Lanthanum halide nanoparticle scintillators for nuclear radiation detection

Paul Guss
Remote Sensing Laboratory, gusspp@nv.doe.gov

Ronald Guise
Remote Sensing Laboratory

Ding Yuan
National Security Technologies, LLC

Sanjoy Mukhopadhyay
Remote Sensing Laboratory

Robert O’Brien
University of Nevada, Las Vegas

See next page for additional authors

Follow this and additional works at: http://digitalscholarship.unlv.edu/me_fac_articles

Part of the Mechanical Engineering Commons, and the Nanoscience and Nanotechnology Commons

Citation Information
http://digitalscholarship.unlv.edu/me_fac_articles/623

This Article is brought to you for free and open access by the Mechanical Engineering at Digital Scholarship@UNLV. It has been accepted for inclusion in Mechanical Engineering Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Lanthanum halide nanoparticle scintillators for nuclear radiation detection
Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O'Brien, Daniel Lowe, Zhitao Kang, Hisham Menkara, and Vivek V. Nagarkar

Citation: Journal of Applied Physics 113, 064303 (2013); doi: 10.1063/1.4790867
View online: http://dx.doi.org/10.1063/1.4790867
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/113/6?ver=pdfcov
Published by the AIP Publishing
Lanthanum halide nanoparticle scintillators for nuclear radiation detection

Paul Guss,1,4 Ronald Guise,1 Ding Yuan,2 Sanjoy Mukhopadhyay,3 Robert O’Brien,4 Daniel Lowe,4 Zhitao Kang,5 Hisham Menkara,5 and Vivek V. Nagarkar6

1Remote Sensing Laboratory, P.O. Box 98521, M/S RSL-48, Las Vegas, Nevada 89193, USA
2National Security Technologies, LLC, Los Alamos Operations, P.O. Box 809, M/S LAO/C320, Los Alamos, New Mexico 87544, USA
3Remote Sensing Laboratory–Andrews, Building 1783, Arnold Avenue Andrews AFB, Maryland 20762, USA
4University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
5Georgia Tech Research Institute, 925 Dalney St., Atlanta, Georgia 30332, USA
6RMD, Inc., 44 Hunt Street, Watertown, Massachusetts 02472, USA

(Received 1 November 2012; accepted 24 January 2013; published online 8 February 2013)

Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790867]

I. INTRODUCTION

Scintillator materials are used to detect and, in some cases, quantify a gamma-ray’s energy. Higher resolution scintillators are expensive, difficult to manufacture, and fragile. Low to moderate resolution scintillators are less costly, easier to manufacture, and more rugged, but they offer lower performance envelopes when compared to high resolution materials. At issue is whether the desirable qualities of each scintillator type can be combined to achieve high performance at low cost.

Recent studies suggest that nanocomposites may enable the use of scintillator materials such as cerium-doped lanthanum trifluoride and cerium tribromide without requiring the growth of large crystals. Nanostructured detectors may allow us to engineer immensely sized detectors of flexible form factors that will have a broad energy range and an energy resolution sufficient to perform isotopic identification. Furthermore, nanocomposites are easy to prepare and very low in cost. It is much less costly to use nanocomposites rather than grow large whole crystals of scintillator materials; with nanocomposites fabricated on an industrial scale, costs are even less. Nanostructured radiation scintillator detectors may improve quantum efficiency and provide vastly improved detector form factors. Quantum efficiencies, up to 60%, have been seen in photoluminescence from silicon nanocrystals in a densely packed ensemble.

Further, nanocomposite detectors may offer an avenue to combine the advantages of both types of scintillator materials to overcome the disadvantages of each. It is hypothesized that “nanocrystals,” 2–5 nm in diameter, of certain inorganic scintillator materials, packed densely in plastic or inorganic solutions, can capture most of the x-ray and gamma-ray energies, thus offering nearly the performance of large crystals. The resulting mixture would also have the desirable features of plastic or liquid scintillators. For instance, the chemical synthesis of the cerium-doped lanthanum halide nanoparticles is scalable, and large quantities of material can be produced at a time, unlike typical crystal sizes resulting from crystal growth processes such as the Bridgeman process.

