
Electrical and Computer Engineering Faculty 
Publications Electrical & Computer Engineering 

1996 

A Self-Consistent Numerical Method for Simulation of Quantum A Self-Consistent Numerical Method for Simulation of Quantum 

Transport in High Electron Mobility Transistor; Part 1: The Transport in High Electron Mobility Transistor; Part 1: The 

Boltzmann-Poisson-Schrodinger Solver Boltzmann-Poisson-Schrodinger Solver 

Rahim Khoie 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/ece_fac_articles 

 Part of the Electronic Devices and Semiconductor Manufacturing Commons, Power and Energy 

Commons, Signal Processing Commons, and the Systems and Communications Commons 

Repository Citation Repository Citation 
Khoie, R. (1996). A Self-Consistent Numerical Method for Simulation of Quantum Transport in High 
Electron Mobility Transistor; Part 1: The Boltzmann-Poisson-Schrodinger Solver. Mathematical Problems 
in Engineering, 2(3), 205-218. 
https://digitalscholarship.unlv.edu/ece_fac_articles/416 

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Article has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an 
authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece
https://digitalscholarship.unlv.edu/ece_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/272?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/ece_fac_articles/416
mailto:digitalscholarship@unlv.edu


MPE- Volume 2, pp. 205-218 
Reprints available directly from the publisher 
Photocopying permitted by license only 

© 1996 OPA (Overseas Publishers Association) 
Amsterdam B.V. Published in The Netherlands 

under license by Gordon and Breach Science 
Publishers SA 

Printed in Malaysia 

A SELF-CONSISTENT NUMERICAL METHOD FOR 
SIMULATION OF QUANTUM TRANSPORT IN HIGH 
ELECTRON MOBILITY TRANSISTOR; PART 1: THE 
BOL TZMANN-POISSON-SCHRODINGER SOLVER 

R. KHOIE 

Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, 
Las Vegas, NV 89154 

(Received 24 March 1995) 

A self-consistent Boltzmann-Poisson-SchrOdinger solver for High Electron Mobility Transistor is presented. The 
quantization of electrons in the quantum well normal to the heterojunction is taken into account by solving the 
two higher moments of Boltzmann equation along with the SchrOdinger and Poisson equations, self-consistently. 
The Boltzmann transport equation in the form of a current continuity equation and an energy balance equation 
are solved to obtain the transient and steady-state transport behavior. The numerical instability problems 
associated with the simulator are presented, and the criteria for smooth convergence of the solutions are 
discussed. The current-voltage characteristics, transconductance, gate capacitance, and unity-gain frequency of 
a single quantum well HEMT is discussed. It has been found that a HEMT device with a gate length of 0.7 j.lm, 

and with a gate bias voltage of 0.625 V, has a transconductance of 579.2 mS/mm, which together with the gate 
capacitance of 19.28 pF/cm, can operate at a maximum unity-gain frequency of 47.8 GHz. 

KEYWORDS: Numerical; transport; HEMT; quantum; self-consistent; scattering 

1. INTRODUCTION 

Computer modeling of ultra-high speed electron devices, in general, and High Electron 
Mobility Transistor (HEMT), in particular, remains a main topic of research. With recent 
advances in device fabrication techniques such as: Molecular Beam Epitaxy (MBE), and 
Metal Organic Chemical Vapor Deposition (MOCVD), HEMT devices with cutoff­
frequencies well in the 300 GHz range have been developed [1]. Along with advances in 
HEMT fabrication techniques, the need for fast and efficient simulators has continued to 
increase. The simulation techniques for HEMT devices are based mainly on two different 
approaches. The computationally intensive Monte Carlo approach [2]-[10], and the 
hydrodynamic approach with less computational effort and lower degree of accuracy 
[11]-[13]. Wang and Hess [3] have studied the distribution of electron velocity at high 
fields using a three-dimensional Monte Carlo, neglecting the quantum effects. Tomizawa, 
et al. [4] have used two-dimensional scattering rates, and Park, et al. [5] have employed 
two-dimensional electric field profiles in their Monte Carlo simulations. Price [6], Waluk­
iewicz, et al. [7], Ravaioli and Ferry [8], Tomizawa and Hashizume [9], and Yokoyama and 
Hess [10] have included the quantum effects in their Monte Carlo programs. More recently, 
Kizilyalli, et al. [2] have performed a Monte Carlo study of short channel effects in a 
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submicrometer AlGaAs/GaAs MODFET and suggested that the high frequency 
performance of the device can be improved by scaling the gate length down to a minimum 
of about 0.1 ~1ft~, beyond which the device transconductance is degraded rather rapidly. 

