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ABSTRACT 

Transcriptional Regulation of Shigella Virulence Plasmid-Encoded Genes  

by VirB and CRP 

 

by 

 

Christopher Thomas Hensley 

 

Dr. Helen Wing, Examination Committee Chair 

Assistant Professor of Biological Sciences 

University of Nevada, Las Vegas 

Shigella flexneri is a species of Gram-negative intracellular pathogens that causes 

bacillary dysentery in humans. Shigella relies on the precise transcriptional regulation of 

virulence genes, encoded by a large virulence plasmid, for invasion and infection of 

human colonic epithelial cells. The transcription of most identified virulence genes are 

regulated through a cascade controlled by the primary regulator of virulence genes, VirF, 

and the global transcriptional regulator, VirB. Currently, few studies have addressed how 

individual Shigella virulence genes are precisely regulated for optimal expression during 

specific stages of pathogenesis and within the constraints of the regulatory cascade. This 

work addresses how individual virulence genes are regulated through the study of 

transcriptional regulation in four Shigella virulence genes, icsP, ipaJ, phoN1, and 

ipaH7.8. Analysis of the icsP gene has identified multiple promoters contributing to icsP 

transcription and to the regulation of IcsP protein production through the use of two 

different translation start sites. In addition, analyses of the ipaJ, phoN1, and ipaH7.8 

genes has identified that the phoN1 gene is transcriptionally regulated by the CRP, 

suggesting that catabolite repression is involved with the regulation of some virulence 

genes in Shigella. Together, these data suggest that the transcriptional regulation of 

virulence genes in Shigella flexneri is more complex than previously observed.  
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CHAPTER 1 

INTRODUCTION 

1.1 Transcription Initiation in Bacteria 

Initiation of transcription is a key step regulating the transfer of information from 

genes encoded by DNA to enzymatically active proteins required for all cellular functions 

in bacteria. Much of what we know about transcriptional regulation is the result of 

extensive study of gene expression in the Gram negative bacterium Escherichia coli. 

(reviewed in Browning and Busby 2004, Haugen et al. 2008). Five protein subunits, 

ββ’α2ω, comprise the core RNA polymerase enzyme which transcribes the DNA code 

into an RNA message which may or may not later be translated into a protein product. 

The β and β’ subunits form the catalytic center of this multi-subunit structure while the 

two α subunits contribute to assembly of the β and β’ subunits. The ω subunit appears to 

function as a β’ chaperone assisting in the large subunits proper folding but is not 

required for successful transcription. The crucial step in transcription initiation is the 

docking of the core enzyme to the double-stranded DNA. This process requires the 

addition of a sixth subunit, σ, which confers binding specificity of the polymerase to 

regions of DNA upstream of an encoded gene, designated the promoter. E. coli actually 

contains seven of these σ factors and each of them can be used for recognition of specific 

promoters, although σ
70

 is considered to be the sigma factor controlling expression of 

housekeeping genes. Together, the core enzyme and the σ subunit constitute the 

holoenzyme, a structure which is both necessary and sufficient for transcription initiation. 

Holoenzyme recruitment to the promoter of a gene is a competitive process considering 

promoters outnumber the population of available RNA polymerases within the cell. The 
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strength of a promoter and overall ability of a promoter to attract available RNA 

polymerases determines whether or not the gene is expressed. Therefore, multiple 

elements work cooperatively to ensure a gene is transcribed at the right time and in the 

right abundance. 

Many of these elements are already present within the promoter DNA itself. The 

two primary promoter elements involved in recognition and binding by the σ subunit and 

subsequently, the polymerase, are the -10 (5’-TATAAT-3’consensus for σ
70

) and -35 (5’-

TTGACA-3’ consensus for σ
70

) hexamers, which are named according to their proximity 

to the transcription start site. These specific sequences are recognized and bound by 

domains within the σ subunit and together with the TSS make up the classic bacterial 

promoter. While the -10 and -35 consensus sequences are sufficient for σ subunit 

recruitment, other sequences can enhance RNA polymerase binding and therefore, 

transcription initiation. The extended -10 element, which consists of 3-4 bp (5’-TGTG-3’ 

consensus) immediately upstream of the -10 element, is also recognized by a domain of 

the σ
70

 subunit. Additionally, UP elements consisting of approximately 20 bp (5’-

AAAWWTWTTTTNNNAAANNN-3’ consensus; W = A or T and N = any base) and 

located upstream of the -35 element assists RNA polymerase binding through recognition 

by the C-terminal domains of the α subunits. Variations in these sequence elements 

contribute to differential binding of the RNA polymerase holoenzyme to the 

approximately 5,000 genes present in the Escherichia coli genome. Deviations from the 

consensus sequence in one element may be compensated for through the presence of a 

closely matched consensus sequence in another element or the addition of another 

element such as in the case of the extended -10 element and the UP element. Complete 
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control over polymerase recruitment is not just restricted to sequences proximal to the 

gene of interest, but may also be influenced by trans-acting regulatory elements.    

 Transcription factors, proteins involved in the upregulation or downregulation of 

transcription, play a large role in regulating which genes are expressed or not. These 

transcription factors also allow for fine tuning of gene expression in response to 

environmental stimuli by giving the “edge” to one promoter when the conditions are 

appropriate. Most transcription factors exert their influence through sequence-specific 

DNA binding. Once bound to the promoter region, the transcription factors can assist in 

RNA polymerase recruitment through binding of the α or σ subunits. Some of these 

proteins can even contort the DNA curvature into a conformation that is more favorable 

for promoter recognition and RNA polymerase binding. Alternatively, repressive effects 

are generated through steric hindrance of polymerase binding, induction of DNA loops 

by multiple bound repressors which effectively mask the -10 and -35 promoter elements, 

and competitive binding of an activator by another protein blocking the positive effects of 

the activator. Sometimes the regulatory effect on gene transcription can change for a 

single transcription factor depending on where the protein binds with reference to 

important promoter elements. Some regulatory elements and their contributions to the 

regulation of transcription initiation are not as quantifiable as the promoter elements and 

transcription factors already mentioned.  

The inherent curvature of the DNA itself can greatly influence gene expression 

through enhancement or repression of polymerase binding. Supercoiling of the DNA 

within the bacterial cell is controlled, in part, by nucleoid proteins which mostly bind 

DNA nonspecifically and contribute to DNA packaging. Even weak interactions between 
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these nucleoid proteins and a specific region of DNA could lead to inhibition through 

increased folding and prevention of polymerase binding similar to the looping form of 

repression by transcription factors. Alternatively, some nucleoid proteins relax DNA 

curvature and effectively act as activators of transcription. DNA curvature is also subject 

to modulation through simple changes in environmental conditions such as temperature, 

pH, and osmolarity which can influence the chemical structure of the molecule. Together 

these regulatory mechanisms combine to create a vast array of switches and 

potentiometers for the fine tuning of transcription initiation and gene expression 

throughout the life of the bacterium. These regulatory elements and their effects on 

initiation of transcription are universal throughout the bacterial domain. 

 

1.2 Shigella flexneri 

 Shigella was first described as the etiologic agent responsible for bacillary dysentery 

in humans in 1898 and the genus subsequently named so in honor of its discoverer, Dr. 