In order to create a new class of scintillator materials that combines good energy resolution, large size, and low cost, Del Sesto developed a large-scale synthesis of narrowly sized, distributed, <10 nm LaF3:Ce nanoparticles. In fact, nanoparticles of many candidate scintillating materials, such as LaF3:Ce, or even CeBr3, can all be cast into transparent oleic acid or polymer composites with up to 60% scintillator volume loading. Preliminary experiments showed that the LaF3:Ce oleic acid-based nanocomposites exhibit a photo-peak when exposed to 137Cs source gamma radiation.

In general, lanthanum halides show the promise of being useful over a wide energy range of x-rays and gamma rays. In fact, another motivation for this work was to investigate whether or not these nanostructured radiation scintillators may extend the gamma energy response on both the low- and the high-energy regimes. If true, this opens the prospect that x-rays and relatively high-energy activation prompt gamma rays may be simultaneously detected using one detector using nanocrystals such as nanostructured lanthanum tribromide, lanthanum trifluoride, or cerium tribromide.

II. EXPERIMENT

Nanostructured radiation scintillator detectors may lead to techniques to improve quantum efficiency and exploit vastly improved detector form factors compared to currently used inorganic scintillators. Nanocomposites can dramatically change the size, shape, and luminosity of materials and, by being easily accessible to coupling to photodiodes, can offer higher quantum efficiency for detecting light quanta. This compares to photomultiplier tubes (PMTs) that suffer from low quantum efficiency (1%–10%). In our initial investigation, nanoparticles of lanthanum halides and cerium...
tribromide were suspended in oleic acid. It is anticipated that when a gamma ray strikes this material, its energy is absorbed by both the nanocrystals and the oleic acid, raising some atoms to a higher energy level. These atoms de-excite and give off their energy as optical photons in the visible and near-visible regions of the electromagnetic spectrum. A phototransducer, either a photomultiplier tube or an avalanche photodiode, can be employed to amplify and to convert the collected energies into electrical pulses. The number of optical photons generated is correlated to the energy level and intensity of the photon striking the material. A multichannel analyzer counts the optical photons, determines the energy level of the photon striking the material, and increases the count of photons of that energy level by one, ultimately creating a gamma-ray spectrum.

Nanoparticles with sizes <10 nm were fabricated, two scintillating detectors employing these nanoparticles were prepared, and the process of characterization of their optical, physical, and radiation detector properties was performed. The crystals used in this work were LaF₃:Ce nanoparticles mixed with oleic acid. The experimental materials used and compared in the study are listed in Table I.

The modified oleic acid is a scintillator material, so it increases the amount of energy converted to a detectable signal. A polymer composite produced by Radiation Monitoring Devices, Inc. (RMD), was used to make initial measurements of the 5% LaF₃:Ce-loaded and 25% LaF₃:Ce-loaded samples shown in Figure 1.

The detectors for interfacing to the phototube and electronics were prepared as shown in Figure 2. For the measurements, a special transparent cup was employed to contain the nanoparticle and oleic acid mixture. Nanoparticle detector volume was ~2.5 ml with 0.5 in. diameter × 0.75 in. length. It was set upon a Hamamatsu R647 PMT, using a Hamamatsu E849-36 PMT base in conjunction with an ORTEC 456 High Voltage Power Supply. An ORTEC 450 Research Amplifier was employed for signal processing and a PC-104 based MCA was used to acquire spectra. A control detector made up of BC400 with 0.5 in. diameter × 0.75 in. length was used to obtain baseline data and establish stabilization and normalization information for the system.

A data acquisition test protocol was established, which included acquiring a spectra for each detector for laboratory background, ²²Na (3.22 µCi), ⁶⁰Co (3.78 µCi), ¹³⁷Cs (31.9 µCi), ²⁴¹Am (9.09 µCi), and ²⁵²Cf (5.03 µCi). The ²⁵²Cf data were acquired both with and without 1 in. lead shielding and with and without several inches of paraffin shielding. The data were acquired, typically for 1000 s with the source at a distance of 8 cm from the detectors. Two source distances were used for the ¹³⁷Cs source, namely 8 cm and 16 cm. Because of the different shielding considerations for the ²⁵²Cf, a constant distance of 18 cm was used for the acquisition of all data using this specific source. The initial results are reported here and are compared to both the modeling data and the data reported by Del Sesto.