An alternative approach for characterizing the HEMT is using two-dimensional 
numerical models in which Boltzmann transport and Poisson equations are solved 
numerically [11]-[13]. Widiger [11] has taken into account the electron heating 
phenomenon by using hydrodynamic-like transport equations, which include the two 
higher order moments of Boltzmann equation. In Widiger' s model the quantum well is 
treated by using the triangular well approximation in which the electric field in the 
quantum well is assumed constant, and the quantized electrons are assumed to reside right 
at the heterojunction and form a 2-dimensional electron gas (2DEG) with zero width. 

The electron energy states in the quantum well are described by SchrOdinger equation. 
SchrOdinger equation involves the electrostatic potential in the quantum well which itself 
depends on the electron concentration in the quantum well. Consequently, obtaining an 
accurate estimate of electron density in the quantum well requires a self-consistent 
solution of Poisson and SchrOdinger equations. Self-consistent models have been 
proposed by other researchers [10] and [14]. Yokoyama and Hess [10] have used 
self-consistent solutions of Schrodinger and Poisson equations to calculate the electron 
states in the quantum well. Voinigescu [14] has applied a similar self-consistent model to 
a MODFET with arbitrary band geometry. 

This paper presents a Boltzmann-Poisson-SchrOdinger solver [15] and [16] which 
incorporates the effect of the quantization of the electrons in the 2DEG of the quantum 
well. In Part I of this work, we consider the quantization of the electrons in the first 
subband. In Part II [ 17] of this work, we extend our model to a full quantum approach 
which includes the quantum transport of the electrons in the higher subbands. 

2. THE BOLTZMANN-POISSON-SCHRoDINGER SOLVER 

The HEMT structure illustrated in Fig. 1 has been considered for the simulation. The gate 
length is 0.5 11"1 and on the two sides of the gate are two 0.5 11"1 regions separating the gate 
from the source and drain. Beneath the gate is a highly doped Al0.3Ga0 .7As layer of width 
50nm and doping level of 5.1017 em- 3 . Both the gate length and the impurity doping level 
in the AlGaAs layer are varied in order to investigate the effects of such variations on the 
performance of the device. A 1 Onm undoped AlGaAs spacer lies between the highly doped 
AlGaAs layer and the GaAs layer. Such spacer is included to separate the free electrons 
in the GaAs channel from their donor impurities in AlGaAs, thereby reducing the remote 
scattering of electrons by ionized impurities. 

The GaAs region consists of a quantum well of width 100nm and a bulk layer of width 
300nm, with the two layers overlapping each other as is shown in Fig. 1. The doping level 
of GaAs is 1014cm- 3 . On the two sides are boundaries to two highly-doped GaAs regions, 
serving as ohmic contacts to the source and drain. 

2.1. Boltzmann Transport Equation 

The two higher moments of Boltzmann equation consisting of a continuity equation, 
describing the transport of electrons, and an energy balance equation, describing the 
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Figure 1. The HEMT structure used in the simulation. The quantum well and the bulk regions overlap each 
other with a total width of 300 nm. 

spatial and temporal variation of the average electron energy in the device are given by: 

(1) 

and 

for the bulk, and by: 

(3) 

and 

for the quantum well. The subscripts b and qw denote the bulk and the quantum well 
systems, respectively. The bulk and quantum systems and their modeling are described in 
detail in Section 2.3. In Equations (1) through (4), the terms n and j are the electron 
concentration and current density, Vis the potential, E is average electron density, !l is the 
mobility, D is the diffusion constant, and B is the energy dissipation factor. The term G is 
a generation-like term which is used for redistributing the electrons between the bulk and 
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the quantum system, and the term F is to account for energy transfer between the two 
systems. The coefficient o: is the ratio o'f flux mobility to carrier mobility and is given by: 

(5) 

where 'Tis the momentum relaxation time, Ei is the electron energy, and the brackets in Eq. 
(5) refer to statistical averages over the entire sample. For a power-law scattering o: = 
2 5 3(p + 2), where the power-law scattering is defined as 'T ex: Ef. For polar optical phonons 

in GaAs, p has a value of 0.5. In derivation of the above equations it is assumed that the 
high frequency terms in Boltzmann moment equations are negligible because the high 
frequency parameter, 'T HF• is of the order of 0.1 ps, whereas the typical calculated transient 
time is of the order of 3 ps. 