Kiyoshi Shiga (Trofa et al. 1999). The genus currently consists of four species, S. 

flexneri, S. sonnei, S. dysenteriae, and S. boydii, of Gram-negative, non-motile, non-spore 

forming and non-lactose fermenting obligate pathogens which are over 90% similar to E. 

coli in DNA-DNA hybridization studies of the chromosomes (Brenner et al. 1969). 

Together, the four species account for over 165 million annual cases of bacillary 

dysentery, commonly referred to as Shigellosis (Kotloff et al. 1999). These infections 

lead to over 1 million deaths every year and 61% of those deaths are attributable to 

children under the age of five (Kotloff et al. 1999). S. flexneri is most often the bacterium 

responsible for cases of Shigellosis and as few as 100 bacterial cells have been shown to 
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be sufficient for infection, making Shigella one of the most infectious bacterial agents 

(DuPont et al. 1989).  

 Following ingestion, Shigella cells are passively transported through the digestive 

system to the colon where highly endocytic microfold (M) cells, as part of the 

gastrointestinal-associated lymphoid tissue (GALT), transport the bacterium across the 

mucous membrane to the basolateral surface. Typically, awaiting macrophages, which 

along with the M cells make up the Peyer’s patches, phagocytose the bacterium but 

quickly succumb to bacterial induced apoptosis resulting in rerelease of the bacterium at 

the basolateral surface of the colonic epithelium (Chen et al. 1996). The bacterial induced 

membrane ruffling of the colonic epithelial cell leads to uptake of the bacterium by the 

host cell (Nhieu and Sansonetti 1999). Following host cell invasion, the bacterium is able 

to replicate and spread intercellularly through polymerization of the host cell actin into a 

tail-like structure (Goldberg et al. 1993).  

Successful invasion and infection requires the expression of many effector molecules, 

including a host of invasive protein antigens (IPAs) which are secreted into the host cell 

by a type III secretion needle also encoded by the virulence plasmid (Blocker et al. 1999). 

Throughout the infection, Shigella generates many proteins which promote an increased 

immunological response outside of the invaded host cell while other proteins serve to 

maintain the integrity of this infected cell (Ogawa et al. 2005, Sansonetti et al. 1995). 

This strategy increases the disruption of the colonic epithelium by the host innate 

immune response allowing bacterial access to the basolateral surface by more Shigella 

cells present in the colon while also providing a relatively safe home for the infecting 

bacterial cell. Safe entry of the bacterium into the host cell would benefit from 
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appropriate timing of the bacterial-mediated immunological response. Furthermore, the 

various stages of pathogenesis require the expression of specific effector molecules by 

Shigella suggesting that precise control over virulence gene expression is required for the 

infectious process. 

 

1.3 Virulence Gene Regulation in Shigella flexneri 

The transcriptional regulation of virulence genes in Shigella flexneri involves a 

regulatory cascade in which environmental signals and competing transcription factors 

modulate gene expression at multiple levels (Fig. 1). Molecular studies of the 

intracellular pathogen and the genetic determinants required for host cell invasion have 

been ongoing for nearly four decades (Formal et al. 1971). Genes required for invasion of 

host cells are encoded by a large (approximately 230 kb) virulence plasmid present in all 

Shigella species (Sansonetti et al. 1982). Initiation of this transcriptional cascade begins 

with transcription of the virF gene, which encodes the primary regulator of virulence 

genes (Adler et al. 1989). The VirF protein then positively regulates the virB gene 

encoding a global regulator which is largely responsible for transcription of the structural 

virulence genes encoding the invasive protein antigens (IPAs), the type III secretion 

system, and other effector molecules. (Adler et al. 1989, Wing et al. 2004). The virF gene 

is optimally transcribed at 37 °C and with moderate pH and osmolarity (Porter and 

Dorman 1997b). Interestingly, these environmental signals appear to influence the 

transcriptional regulation of virF through modifications of DNA superhelicity (Porter and 

Dorman 1997a, Tobe et al. 1995). In fact, DNA topology is central to gene expression at 

all levels of this regulatory cascade. Furthermore, the transcription factors involved in 
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virulence gene regulation, Factor for Inversion Stimulation (FIS), Integration Host Factor 

(IHF), and Histone-like Nucleoid Structuring protein (H-NS), are nucleoid-associated 

proteins which typically modulate DNA curvature. Of these, FIS appears to specifically 

regulate the virF gene positively through restructuring of the DNA and through 

competition for binding with the global repressor H-NS (Falconi et al. 2001). H-NS 

negatively regulates many Shigella virulence genes, including virB, through increased 

DNA supercoiling which most likely prevents RNA polymerase binding (Falconi et al. 

1998, Tobe at al. 1995, Castellanos et al. 2009). Presumably, the repression of virulence 

gene expression is important for the success of the bacterium, which also maintains two 

H-NS backups, StpA and Sfh (Beloin et al. 2003).  Globally, the repressive effects of H-

NS are antagonized by the IHF protein (Porter and Dorman 1997c). Additionally, the 

VirF protein appears to antagonize H-NS at the virB transcriptional level and in turn VirB 

antagonizes the H-NS repression of other virulence genes (Castellanos et al. 2009, Tobe 

et al. 1995). Interestingly, experimental evidence of direct binding of the DNA by VirF or 

VirB during H-NS antagonism is lacking (Dorman and Porter 1998). During optimal 

environmental conditions, gene expression increases 10-fold at every level of the 

regulatory cascade (Porter and Dorman 1997b). Together, these observations suggest that 

the transcriptional control of virulence genes in S. flexneri is regulated by a few global 

actors and this regulatory scheme results in either an all on or all off pattern of virulence 

gene expression under the proper environmental conditions. This regulatory structure 

appears to be counterintuitive and inefficient when considering the many steps involved 

in invasion and infection of human colonic epithelial cells. It is therefore likely that many 

Shigella genes require unique signals for initiation of transcription.  
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Recently, the regulatory cascade has been shown to be iron responsive through 

transcriptional repression of the virB gene by the small RNA RyhB in iron limiting 

conditions (Murphy and Payne 2007). While this mechanism does increase the 

complexity of virulence gene regulation at the transcriptional level, any increase or 

decrease of virB transcription will most likely be mirrored downstream in the regulatory 

cascade and will still not provide a branch point from the cascade or an instance of a 

unique expression profile for any one virulence gene. 

One well studied example of differential regulation within the regulatory cascade 

involves positive regulation of a small subset of genes encoding secreted proteins by the 

transcription factor MxiE, which is encoded within the mxi-spa region required for 

assembly of the type III secretion apparatus (Mavris et al. 2002). This transcription factor 

appears to preferentially activate type III effectors following entry into the host cytosol, 

although the link between the transcriptional activation of these particular genes and 

Shigella pathogenesis is unclear (Kane et al. 2002).  

Currently, our understanding of virulence gene expression through transcription 

initiation in Shigella creates a contradiction. The global repression of virulence gene 

transcription exerted by H-NS and the presence of two backup repressors encoded by the 

Shigella genome suggests that the transcriptional load present upon induction of the 

virulence gene regulatory cascade is unhealthy for the bacterial cell. From what we know, 

transcription initiation as controlled by the regulatory cascade provides the bacterial cell 

with an all or nothing transcriptional “choice”. Transcriptional regulatory mechanisms, 

similar to the activation of only certain genes by MxiE during a specific stage of 

pathogenesis, would allow for the precise regulation of virulence genes at appropriate 
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points during invasion and infection and therefore reduce any unnecessary transcription 

which would allow for more efficient use of cellular energy. 

