-causes spending do any good?
 - Not yet working on this!
 - Scouts, Opera House, Olympic medals, "Warm glow"
 - Can we improves estimates? Working on it!
- If you want the paper(s), or these slides?
 –Email <u>ian.walker@lancaster.ac.uk</u>
- If you have hard questions?
 We can talk later ... in the bar?
- And if you have cool data for us —Then we're buying the drinks