2.2. Poisson Equation 

The above transport equations are solved along with Poisson equation: 

iv iv q 
-2 + - 2 = -- [N0 (x, y) - n(x, y)]. ax ay E 

(6) 

where V is the electrostatic potential, e is the dielectric constant, n is the total electron 
concentration in the channel, and N D is the impurity doping level. 

2.3. Schrodinger Equation 

To model the quantum well, Widiger [11] has employed a triangular well approximation 
with the assumptions that the electric field in the quantum well is constant, and that the 
electrons in the 2DEG reside right at the heterojunction. In this paper we take into account 
the quantization of electron energy levels and the spatial spread of the electrons in the 
quantum well by means of a self-consistent solution of Schrodinger equation: 

(7) 

where mx is the electron effective mass in the x-direction, ljli is the wavefunction 
corresponding to the eigenvalue Ei for the i-th subband, and V(x, y) is the electrostatic 
potential. The boundary conditions are that the wavefunctions vanish at both infinities. 
SchrOdinger equation is solved using a Rayleigh-Ritz variational method. [18] 

To model the quantum well, one possible approach is to define an artificial boundary 
across the GaAs region, separating the bulk system from the quantized system. Electrons 
confined by such artificial boundary and the heterojunction are considered to be quantized 
and their motion is restricted to the y-direction; whereas electrons lying below the artificial 
boundary are considered as bulk carriers with no restriction to their motion. There are a 
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number of shortcomings associated with such an approach. First, there is no definite rule 
to define the quantum well/bulk boundary. As the wavefunction spans over a relatively 
wide region in the quantum well, if the well width is taken too small, much of the 
wavefunction outside the boundary will be truncated and the quantum effects can be 
greatly distorted. On the other hand, if the well width is taken sufficiently large to include 
a significant portion of the wavefunction, the bulk electronic behavior will be neglected. 
Neither case is desirable from a device simulation standpoint. Second, the electron 
concentration over the quantum well/bulk boundary is in general discontinuous, which 
gives rise to large diffusion current across the boundary. This can cause erroneous results 
in the simulation. Third, at points where the electric field at the heterojunction is weak, the 
quantum well is too shallow to confine the electrons and the electrons at the heterojunction 
behave essentially as 'bulk carriers. Therefore, it is important that both the bulk and the 
quantum characters of the electrons are considered, particularly at the heterojunction 
where the concentration of electrons is the highest. 

We present here a different approach to the problem. In this approach, there is no 
artificial boundary separating the bulk GaAs from the quantum well. Instead, the two 
systems overlap each other as shown in Fig. 1. The quantum well and the bulk systems 
both starts at x = 0. The quantum well (electrons residing in the lowest subband, E1) 

spreads a distance d into the GaAs layer as shown in Fig. 2. The width of the quantum well 
is determined from the wavefunction for the lowest subband. The bulk system (electrons 
residing in the second subband, E2, and higher subbands) extends 300 nm into the GaAs 
layer. Because of this overlapping of the two systems, the electrons at any point across the 
channel can be in the quantum well or in the bulk, depending on their eigenenergies and 
the width of the quantum well at that point. Electrons in the bulk undergo transport in both 
the x- andy-directions whereas electrons in the quantum well are restricted to transport in 
they-direction only. 
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Figure 2. Calculated wavefunction, t\J 1 (x) 2 , of the first subband at 300° K with an applied gate voltage of 0.5 
V and a drain bias of 1.5 V for Device II. The wavefunction peaks at 7 nm from the interface and spreads about 
20 nm in the GaAs layer. 
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Yokoyama and Hess [10] have reported that at 77°K, 98 percent of electrons in the 
quantum well are residing in the first subband whereas at 300°K, the population of 
electrons residing in the first subband reduces to 68 percent. In spite of this fact, in Part 
I of this work we consider only the quantization of electrons in the lowest subband. Part 
II of this work [17] presents a full quantum approach in which the quantization of 
electrons in the higher subbands is incorporated. 