 

  

FIGURE 1. Summary of the Shigella flexneri virulence gene regulatory cascade for the 

icsp, ipaJ, phoN1, and ipaH7.8 genes examined in this thesis. Known transcription 

factor/gene interactions are shown. Positive and negative regulators of transcription are 

listed next to the virF, virB, and icsP genes along with their effect indicated by an arrow. 

Transcriptional regulation of the phoN1 gene is unclear while the ipaJ gene appears to be 

regulated by the regulatory cascade through VirB, but this has not been confirmed, which 

is indicated by a dashed arrow. 
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CHAPTER 2 

TWO PROMOTERS AND TWO TRANSLATION START SITES CONTROL THE 

EXPRESSION OF THE SHIGELLA FLEXNERI OUTER MEMBRANE PROTEASE 

ICSP 

2.1 Introduction 

Shigella species are gram-negative intracellular pathogens that cause bacillary 

dysentery in humans by invading cells of the colonic epithelium (Labrec et al. 1964, 

Sansonetti 1998). Once inside host cells Shigella move through the cytoplasm and into 

adjacent cells using actin-based motility. This process is mediated by the Shigella outer 

membrane protein IcsA (VirG), which polymerizes eukaryotic actin monomers into a tail 

of tightly bundled filaments on one pole of the bacterium (Bernardini et al. 1989, 

Goldberg et al. 1993). Shigella flexneri mutants lacking icsA are avirulent in animal 

models (Makino et al. 1986), demonstrating that actin-based motility is essential for 

Shigella pathogenicity.  

The outer membrane protease IcsP modulates the amount and distribution of IcsA 

associated with Shigella. The activity of this protease was originally observed when 

growth medium was found to contain a 95 KDa polypeptide of IcsA after it had 

supported Shigella growth (Goldberg et al. 1993). Two groups identified IcsP (SopA) as 

the protease responsible for the cleavage of IcsA (Egile et al. 1997, Shere et al. 1997). 

Data collected by these two groups throughout five studies demonstrated that IcsP plays a 

role in the modulation of IcsA and the actin-based motility of Shigella (d'Hauteville et al. 

1996, Egile et al. 1997, Shere et al. 1997, Steinhauer et al. 1999, Wing et al. 2005). 

Although IcsA is localized to the old pole of the bacterium in wild type Shigella 
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(Goldberg et al. 1993), expression of a non-cleavable form of IcsA in Shigella was found 

to lead to an increase in the circumferential localization of IcsA (d'Hauteville et al. 1996). 

Similar phenotypes were reported for icsP mutants in vitro (Egile et al. 1997, Shere et al. 

1997, Steinhauer et al. 1999).  When the intra- and intercellular phenotypes of icsP 

mutants were analyzed, abnormal actin-based motility and cell-to-cell spread were 

observed regardless of the serotype examined (Egile et al. 1997, Shere et al. 1997). 

Furthermore, Shigella cells expressing plasmid-borne icsP were found to lack detectable 

IcsA on their surfaces and the effects of icsP mutation on intercellular movement and 

plaque formation were also serotype dependent (Steinhauer et al. 1999, Wing et al. 2005). 

Since dysregulation of the icsP gene generates Shigella phenotypes that are consistent 

with attenuation of virulence, these studies strongly suggest that the icsP gene and its 

protein product will be tightly regulated. 

Like many of the genes required for virulence of S. flexneri, icsA and icsP are 

encoded by the large ~230 kb virulence plasmid of S. flexneri. (Jin et al. 2002). This 

virulence plasmid encodes the transcription factor VirB which positively regulates many 

genes on the plasmid including icsP (Dorman and Porter 1998, Wing et al. 2004). The 

VirB-dependent regulation of the icsP promoter requires two distal VirB sites located 

between positions -1144 and -1130 relative to the annotated transcription start site (TSS) 

(Castellanos et al. 2009). These binding sites are located within an unusually large (~1.2 

kb) intergenic region, which separates the icsP gene and the divergently transcribed ospZ 

gene.  

In Shigella flexneri serotype 2a, coding sequences account for 76.24% of the 

virulence plasmid (Blattner et al. 1997, Jin et al. 2002). Although the coding density of 
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the Shigella virulence plasmid is lower than the Escherichia coli K12 chromosome 

(87.8%; 4), the intergenic region upstream of the icsP gene is still abnormally large when 

compared to the average size of an E. coli K-12 intergenic region (1.2 kb vs. 246 bp, 

respectively; (Pupo et al. 2000). Furthermore, the remote location of the VirB binding 

sites that influence icsP expression already implicates this large intergenic region in the 

transcriptional regulation of the icsP gene.  

Based on the role that IcsP plays in maintaining the surface distribution of IcsA 

and how this ultimately regulates Shigella actin-based motility, we hypothesize that the 

icsP gene and /or its protein product will be tightly regulated. The aim of this study was 

to further characterize the regulation of IcsP at both the transcriptional and translational 

level. To do this, we chose to examine the entire upstream intergenic region for sequence 

elements involved in the regulation of IcsP. 

 

2.2 Results 

2.2.1 In Silico Analyses of the Intergenic Region Upstream of icsP 

Due to the unusual length of the intergenic region and its involvement in the 

regulation of icsP, we wanted to further analyze this region for elements contributing to 

the transcriptional regulation of the icsP gene. To do this, our initial approach was to 

analyze the entire 1232 bp sequence using in silico tools. To identify putative promoter 

sequences the intergenic region upstream of icsP was entered into the BPROM program 

for prediction of promoters regulated by the σ
70

 subunit of RNA polymerase 

(http://linux1.softberry.com). The BPROM software identified four putative transcription 

start sites (TSSs) with associated -10 and -35 sequences at positions -84, -422, -769, and -
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1106 relative to the previously annotated TSS (Fig. 2a). Interestingly, the BPROM 

program did not identify the originally annotated promoter. Analysis of the divergent 

strand predicted four additional promoters approximately 20 bp upstream of each TSS 

found on the complementary strand. This is not surprising considering the adenine and 

thymine composition of the -10 sequence. To examine whether any of the predicted 

promoters were aligned with potential open reading frames (ORFs), the entire intergenic 

region was analyzed with the microbial gene finding system Glimmer (NCBI). Only one 

ORF, identified on the icsP coding strand, lay within 150 bp of a putative TSS found by 

BPROM. This was the TSS at the -84 position. This ORF begins 33 bp upstream of the 

annotated icsP gene (Fig. 2b). This would allow for the production of a polypeptide 

exactly 11 amino acids longer than and yet still in frame with the previously described 

icsP gene. A common problem with ORF prediction software is that they identify the 

longest ORFs and frequently miss internally coded start codons (Delcher et al. 1999). 

This may explain why the Glimmer program did not identify the beginning of the 

originally annotated icsP gene (Egile et al, 1997). 

2.2.2 Identification of Two Promoters Responsible for Regulation of the icsP Gene 

Given the discrepancy between the predicted and annotated TSSs, we wanted to 

experimentally determine the position of all TSSs using primer extension analysis (Fig. 