III. RESULTS

Figure 3 shows the gamma spectral data with the background subtracted from the first measurements made with 25% LaF₃:Ce-loaded samples using the ²⁴¹Am (3 a), ²²Na (3 b), ¹³⁷Cs (3 c), and ⁶⁰Co (3 d) sources (ordered by lowest to highest photopeak energy). Figure 4 illustrates a slight energy dependence for the 25% LaF₃:Ce detector, based on the normalized spectra acquired with the ¹³¹Cs and ⁶⁰Co sources. The ²⁵²Cf data (not shown) also indicated a good neutron response by these detectors.

Early studies suggest that nanocomposite scintillator material may even be able to discriminate between neutrons and gamma rays. Some simulations supported this possibility. Los Alamos National Laboratory (LANL) investigators assert that basic physics calculations also support this possibility. For instance, when neutrons interact with the hydrogenous material, free protons are generated. When gamma rays interact with the material, free electrons are generated. The energy signatures for the two processes are different in magnitude and in time. The experiments performed in this investigation confirmed this possibility and demonstrated the ability of the material to detect neutrons and to differentiate them from gamma rays.

Early in this work, the data acquired was benchmarked using a variety of different parameters, such as detector-to-source distances, source strengths, source types, and geometries. At this point, there is sufficient confidence in the predictive capacity of the models that they may be used for guidance in fine-tuning parameters for future nanoparticle detector developments. The Monte Carlo N-Particle eXtended (MCNPX) models were started by simulating the

TABLE I. Investigated nanoparticle detectors.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Specifications</th>
<th>Known properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC400</td>
<td>1 cc plastic scintillator, ~65% anthracene</td>
<td>λ<sub>max</sub> ≈ 450 nm</td>
</tr>
<tr>
<td>5%LaF₃:Ce</td>
<td>1 ml oleic acid with 5% by mass LaF₃:Ce nanoparticles <10 nm diameter</td>
<td>Detector nanoparticles with diameter <10 nm λ<sub>max</sub> ≈ 380 nm</td>
</tr>
<tr>
<td>25%LaF₃:Ce</td>
<td>1 ml oleic acid with 25% by mass LaF₃:Ce nanoparticles <10 nm diameter</td>
<td>Detector nanoparticles with diameter <10 nm λ<sub>max</sub> ≈ 380 nm</td>
</tr>
</tbody>
</table>

FIG. 1. Detectors were prepared by RMD with upper and lower detectors containing 5% LaF₃:Ce and 25% LaF₃:Ce nanoparticle loading by mass, respectively.
LANL 8% LaF₃:Ce nanoparticle systems, which have indicated the potential for detection of ¹³⁷Cs.³

Initial measurements of an energy spectrum³ for the unloaded and 8% LaF₃:Ce-loaded samples were first acquired by the LANL group, using ¹³⁷Cs sources. Their measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photopeak expected in the nanophosphor composites that LANL produced.³ Their data were used as a check on the MCNPX model (Figure 5) we used to model our detectors.

Measurements with the 5% and 25% LaF₃:Ce loaded samples shown in Figure 1 have been made using ¹³⁷Cs sources. Figure 5(a) shows the energy spectra. The blue (solid) plot is the measured 5% LaF₃:Ce spectrum and the black (dotted) plot is the spectrum from the 25% LaF₃:Ce nanocomposite scintillator. These measurements show the expected Compton edge, while both the Compton edge and photopeak appeared in the LANL spectra for the nanophosphor composites that LANL has produced.³ In Figure 5(b), a preliminary MCNPX calculation compares spectra for both a 5% and a 25% LaF₃:Ce loaded sample. The blue (solid) plot is an energy spectrum calculated for 5% LaF₃:Ce, and the black (dotted) plot is the energy spectrum calculated for 25% LaF₃:Ce polymer nanocomposite exposed to ¹³⁷Cs (100 µCi) y irradiation. As the development of this material continues, the energy resolution is

FIG. 2. Detector setup for studying the nanocomposite detector is shown. (Left) The oscilloscope, power supply, and electronics are shown in the upper part of the photo, while the (liquid) detector assembly is shown below, resting on top of the photomultiplier tube, wrapped in black tape to make the assembly light tight. Signal and high-voltage cables are connected to the detector. (Right) The detector assembly is to the right of the ⁶⁰Co source.