The transport of electrons in the device is governed by six coupled, nonlinear partial 
differential equations (1), (2), (3), (4), (6), and SchrOdinger equation (7), with the 
unknown variables nqw• Eqw• nb, Eb, V, and ljli(x), Ei. The system of equations consisting 
of these six equations is solved iteratively by using a 2-dimensional finite difference 
scheme. In each iteration cycle the values of the variables nqw• Eqw• nb, Eb, V, and ljllx), 
Ei are updated until the correction terms to these variables are within a tolerance range. It 
should be noted that the SchrOdinger equation is solved at each (x, y) point and the values 
of the wavefunctions and the eigenenergies are updated in each iteration cycle. 

2.4. Numerical Stability Considerations 

The numerical solution of the partial differential equations outlined above requires 
iterative computation both in time and space. Numerical instability problems are often 
associated with such iterative process and careful consideration is needed to ensure 
smooth convergence of the results. 

An explicit approach is commonly employed to solve the continuity equation: 

which is discretized into the form: 

an 1 
- =- 'V. J + G, at q 

(8) 

(9) 

The values of n, J, and Gat time k are plugged into the right-hand-side of Eq. (9) yielding 
the value of n at the next time step k + 1. This method is extremely straight forward 
requiring no complex matrix operation. However, the major drawback of this approach is 
that excessively small time steps are required to guarantee numerical stability. Specifically, 
it has been shown [19] that the maximum time step one can use without having any 
instability problem is: 

. [ ax2a/ 2DJ Llt < mm A __ 2 A 2 ' -2 , 
2D(~ + l.lY ) Voc 

(10) 

where Llx and Lly are the mesh spacings, D the diffusivity, and v"" the saturation velocity. 
When the time step Llt exceeds the value given by Eq. (10), a minor perturbation in the 
values of niJ at mesh point (i, j) can result in a diverging solution. The smallest mesh 
dimensions Llx and Lly in this simulation are 2·10-7 em and 5·10-6 em, respectively. The 
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diffusivity at low field is about 300 cm2/s. Assuming the mesh spacing to be the limiting 
factor to the speed of the iterative process, the maximum time step one can use without 
causing numerical instability is: (for all values of v"") 

!l.t < 6.10- 17 sec. 

which is of the order of 106 times smaller than the typical transient time of HEMT. This 
poses a serious problem for the convergence of the program. 

In order to increase the time step to speed up the program, one has to increase the mesh 
spacing which in turn will sacrifice the accuracy of the result. Another approach to the 
solution of the continuity equation is to write the equation in an implicit form: 

an 1 
- =- [v . t + v . Jk+ 1] + d. at 2q 

(11) 

where the superscript k represents time. The price to pay is complicated discretization and 
tedious solution. In this paper, the implicit approach based on Eq. (11) is used. 

The time step size used in our simulations is 1.0 · 10-15 sec. The spatial mesh employed 
has nonuniform mesh spacing in the x-direction with mesh sizes, !l.x, ranging from 2 · 
10-7 em to 5 · 10-6 em. The mesh sizes are smaller in the proximity of the heterojunction. 
The mesh spacing in the y-direction, !l.y, is uniform with a mesh size of 5 · 10-6 em. This 
mesh spacing is for a device with gate length of 0.7 11"1· The mesh spacing !l.y is adjusted 
as the gate length is varied. 

3. RESULTS 

Computer simulations have been performed on five different HEMT' s with various device 
structures at room temperature. The design parameters of these devices are tabulated in 
Table 1. Devices I, II and III have the same doping level of 5 · 1017 cm-3 in the AlGaAs, 
but have different gate lengths: 0.5, 0.7, and 1.0 J.lm, respectively. Devices IV and V are 
simulated with the same gate length of0.7J.1m but different doping levels: 2.5 · 1017 cm-3 

and 7.5 · 1017 cm-3 , respectively. The results presented in Figures 2 through 6 are in 
reference to Device II. 