3). Primer extension analyses were performed on RNA isolated from the wild type S. 

flexneri 2a strain (2457T), the isogenic virB mutant (AWY3) and from wild type Shigella 

carrying either the icsP promoter and gene (pHJW6) or a PicsP-lacZ promoter fusion 

(2457T) or a low copy cloning vector (pHJW6 & pHJW20), two products were observed, 

indicating that the icsP gene is transcribed from two promoters. The sizes of these two
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 products indicate that TSSs occur at +1 and -84 relative to the previously annotated icsP 

TSS (Fig. 3). These data are in agreement with our in silico analyses (Fig. 2b) (Egile et 

al. 1997). We therefore designated the +1 and -84 TSSs and their accompanying 

promoter elements P1 and P2, respectively. Quantification of the primer extension 

products by densitometry indicate that the P2 signal is approximately half that of the P1 

FIGURE 2. Graphical representation of the entire icsP intergenic region and important 

promoter elements. The entire icsP promoter and gene with the locations of the annotated 

TSS, ORF and upstream VirB binding sites (grey arrows and box) and predicted TSSs 

and ORFs (white arrows) (a). Promoter elements of the icsP P1 and P2 promoters (b). P1, 

solid angled arrow; P2, dashed angled arrow represent; -10 and -35 sites are boxed and 

labeled. The P1 and P2 translation start sites are enclosed by arrows and labeled. (c) 

Schematic representations of the lacZ fusion inserts in pHJW20, pKML03, and pCTH03, 

respectively. The inserts are drawn to scale and the numbers are relative to the P1 TSS.   
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signal in all wild type strains. The increased signal intensity of products generated from 

strains carrying plasmids of the pHJW series was attributed to the copy number of these 

plasmids. In summary, these analyses identify two promoters involved in the 

transcriptional regulation of the icsP gene. We next wanted to examine how these two 

promoters are regulated. 

  

FIGURE 3. Primer extension analysis of the 

virulence plasmid-encoded icsP gene (2457T), the 

virB mutant (AWY3), the icsP inducible plasmid 

(pHJW6), and the icsP-lacZ promoter fusion 

(pHJW20).  The new TSS, P2, is identified with its 

relative location to the annotated TSS, P1. A 

sequencing reaction (first four lanes) was used to 

calibrate the gel. The experiment was repeated three 

times and representative data are shown. 
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2.2.3 Both icsP Promoters Are Dependent Upon the Transcription Factor VirB and 

VirB Binding Sites Located Over 1 Kb Upstream of Both TSSs 

Previous work has demonstrated that icsP is regulated by the Shigella 

transcriptional regulator VirB (Wing et al. 2004). Two VirB binding sites located over 1 

kb upstream of the originally annotated TSS was shown to be required for this VirB-

dependent regulation (Castellanos et al. 2009).To determine the effect of VirB-dependent 

regulation on P1 and P2, -galactosidase assays were conducted with varying promoter 

constructs containing either P1 and P2 (pHJW20), P2 only (pKML03), or no promoter 

(pCTH03), in wild type Shigella or a virB mutant background.  

Our data show that P2 alone contributes approximately 70% of the total promoter 

activity in wild type cells. In contrast, in the virB mutant background the activity of both 

promoters is significantly decreased (Fig. 4), indicating the activity of both promoters is 

dependent upon VirB. To further test the role of the distal VirB binding sites on P1 and 

P2 regulation, base pair substitutions that completely abolish the previously annotated 

VirB binding sites (Castellanos et al. 2009) were introduced into each of the reporter 

plasmids and promoter activity was measured in a wild type and virB mutant background. 

In wild type cells both constructs carrying the mutated binding sites exhibited a 

significant reduction in icsP promoter activity, and this activity was similar to that 

observed in the virB mutant background (Fig. 4). Furthermore, our primer extension 

analysis revealed no detectable primer extension products in the Shigella virB mutant 

lane (Fig. 3, AWY3). Taken together, these data indicate that VirB acts as a 

transcriptional regulator for both icsP promoters and that both promoters require the 

presence of the two distal VirB binding sites to mediate this effect. 
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FIGURE 4. Activities of the wild type icsP promoter or a promoter carrying substitutions 

in the distal VirB binding sites (centered at -1137, with respect to P1) in wild type S. 

flexneri (2457T) and the virB mutant (AWY3). pHJW20 is a construct carrying both 

promoters and pKML03 carries the P2 promoter alone. Assays were run in triplicate and 

the means and standard deviations are shown. 

 

2.2.4 Both Promoters Respond Similarly to Changes in Phase of Growth, Iron 

Concentration, PH, and Osmotic Pressure 

Multiple promoters often allow for the differential regulation of a single gene 

product in response to bacterial growth or environmental stimuli (Erickson et al. 1987, 

Raina et al. 1995). In Shigella, many virulence genes are regulated at the level of 

transcription by changes in temperature, pH, osmolarity, and iron concentration (Mitobe 

et al. 2009, Murphy and Payne 2007, Porter and Dorman 1997a). The presence of two 

promoters upstream of the icsP gene raises the possibility that these promoters respond 
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differently to growth phase and/or environmental cues. Although expression of VirB is 

known to be regulated by these environmental signals and VirB is required for 

transcription from both promoters as demonstrated here, we wanted to investigate 

whether changes in environmental conditions experienced by Shigella during 

colonization would allow for more refined control of icsP transcription through 

capitalization of the two-promoter  architecture. Therefore, we examined the change in 

activities of the two promoters following a decrease in either, pH, osmolarity, or iron 

concentration using the pHJW20 and pKML03 constructs. A decrease in iron 

concentration, pH, or osmotic pressure all seemed to affect each promoter similarly, with 

P2 contributing between approximately 60-75% of the combined promoter activity (Table 

1). Since icsA expression is regulated in a growth phase-dependent manner (Goldberg et 

al. 1994), we also conducted a time course assay to determine whether the relative 

activity of the two promoters varies with phase of growth. Our data show that both icsP 

promoters are maximally active during stationary phase and that P2, represented by 

pKML03, contributes approximately 59% (2 h) to 76% (10 h) of the combined promoter 

activity, represented by pHJW20 (Fig. 5).  These data indicate that the relative 

contribution of P1 and P2 to overall activity of the icsP promoters remains constant under 

a variety of conditions, suggesting that the two icsP promoters do not appear to be 

differentially regulated, at least under the conditions tested here. 
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TABLE 1. Contribution of P2 promoter activity to total icsP promoter activity  
Environmental 

parameter 
Specific condition in Luria-Bertani 

medium 
Percent 

contribution
a
 

pH 7.4 75.54 ± 6.96 
  5.5 61.88 ± 19.55 

Iron concentration  Normal (0 μg ml
-1

 EDDA)  69.86 ± 1.12 
  Reduced (15 μg ml

-1
 EDDA) 74.81 ± 5.48 

Osmotic pressure Normal NaCl concentration (LB) 72.32 ± 0.07 
  Half NaCl concentration (LO) 67.20 ± 3.96 

a

Average
 

percent contributions are based upon the promoter activity of P2 (pKML03) compared to the total 

promoter activity (pHJW20).  Assays were run in triplicate and the means and standard deviations are 

shown. 
 