FIG. 3. These are the first background-subtracted spectra for the 25% LaF₃:Ce nanocomposite detector. Significantly, they not only demonstrate an excess in counts when background is removed but in addition they demonstrate a different spectral shape for each different individual radiation source, which holds open the promise of performing some level of spectral discrimination and isotopic identification with nanocomposites.

FIG. 4. Background-subtracted normalized measurement of a different response for ⁶⁰Co and ¹³⁷Cs sources using the 25% LaF₃:Ce detector, which appears even more clearly, when this difference is measured for a BC-400 detector. A slight energy dependence for the 25% LaF₃:Ce detector is evident.

LANL 8% LaF₃:Ce nanoparticle systems, which have indicated the potential for detection of ¹³⁷Cs.³

Measurements with the 5% and 25% LaF₃:Ce loaded samples shown in Figure 1 have been made using ¹³⁷Cs sources. Figure 5(a) shows the energy spectra. The blue (solid) plot is the measured 5% LaF₃:Ce spectrum and the black (dotted) plot is the spectrum from the 25% LaF₃:Ce nanocomposite scintillator. These measurements show the expected Compton edge, while both the Compton edge and photopeak appeared in the LANL spectra for the nanophosphor composites that LANL produced.³ Their data were used as a check on the MCNPX model (Figure 5) we used to model our detectors.

Measurements with the 5% and 25% LaF₃:Ce loaded samples shown in Figure 1 have been made using ¹³⁷Cs sources. Figure 5(a) shows the energy spectra. The blue (solid) plot is the measured 5% LaF₃:Ce spectrum and the black (dotted) plot is the spectrum from the 25% LaF₃:Ce nanocomposite scintillator. These measurements show the expected Compton edge, while both the Compton edge and photopeak appeared in the LANL spectra for the nanophosphor composites that LANL has produced.³ In Figure 5(b), a preliminary MCNPX calculation compares spectra for both a 5% and a 25% LaF₃:Ce loaded sample. The blue (solid) plot is an energy spectrum calculated for 5% LaF₃:Ce, and the black (dotted) plot is the energy spectrum calculated for 25% LaF₃:Ce polymer nanocomposite exposed to ¹³⁷Cs (100 µCi) y irradiation. As the development of this material continues, the energy resolution is
expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings.

From the simulation results shown in Figure 5(b), an extrapolation is made using MCNPX for an 86% by mass nanoparticle content of LaF_3:Ce. Two methods of calculation are compared, and results are shown for LaF_3:Ce in Figure 6. In one calculation, the atoms in the detector are distributed homogeneously, and the other calculation is performed with nano structures containing the LaF_3:Ce. This was done for the various materials (CdSe and LaF_3:Ce). These calculations indicated that the ratio between the photopeak and the Compton edge changes with material type (ratio is \(\text{\sim} 4 \) for LaF_3:Ce but is \(\text{\sim} 3 \) for CdSe). The calculation made using actual nanoparticles of LaF_3:Ce usually resulted in a closer replication of our actual data, which indicates the importance of the approach used in setting up the geometry for nanostructure systems when modeling with MCNPX.

IV. ANALYSIS

For an ideal scintillator, the energy resolution, \(R \), is given by

\[
R = \frac{\Delta E}{E_{\text{FWHM}}} = 2.35 \times \sqrt{\frac{1 + \nu(M)}{(N \times e)}}.
\]

where \(N \) is the average number of photons generated at a given energy \(E \), \(\nu(M) \) is the variance in the multiplication factor of the PMT (for a typical 10-stage PMT with a gain of \(2 \times 10^6 \)), \(e \) is approximately 0.08, and \(e_i \) is the average transport efficiency. \(\Delta E/E \) is measured experimentally, \(\nu(M) \) is a known constant, and combined histories and transport simulations can provide an estimate of \(e_i \). The only unknown parameter then is \(N \), the number of photons generated in the material under an incident gamma energy. Léant and Wang determined a value of the average transport efficiency \(e_i \) of 0.063 \(\pm 0.002 \) for their cadmium selenide nanoparticle with zinc sulfide shell (CdSe/ZnS core shell quantum dot) nanocomposite detector. By inserting \(e_i \) in the energy resolution formula discussed above, the average photon output of the quantum dot–glass material that Léant and Wang studied under 59-keV gamma-ray irradiation was estimated to be close to 4210 (while the number of photons generated by a sodium iodide [NaI:Tl] crystal under the same conditions was only 2600). For higher energies, the projected light output would be about 70 600 photons at 1 MeV, assuming the quantum dot medium has a linear response, which is a factor 1.75 better than the NaI:Tl crystal for which \(N \) is typically 40 000. However, the data for our initial measurements reported in Table II are consistent with a lower efficiency and a lower light output typical of nanoparticle detectors that is not seen in BC-400 detectors. This may be due to the combination of the self-shielding effect contributed by the inorganic solution and the high concentration of the suspended nanocrystals. All of the other particulars depicted in Table II, i.e., scaling with particle density and with source strength, are consistent with expectation.