Table I Design parameters of the HEMT devices simulated 

Device Gate Channel AlGaAs AlGaAs GaAs Temp. (K) 
Length Length Thickness Doping Doping 
(pm) (pm) nm (cm- 3) (cm- 3) 

I 0.5 1.5 60 5.0·1017 1014 300 
II 0.7 1.7 60 5.0·1017 1014 300 
III 1.0 2.0 60 5.0·1017 1014 300 
IV 0.7 1.7 60 2.5·1017 1014 300 
v 0.7 1.7 60 7.5·1017 1014 300 



212 

6.00 

e 5.00 
\,) .._ 
~ 

4.00 
~ 
j 
f 3.00 ~ = t) 

" ·~ 2.00 Q 

1.00 

0.00 
0.00 

R. KHOIE 

,.,...-

Va=b.7V// 

v ~ 

I Vaa:O~ 

v ./" ~0.45¥ 
I b ~ 
~ 

I ~ 
/ 

0.40 0.80 
Drain Voltage, VD 

1.20 
(V) 

1.60 

Figure 3. I v - V v characteristics of Device II under different gate biasing conditions . 

. !: 

! 
~ .(),348 

~ 
(a) 

(b) 

Figure 4. Electrostatic potential profiles for Device II with a gate voltage of 0.7 V and drain voltage of (a) 0.5 
V, and (b) 1.35 V. 



NUMERICAL METHOD FOR SIMULATION OF QUANTUM TRANSPORT 213 

Fig. 2 shows the square of the wavefunction, $ 1 (x)2, for the first subband with an 
applied gate voltage of 0.5 V and a drain bias of 1.5 V. The function $1(x)2 peaks at about 
7 nm from the interface to a value of about 96 · 104 em - 1. The spatial spread of the well 
is 20 nm. The calculated eigenenergies for the first and second subbands are 46 and 69 
meV, respectively. These results are in good agreement with those reported by Yokoyama 
and Hess [10]. 

Fig. 3 shows the In - V n characteristics of Device II under three different gate bias of 
0.45 V, 0.5 V, and 0.7 V. The linear and the saturation regions can be identified on the In 
- Vn characteristics, in which the onset of saturation occurs between 0.7 V and 1.2 V, 
depending on the gate bias. The output resistance at V n = 1 V and V G = 0.45V is 
approximately 7 fi.mm. At a gate voltage of 0.5V the output resistance decreases to 4 
n.mm, which is less than the typical reported measurements. This discrepancy can be 
attributed to the assumed ideal contact behavior at the drain and source boundaries. 

Fig. 4 shows the electrostatic potentials in the device with a gate voltage of 0.7 V and 
two drain biases of 0.5 V and 1.35 V. Fig. 5 shows the electron concentrations in the 
quantum well and the bulk GaAs under the same biasing conditions. The electron 
concentration in the quantum well are calculated by multiplying the electron sheet density 
in the quantum well by the probability density, $ 1(xf. In the case of Vn = 0.5 V, the 
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Figure 5. Electron concentrations in (a,b) quantum well and (c,d) bulk GaAs of Device II. The applied gate 
voltage is 0.7 V in all cases. The< drain bias is 0.5 V in (a) and (c) and 1.35 V in (b) and (d). The concentration 
of tbe electrons in tbe quantum well is obtained by multiplying tbe probability density, \fs1(x)2, by tbe electron 
sheet density. The quantum well spreads about 200 A o into tbe GaAs layer whereas tbe active bulk extends 1000 
A o into the GaAs layer. 
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Figure 6. Total electron concentration in Device II with a drain voltage of 0.9 V and a gate voltage of (a) 0.25 
V, (b) 0.75 V, and (c) 1.25 V. 

electron concentrations in the quantum well and the bulk GaAs are relatively uniform from 
source to drain, whereas in the case of V D = 1.35 V, there is a sharp reduction in the 
electron concentration in the region underneath the drain end of the gate which is the 
pinch-off point. Also shown in Fig. 5 are the spatial spreading of the quantum well and the 
bulk systems. It should be noted that while the concentration of electrons in the quantum 
well reduces to zero at a distance of 200 A a from the interface (Fig. Sa), the concentration 
of electrons in the bulk system reduces to 15 · 1014 (approaching the doping level of the 
bulk GaAs, See Fig. 5c) at a distance of 1000 A 0 from the interface. It is thus concluded 
that the width of the quantum well is about one fifth of the conduction channel. 