FIGURE 5. Activity of the icsP promoter constructs in response to growth phase in wild 

type Shigella (2457T). pHJW20 is a construct carrying both promoters, pKML03 carries 

the P2 promoter alone, and pCTH03 carries neither icsP promoter. Promoter activities 

were measured throughout growth (0-10 h) and optical densities of the cultures carrying 

each promoter construct are shown. The data are normalized using pMIC21, the 

promoterless lacZ gene. Assays were run in triplicate and the means and standard 

deviations are shown. 
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2.2.5 Transcription from the Two icsP Promoters Allows for Translation Initiation from 

Two Sites 

Our in silico analysis revealed the potential for an additional translation start site 

upstream and yet still in frame with the annotated translation start site (Fig. 2b). This 

second translation start site lies downstream of P2, raising the possibility that it is unique 

to P2 regulated transcripts. To examine whether this translation start site is used in the 

production of the mature, secreted IcsP protein, IcsP levels were measured in an icsP 

mutant carrying a low copy plasmid containing either both translation start sites 

(pHJW6), a single translation start site (pCTH16/downstream only or pCTH17/upstream 

only) or no translation start sites (pCTH18). Western blot analysis of whole cell protein 

preparations harvested from cells carrying each of these constructs, show that levels of 

the mature form of IcsP decrease (10-20% of wild type production) when either the 

upstream or downstream translation start sites are eliminated (pCTH16 and pCTH17 

respectively) and are undetectable when translation from both sites is prevented 

(pCTH18). These data indicate that both translation start sites can be used to produce the 

mature form of IcsP (Fig. 6a). Furthermore, since IcsP is an outer membrane protease, 

which is secreted across the inner membrane via the general secretion pathway, our 

detection of mature IcsP in cells which lack either one translation start site or the other, 

strongly suggests that two isoforms of nascent IcsP are made and that each form is 

rapidly processed to a single mature form during secretion. This idea is supported by the 

signal peptide prediction program SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP) 

which predicts a single signal peptide cleavage site for each of the predicted, nascent IcsP 

isoforms (data not shown). 
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2.2.6 Translation Initiation from Either Start Codon Produces IcsP Capable of 

Proteolytically Cleaving IcsA 

Having established that two translation start sites are used in the production of 

IcsP, we next wanted to test whether the resulting IcsP proteins differed in their 

proteolytic activity, as judged by their cleavage of IcsA. To do this we probed the same 

protein cell extracts utilized for the IcsP analysis with an IcsA antibody. Our data show a 

FIGURE 6. Amount and activity of IcsP produced from either the upstream or the 

downstream translation start site. IcsP levels were measured in the icsP mutant 

(MBG341) carrying either pHJW6 (both translation start sites), pCTH16 (the downstream 

translation start site), pCTH17 (the upstream translation start site), or pCTH18 (no 

translation start site) (a). Proteolytic activity of IcsP generated from either the upstream or 

the downstream translation start site, as judged by loss of IcsA, was measured in the icsP 

mutant (MBG341) carrying either pHJW6, pCTH16, pCTH17, or pCTH18 (b). The same 

whole cell protein extracts were used for both the IcsP and IcsA blots. The experiment 

was repeated three times and representative data are shown. 
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reduction of the IcsA signal is seen in all lanes except those containing cell extracts from 

the icsP mutant (MBG341) and 2457T pCTH18, a construct which lacks both translation 

start sites (Fig. 6b). This observed decrease in full length IcsA protein levels is consistent 

with cleavage of IcsA by IcsP. These data therefore suggest that regardless of which 

translation start site is used to make the IcsP protein, the resulting protease is capable of 

cleaving IcsA. 

2.2.7 Putative Translation Start Sites Are Commonly Found Around Start Codons of 

Annotated Open Reading Frames of the Shigella flexneri Chromosome and Virulence 

Plasmid 

Having established that two methionine codons located at the start of the icsP 

gene can act as translation start sites for the production of IcsP, we wanted to examine 

how frequently additional translation start sites are found around annotated translation 

start sites within genome of S. flexneri. We chose to address this question via genome-

wide scan for putative translation start sites. We assumed that translation start sites 

consist of two main elements: the start codon and Shine-Dalgarno sequence or ribosome 

binding site (RBS). First we examined fifty codons of genomic sequence up and 

downstream of start codons of all annotated ORFs of S. flexneri 2a strain 301 encoded by 

the virulence plasmid pCP301 and the chromosome for presence of potential start codons 

(Jin et al. 2002, Wei et al. 2006). Second, we determined whether the identified potential 

alternative start codons are associated with RBSs by applying a position-specific scoring 

matrix (PSSM) specific for the RBS in S. flexneri 2a strain 301 (Supplementary Fig. 1), 

to 20 nucleotide stretches of sequence upstream of every potential start codon.  
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FIGURE 7. Distribution of putative start codons positioned up and downstream of the 

annotated start codon (0) in the S. flexneri virulence plasmid (a) and chromosome (b). 

The total number of predicted start codons are shown for each coordinate (light grey) 

along with the total number of predicted start codons associated with predicted Shine-

Dalgarno sequence (dark grey). The inset values indicate the total number of annotated 

translation start sites (bottom) and annotated translation start sites associated with a 

predicted Shine-Dalgarno sequence (top). Translation start site analysis scripts were 

designed and run by Olga Kamneva, University of Wyoming. 
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We revealed that out of the 4705 analyzed ORFs, 4165 have at least one 

additional putative start codon within a fifty codon range up and downstream of 

annotated start codons. For 2070 of the ORFs at least one alternative start codon is 

associated with a putative RBS. Figure 7a and b shows the distribution of alternative start 

codons and alternative translation start sites within the examined range of genomic DNA. 

The trend within the distribution is better defined among ORFs on the chromosome, 

because of the larger number of ORFs examined. The number of detected start codons 

quickly declines within intergenic spaces compared to those within the ORFs, due to 

present of in-frame stop codons, however local maxima of alternative translation start 

sites are located at codon 10, and between 35 and 40 codons upstream of the annotated 

translation start site. Within the coding regions, local maxima are found between codon 

18-20 and at codon 35. The distribution of p-values for RBSs associated with annotated 

and alternative start codons are shown on (Supplementary Fig. 2). It is clear from these 

values that some alternative translation start sites are associated with much stronger RBSs 

than the annotated translation starts. 

 

2.3 Discussion 

This work has identified a second TSS for the Shigella icsP gene. Transcription 

from this site ultimately allows translation to proceed from a newly identified translation 

start site located 33 bp upstream of the originally annotated translation start site. Our 

work demonstrates that regardless of which translation start site is used, a mature form of 

IcsP is made that is capable of proteolytically cleaving the Shigella actin based motility 

protein IcsA. It remains unclear whether the complex organization of the icsP regulatory 
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region simply allows for transcriptional and translational redundancy or whether this 

organization allows for the exquisite control over icsP transcription and subsequent 

protein production in response to cellular and/or environmental cues. 

Regulation from multiple promoters has been well documented in other bacterial 

species and is usually found to contribute to the differential regulation of a single gene. 