V. DISCUSSION

The work by Walters suggests an intriguing aspect of nanocomposites. Walters examines the photoluminescence decay rates for dense silicon nanocrystal ensembles in this work. From a comparison of the experimental photoluminescence decay rates to the expected spontaneous emission rate,
TABLE II. Count rate for 25% LaF3:Ce, 5% LaF3:Ce, and BC400 detectors.

<table>
<thead>
<tr>
<th>Source</th>
<th>Intensity (µCi)</th>
<th>25% LaF3:Ce (cps)</th>
<th>5% LaF3:Ce (cps)</th>
<th>BC400 (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td></td>
<td>4.7</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>22Na (8 cm)</td>
<td>3.22</td>
<td>2.5</td>
<td>1.8</td>
<td>23.3</td>
</tr>
<tr>
<td>60Co (8 cm)</td>
<td>3.78</td>
<td>11.2</td>
<td>7.9</td>
<td>34.4</td>
</tr>
<tr>
<td>137Cs (8 cm)</td>
<td>31.9</td>
<td>10.4</td>
<td>7</td>
<td>193.6</td>
</tr>
<tr>
<td>137Cs (16 cm)</td>
<td>31.9</td>
<td>5.3</td>
<td>4.1</td>
<td>52.95</td>
</tr>
<tr>
<td>241Am (8 cm)</td>
<td>9.09</td>
<td>0.07</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>228Ac (18 cm)</td>
<td>5.03</td>
<td>2.6</td>
<td>1.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

Two nanocomposite detectors, one of 5% LaF3:Ce nanoparticle loading by mass and one of 25% LaF3:Ce nanoparticle loading by mass were prepared. The first results of the detectors’ response using these specific detector materials were compared to models and to prior nanocomposite detector data. In general, the agreement between data and models was good. It was determined that these nanocomposites’ response to radiation is significant. Nanocomposites are sensitive to both neutrons and photons (γ- and X-rays). The first production nanocomposite detectors prepared for this work are weaker in terms of energy response than BC400 and have yet to match the performance of plastic detectors. The 25% LaF3:Ce nanoparticle loading by mass detector had better performance compared to the 5% LaF3:Ce nanoparticle loading by mass detector, yet still roughly less than half the sensitivity (efficiency) of the BC400 detector of comparable size. It was also shown that in order to produce the most accurate models of detector performance, accurate definition of the nanostructure geometry is helpful. Key points are that nanocomposite detectors are cheap, easy to fabricate, and respond to nuclear radiation. More work is required, however, to determine how best to obtain isotopic correlations and to optimize light yield.

ACKNOWLEDGMENTS

This manuscript has been authored by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and supported by the Site-Directed Research and Development Program. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

The authors acknowledge Vivek Nagarkar of RMD of Watertown, Massachusetts, for the production of the nanocomposite detectors, for providing these detectors on loan to the Remote Sensing Laboratory, and for his support and advice. The authors also acknowledge Denis Beller and Anthony Santo Domingo of the University of Nevada, Las Vegas, for their measurement of CeBr3 properties. This is a joint research investigation between RSL and UNLV. The Nevada National Security Site SDRD program provided support for this research.

C. J. Burt and D. Ramsden, “Recent advances in the development of large-area plastic gamma-ray spectrometers,” in NSS Dresden Conference Record (Institute of Electrical and Electronics Engineers, 2008).

M. A. Foster and D. Ramsden, “Progress towards the development of practical scintillation counters based on SiPM devices,” in NSS Dresden Conference Record (Institute of Electrical and Electronics Engineers, 2008).