We have studied the effects of the applied gate voltage on the electron transport in the 
GaAs channel by simulating the operation of Device II under a fixed drain voltage of 0.9 
V and various gate voltages ranging from 0.25 V to 1.25 V. Fig. 6 shows the total electron 
concentrations in Device II under three different gate biasing conditions. The electron 
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concentration in the conduction channel under the gate increases with the gate voltage as 
expected. The pinch-off phenomenon, as indicated by the valley in Fig. 6a, is pronounced 
in the case of the 0.25 V gate bias. This is because the drain voltage is much higher than 
the gate voltage. Electrons in the channel are largely drawn toward the drain contact, 
resulting in a slightly depleted region underneath the gate, which is the pinch-off point. As 
higher gate voltages are applied, the pinch-off point disappears, as clearly demonstrated in 
Figs. 6b and 6c. 

The drain current-gate voltage (ID- VG) characteristics for Devices 1-V are given in 
Fig. 7a. We also calculate the total charge in the device by integrating over the entire GaAs 
region the sum of the bulk and the quantum well electron concentrations: Q = 
Jt' Jt' q · n(x, y)dxdy. Fig. 7b shows the variations in the total charge in the GaAs layer 
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Devices I-V under a drain bias of 1.0 V. 
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with the applied gate voltage. The total charge in GaAs increases with increasing channel 
lengths (Devices I, II and III) and with increasing doping level in AlGaAs (Devices IV, II 
and V). The former result agrees with the general consideration that a device with longer 
channel length would have more charge in the GaAs layer. The latter result is due to the 
fact that variation in the doping concentration in AlGaAs causes variation in the electric 
field built up at the heterojunction and thus the amount of charge induced in the GaAs 
channel. 

Based on the above results, we obtain values of the transconductance, the gate 
capacitance, and the unity-gain frequency according to the following formulae: gm = 

aid aQ 1 gm 
-, Cg = -, andfr = --.The transconductance as a function of gate voltage for the 
avg avg 2'TT cg 
five devices simulated under a fixed drain bias of 1 V are shown in Fig. 8a. The graphs 
show a general pattern in which the transconductance increases with the gate voltage at low 
gate bias; however, as the gate bias is raised further, the transconductance levels off and 
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Figure 8. (a) Transconductance, (b) gate capacitance, and (c) unity-gain frequency of Devices I-V as a 
function of gate voltage. The drain bias is 1.0 V. 
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then starts to decrease. Similar patterns are observed in the plots of the gate capacitance 
(Fig. 8b) and the unity-gain frequency (Fig. 8c). One reason for the drop of the transcon­
ductance and the gate capacitance as the gate voltage is increased, is that the electron 
concentration in the channel is limited by the supply of electrons at the source boundary. 
As a result, the electron concentration and thus the current density in the channel do not 
increase proportionally with the gate voltage. For Device II, the maximum transconduc­
tance obtained is 579.2 mS/mm at a gate bias of about 0.625 V. The gate capacitance at 
such gate bias is 19.28 pF/cm and the resulting unity-gain frequency is 47.8 GHz. 

4. CONCLUSIONS 

A Boltzmann-Poisson-Schrodinger Solver for High Electron Mobility Transistor was 
discussed with consideration of quantization of the electron energy levels at the 
heterojunction and spatial spreading of electrons in the quantum well. It has been found 
that the ratio of the finite width of the quantum well to the width of the active channel can 
be as high as 0.2. The assumptions of the quantum well with zero width, and the quantized 
electrons residing right at the heteroface clearly become invalid. The pinch-off 
phenomenon and the two-dimensional nature of electron transport have been 
demonstrated. A maximum transconductance of 531.2 mS/mm for a HEMT with gate 
length of 0.5 ll11l and a doping level of 5 · 1017 em - 3 has been obtained, which has 
corresponding gate capacitance and unity-gain frequency of 13.8 pF/cm and 61.5 GHz, 
respectively. 

The values of the transconductance and the unity-gain frequencies obtained from these 
HEMT simulations are somewhat larger than reported by [12] and [13]. In Part II [17] of 
this work we correct this overestimation by extending our model to include the quantiza­
tion of electrons in the higher subbands. We also add an additional self-consistency by 
calculating the transport parameters as a function of energy and electric field. 
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