While our experiments did not allow us to identify conditions which lead to the 

differential regulation of the two icsP promoters, we can now eliminate decreases in pH, 

osmolarity and iron concentration from other environmental conditions encountered in 

the human host, which have the potential to differentially regulate the two icsP 

promoters. Our data show that both icsP promoters are most active during stationary 

phase cultures. This pattern of expression is in agreement with the clearance of IcsA from 

the bacterial cell surface in stationary phase cultures (Goldberg et al. 1994) and the model 

for IcsP activity during pathogenesis, which proposes a build-up of IcsA on one pole of 

the bacterial outer membrane, maintenance of a tight polar cap of IcsA by removing IcsA 

that diffuse away from the pole through the activity of IcsP, and finally clearance of IcsA 

from the bacterial surface by IcsP (Goldberg et al. 1994, Steinhauer et al. 1999). 

Another way multiple promoters can be differentially regulated is by the use of 

different transcription factors. Many virulence genes in Shigella are commonly regulated 

by the transcription regulator, VirB. Previous work, by us and others, has demonstrated 

that transcription of icsP is positively regulated by VirB (Castellanos et al. 2009, Le Gall 

et al. 2005b, Wing et al. 2004). The work presented here reveals that both icsP promoters 

are positively regulated by VirB and that this regulation is mediated by a VirB binding 

site located over 1 kb upstream of the originally annotated TSS, because site directed 
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mutagenesis of these binding sites reduce promoter activity of both P1 and P2 to level 

observed in virB mutant. VirB functions at Shigella promoters, including the icsP 

promoter, by alleviating transcriptional repression mediated by the nucleoid structuring 

protein H-NS, rather than by activating the promoter per se. Since the activity of P1 and 

P2 increases in the presence of VirB, both promoters are likely to be repressed by H-NS. 

Whether or not other DNA binding proteins interact with the long intergenic region 

upstream of the icsP promoter, and what role this has in the regulation of the two icsP 

promoters remains unclear at this stage, but this is an avenue of research investigation in 

our laboratory. 

In bacterial genomes, alternative sigma factors sometimes allow the differential 

regulation of multiple promoters associated with a single gene. In our study the BPROM 

software failed to identify the previously annotated TSS in our analysis. This might 

indicate the possible use of an alternative sigma factor, even though both icsP promoters 

contain -35 sequences closely resembling the consensus for σ
70

-dependent regulation. 

Since the activity of both icsP promoters is maximal in stationary phase cultures, the 

most likely alternative sigma factor to be used to control icsP expression is the stationary 

phase sigma factor, σ
S
. Despite maximal activity of the two icsP promoters in stationary 

phase cultures, the sequences surrounding P1 and P2 contain no consensus sequences 

known to bind σ
S
 or other alternative sigma factors. 

In all of our -galactosidase assays the relative contribution of each icsP promoter 

to total icsP promoter activity remained similar, regardless of the conditions used; P2 

promoter activity contributed approximately 60-75% of the total promoter activity. 

Nevertheless, in our primer extension analysis, the P2 generated transcripts contribute to 
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approximately 33% of the total signal intensity from both P1 and P2. This apparent 

inconsistency may be caused by an inherent bias for shorter transcripts within the primer 

extension analysis. Alternatively, it is possible that the P2 transcripts are less stable than 

the P1 transcripts. Interestingly, the reduced level of P2 versus P1 transcripts in our 

primer extension analyses (Fig. 3) is consistent with the decreased amount of IcsP protein 

detected by western blot analyses when only the upstream translation start site is used 

(Fig. 6a, pCTH17 lane). 

The organization of the icsP promoter region means that if transcription occurs 

from P1, translation can only occur from the downstream translation start site, whereas if 

transcription occurs from P2 then translation has the potential to start from either the 

upstream of downstream translation start site. This raises the question whether both 

translation start sites are used in a P2 transcript.  Recent studies on polysome 

organization (Brandt et al. 2009) indicate that the distance between the two translation 

start sites in a P2 transcript (11 codons) is unlikely to allow simultaneous ribosome 

binding. This, along with the fact that our bioinformatics studies reveal no good match to 

the consensus Shine-Dalgarno sequence associated with the downstream translation start 

site, strongly suggests that the upstream translation start site would be favored in P2 

transcripts, at least in the absence of accessory translation initiation factors.  

Our work demonstrates that two translation start sites can be used to generate the 

mature and active form of IcsP. Since IcsP is secreted using the general secretion 

pathway, the two nascent isoforms must include an amino terminal signal sequence 

consisting of positively charged amino acids involved in protein targeting to the inner 

membrane for secretion (Fekkes and Driessen 1999). Interestingly, analyses of the two 
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nascent isoforms of IcsP using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP), 

predicts that each isoform is likely to be cleaved at the same position, to release two 

different signal peptides, but the same mature IcsP protein. The extended positively 

charged amino terminus of the longer nascent IcsP protein could allow for enhanced 

protein processing and translocation similar to the enhanced secretion of outer membrane 

proteins observed in E. coli (Akita et al. 1990). More efficient processing and 

translocation of the longer IcsP product may explain why the shorter IcsP protein product 

is expressed at a higher level but contributes to less IcsA cleavage as indicated by 

densitometry analyses of our IcsP and IcsA western blots.  

 While this study adds to our understanding of the icsP intergenic region and the 

role of this region plays in the regulation of the Shigella outer membrane protease, further 

investigation is needed to understand whether additional regulatory elements exist within 

this intergenic region and how these elements affect the production of IcsP and ultimately 

Shigella actin-based motility. Although the purpose of the second promoter and second 

translation start site remains unclear, our results suggest that production of the outer 

membrane protease IcsP may be more intricately regulated than previously thought. 

 The genome-wide screen for alternative translation start sites conducted within 

the present study, along with our observations at made at the icsP promoter,  provides the 

first evidence that functional alternative in-frame translation start sites in the genome of 

S. flexneri 2a strain 301 is a general phenomenon rather than something specific for icsP 

gene. Whether our observation is restricted to the genome of S. flexneri 2a strain 301 or is 

the general property of microbial genomes will require additional studies. It should be 

noted that recent work by Tucker and Escalante-Semerena (Tucker and Escalante-

http://www.cbs.dtu.dk/services/SignalP
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Semerena 2010), demonstrates that two isoforms of CobB are made from a single gene in 

Salmonella enterica and that these two isoforms have different biological activities. Our 

findings, in conjunction with these studies, imply that the use of alternative translation 

start sites may increase the size of the proteome and, in some instances, lead to a larger 

range of physiological functions being encoded by the bacterial genome than was 

previously acknowledged. 

 

2.4 Materials and Methods 

2.4.1 Bacterial Strains, Plasmids, and Media 

The bacterial strains and plasmids used in the present study are listed in Table 2. 

E. coli strains were grown at 37 ˚C in Luria-Bertani (LB) broth with aeration or on LB 

agar (LB broth containing 1.5% [wt/vol] agar). S. flexneri were grown at 37 ˚C in 

Trypticase Soy Broth (TSB) with aeration or on Trypticase Soy Agar (TSA) (TSB 

containing 1.5% [wt/vol] agar). Where appropriate, chloramphenicol was added at a final 

concentration of 25 μg ml
-1

. To ensure that Shigella strains had maintained the large 

virulence plasmid during manipulation, Congo red binding was tested on TSA plates 

containing 0.01% (wt/vol) Congo red (Sigma Chemical Co., St. Louis, Mo.). 

2.4.2 Plasmid Construction 

The starting point for this work was the PicsP-lacZ reporter plasmids pHJW20 

and pMIC18 (described in (Castellanos et al. 2009); Table 2). pHJW20 carries 1232 bps 

upstream of the TSS of the icsP promoter annotated by Egile et al. (Egile et al. 1997), the 

first 48 bp of the icsP coding region cloned upstream of a translation stop site, and a 

unique XbaI site upstream of a promoterless lacZ gene, so the expression of lacZ is 
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directly regulated by the icsP promoter. pMIC18 is identical to pHJW20, but carries a 14 

bp substitution that destroys the two upstream VirB-binding sites that are required for the 

VirB–dependent regulation of icsP (Castellanos et al. 2009).  

To create pKML03, a truncated icsP promoter fragment was amplified from 

pHJW20 using oligonucleotides W93 (5’-TGGGTTGAAGGCTCTCAAGGGC-3’) and 

W123 (5’- TATTTTGCTCTAGATTTTAATTAAATATTTGTTTATGTTACC-3’). The 

PCR fragment was digested with PstI and XbaI, and the resulting DNA fragment was 

ligated into pHJW20 previously digested with PstI and XbaI. The resulting construct 

lacked the P1 TSS, and its -10 and -35 promoter elements, due to a 48 bp truncation at the 

3’ end of the icsP promoter region. To create pCTH02, mutated VirB binding sites from 

pMIC18 were isolated on a PstI and PacI restriction fragment and introduced into 

pKML03 previously digested with PstI and PacI. The resulting construct therefore 

carried mutated, instead of wild-type VirB binding sites. To create pCTH03, a truncated 

icsP promoter fragment was amplified from pHJW20 using oligonucleotides W93 and 

W167 (5’- TATTTTGCTCTAGACCTCATTGTGCGAATAAAGTAACGG-3’). The 

PCR fragment was digested with BglII and XbaI, and the resulting DNA fragment was 

ligated into pHJW20 previously digested with BglII and XbaI. The resulting construct 

therefore lacked both P1 and P2, due to a 132 bp truncation at the 3’ end of the icsP 

promoter region. 

 To measure IcsP production and IcsP protease activity, the plasmid pHJW6 and 

its derivatives were used (described in (Wing et al. 2004); Table 2). pHJW6 is identical to 

pHJW20, but instead of carrying a PicsP-lacZ fusion this plasmid carries the full icsP 

coding region downstream of the icsP promoter region.  
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To create pCTH16, the sequence encoding the icsP gene was isolated from 

pHJW6 using PacI and BamHI restriction enzymes and used to replace the lacZ gene in 

pHJW36. pHJW36 lacks the -35 and part of the -10 promoter elements for P2 and this 

has been demonstrated to result in an inactive P2, as evidenced by i) primer extension 

analysis (unpublished data) and ii) the drop in total icsP promoter activity (Castellanos et 

al. 2009), consequently the newly formed construct pCTH16 could be used to measure 

IcsP protein production generated from P1 specific transcripts and hence the downstream 

translation start site. To create pCTH17, regions encoding a portion of the downstream 

Shine-Dalgarno sequence and the downstream methionine were mutated by introducing 

base pair substitutions in both sites using a QuikChange Lightning site-directed 

mutagenesis kit from Agilent Technologies and oligonucleotides W259 (5’- 

GTGCAAGTACAAAGAATTTTAATTTGAGCGAGAACTCGACTTTTTTGGTTGAA

ATGTCCATGA-3’) and W260 (5’-

TCATGGACATTTCAACCAAAAAAGTCGAGTTCTCGCTCAAATTAAAATTCTTT

GTACTTGCAC-3’). The substitutions used to disrupt the downstream translation start 

site were chosen to minimize the effect on the upstream translated protein product. 

Specifically the Shine-Dalgarno sequence was mutated from AAGTAG to AAGTCG, 

this resulted in the substitution of a valine codon for another valine codon, and the 

methionine codon ATG was mutated to a leucine codon CTC. The resulting amino acids 

have similar biochemical properties. To create pCTH18, pCTH17 was digested with PacI 

and BamHI to obtain the mutated sequence eliminating the downstream translation start 

site, and the resulting DNA fragment was ligated into pCTH16 previously digested with 
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PacI and BamHI. The resulting construct consequently lacked the upstream translation 

start site and carried a mutated downstream Shine-Dalgarno and translation start site. 

2.4.3 Quantification of icsP Promoter Activity Using PicsP-lacZ Reporters 

Activity of the icsP promoters were determined by measuring β-galactosidase 

activity (as described previously (Castellanos et al. 2009) using the Miller protocol 

(Miller 1972)) in strains carrying pHJW20 or derivatives. Routinely, transcription was 

analyzed in three independent transformants in early stationary phase cultures. Cells were 

routinely back-diluted 1:100 and grown for 5 h in TSB, to ensure icsP expression. To 

measure the effects of growth phase on promoter activity, cells were grown for 2 to 10 h 

in 2 h intervals. To measure the effects of pH on promoter activity, cells were grown in 

LB with a pH of 5.5 buffered with a final concentration of 100 mM 2-(N- 

morpholino)ethanesulfonic acid (MES) or a pH of 7.4 buffered with 100 mM 3-(N-

morpholino)propanesulfonic acid (MOPS). To measure the effects of osmotic pressure on 

promoter activity, cells were grown in either LB or LO (Porter and Dorman 1994). To 

measure the effects of iron concentration on promoter activity, cells were grown in either 

LB or LB supplemented with 15 μg ml
-1

 EDDA to chelate iron. Optical densities were 

measured using a DU 520 general purpose UV/Vis spectrophotometer (Beckman 

Coulter). Promoter activity was normalized using pMIC21, the promoterless lacZ reporter 

construct. 

2.4.4 Transcription Start Site Mapping of the icsP Gene 

Transcription start sites of the icsP gene were identified through RNA extraction 

and primer extension analysis procedures as described previously (Wing et al., 1995) 

using a protocol adapted from Aiba (Aiba et al. 1981, Wing et al. 1995). Total cellular 
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RNA was extracted using the hot-phenol method from 10
9 

cells harvested from early 

stationary phase cultures (Aiba et al. 1981). Residual DNA within samples was digested 

with DNase I (Qiagen) at 37˚C for 1 h in DNase I buffer according to Ambion 

instructions (Ambion 2001). Integrity of total RNA was checked by formaldehyde gel 

electrophoresis and ethidium bromide staining as described by Sambrook (Sambrook and 

Russell 2001). The oligonucleotide primer W183 (5’- AAAGTGCAAGTACAAAG-3’) 

was 5’-end-labeled with [γ-
32

P]ATP by using T4 polynucleotide kinase (Promega). One 

picomole of 
32

P-labeled primer and 5 μg of total RNA were lyophilized and redissolved 

in 30 μl of hybridization buffer (Aiba et al. 1981). The reaction was incubated at 75˚C for 

15 min followed by a cooling and incubation at 37˚C for a total of 3 h. Following an 

ethanol precipitation, reverse transcription was completed using Superscript II reverse 

transcriptase (Invitrogen) according to manufacturer’s instructions.  Remaining RNA was 

degraded with 10 mg/ml RNase A (Sigma) for 30 min at 37˚C and the reaction 

terminated by ethanol precipitation. The precipitate was dissolved in 5 μl of loading dye 

(95% formamide, 20 mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol) and 

electrophoresed on a 6% glycerol tolerant polyacrylamide gel containing 7 M urea. 

Following electrophoresis, the gel was transferred to Whatman paper and then vacuum 

dried before overnight exposure to a phosphorescent screen. The screen was visualized 

the following morning using a Typhoon 9410 variable mode imager (Amersham). The 

sequencing ladder generated from pBluescript KSII+ (Stratagene) and a M13 reverse 

primer (5’-GAGCGGATAACAATTTCACACAGG-3’) with the Sequenase 2.0 kit (usb) 

according to manufacturer’s instructions, was used to size the primer extension products. 
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Densitometry analysis was conducted using VisionWorksLS image acquisition and 

analysis software (UVP). 

2.4.5 Quantification of IcsP Production and IcsA Cleavage in Shigella 

IcsP production and activity (IcsA cleavage) was measured by western blot 

analysis. Cells from early stationary phase cultures were harvested and whole-cell protein 

extracts were prepared as described previously (Steinhauer et al. 1999). Proteins were 

separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a 12.5% SDS-

PAGE gel. Equivalent amounts of protein were loaded by normalizing the volume to cell 

density. Western blot analyses were performed with an affinity-purified IcsP or IcsA 

rabbit antiserum. The IcsP and IcsA antisera were raised against peptides sequences 

predicted to fall in surface exposed regions of the two proteins, the L3 loop of IcsP 

(based on the model of OmpT; (Vandeputte-Rutten et al. 2001) and the -domain of 

IcsA, which is proteolytically cleaved from the surface of Shigella by IcsP. Each 

antibody was ultimately detected by chemiluminescence using a UVP BioSpectrum 

imaging system and accompanying software. Densitometry analysis was conducted as 

previously described. 

2.4.6 In Silico Analyses of the icsP Gene, Its Protein Product and the Position of 

Translation Start Sites in Shigella Open Reading Frames 

Throughout our work sequences files were accessed and analyzed using the 

software program “Clone Manager 9 Basic Edition” (Scientific and Educational 

Software). Transcription start site predictions were performed using the BPROM 

program 

(http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfin
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db). This algorithm predicts potential transcription start positions regulated by σ
70

 

promoters (major E. coli promoter class). The linear discriminant function combines 

characteristics describing functional motifs and oligonucleotide composition of these 

sites. BPROM has 80% accuracy for E. coli σ
70

-dependent promoter recognition. Open 

reading frame predictions were performed using Glimmer (NCBI), which is a system for 

finding genes in microbial DNA using interpolated Markov models (IMMs) to identify 

the coding regions and distinguish them from noncoding DNA (Delcher et al. 1999). To 

predict the presence and location of proteolytic cleavage sites within nascent IcsP the 

SignalP 3.0 Server program (http://www.cbs.dtu.dk/services/SignalP/) was used 

(Emanuelsson et al. 2007). This algorithm predicts potential signal peptides and cleavage 

sites based on a combination of several artificial neural networks and hidden Markov 

models.  

2.4.7 Computational Analysis of Translation Start Sites in S. flexneri 2a Str. 301
* 

Full genome sequence of S. flexneri 2a str. 301 (chromosome and plasmid) as 

well as the most recent annotation was downloaded from GenBank FTP site 

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Shigella_flexneri_2a/).  Translation 

start sites were assumed to consist of two main components: start codon and Shine-

Dalgarno sequence (Ribosome Binding Site, RBS). We used three variants of start codon 

confirmed for E. coli (ATG and GTG) (Jacques and Dreyfus 1990). 

To identify position-specific scoring matrix (PSSM) for Shine-Dalgarno sequence 

specific for S. flexneri 2a str. 301, 25 nucleotides of sequence data upstream of the start 

codon of each annotated open reading frame (ORF) were extracted from the genome 

(chromosome and plasmid). Then retrieved regions of DNA were searched for 

http://www.cbs.dtu.dk/services/SignalP/
ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Shigella_flexneri_2a/
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overrepresented motifs using locally installed MEME program (Multiple Em for Motif 

Elicitation). Identified RBS motif was truncated to include only highly conserved 

positions (Supplementary Fig. 1). A motif sequence logo was created using an online 

program (http://weblogo.berkeley.edu/logo.cgi). 

To identify presence of alternative translation start sites in genome of S. flexneri 

2a str. 301 fifty codons upstream and downstream of start codon of every annotated ORF 

was tested for presence of possible in-frame start codon, if in-frame stop codon (TAG, 

TAA or TGA) was detected further search around this particular annotated start codon 

was terminated. 20 nucleotide sequences upstream every possible alternative start codon 

were collected, and then searched for presence of RBS using the program MAST (Motif 

Alignment & Search Tool) and determined before PSSM for RBS. Distance form 

annotated start site, p-value for motif presence (if RBS was found) and exact sequence of 

start codon were extracted. Data were manipulated, managed and graphically represented 

using custom R and Perl scripts. 
*
Translation start site analysis scripts were designed and 

run by Olga Kamneva, University of Wyoming. 

 

 

 

 

 

 

 

 

http://weblogo.berkeley.edu/logo.cgi
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  TABLE 2. Bacterial strains and plasmids   
Strain or 

plasmid 
Description

a
 Source or 

reference 
Strains      

S. flexneri  
   

2457T S. flexneri serotype 2a (Labrec et al. 

1964) 
AWY3 2457T virB::Tn5; Kn

r
 (Wing et al. 

2004)  
MBG341 2457T icsP::Amp

r
 (Shere et al. 

1997) 
      

Plasmids 
PicsP-lacZ 

reporters 

    

pHJW20 icsP promoter region transcriptionally fused to lacZ 

in pACYC184 Cm
r
; carries 1232 bp of wild-type 

sequence upstream of the icsP transcription start site 

and unique XbaI site upstream of lacZ gene 

(Castellanos 

et al. 2009) 

pHJW36 pHJW20 lacking P2 promoter elements (Castellanos 

et al. 2009)  
pMIC18 pHJW20  carrying 14 bp substitutions in the two 

upstream VirB-binding sites 
(Castellanos 

et al. 2009) 
pMIC21 pHJW20 lacking all icsP promoter sequences  (Castellanos 

et al. 2009) 
pKML03 pHJW20 lacking previously annotated promoter 

elements 
This work 

pCTH02 pKML03  carrying 14 bp substitutions in the two 

upstream VirB-binding sites 
This work 

pCTH03 pHJW20 lacking P1 and P2 sequences This work 
PicsP-icsP 

reporters 
    

pHJW6 icsP promoter and gene cloned into pACYC184 (Wing et al. 

2004)  
pCTH16 pHJW6 lacking P2 specific promoter elements This work 
pCTH17 pHJW6 with 4 bp substitutions in the downstream 

translation start site 
This work 

pCTH18 pCTH17 lacking P2 specific promoter elements This work 
a

 Amp
r

, ampicillin resistance; Cm
r

, chloramphenicol resistance; Kn
r

, kanamycin resistance. 
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CHAPTER 3 

CRP-DEPENDENT REGULATION OF SHIGELLA VIRULENCE GENES. 

3.1 Introduction 

 Changes in environmental conditions often serve as signals for transcription of 

virulence genes in Shigella flexneri. In fact, transcription of many virulence genes is 

dependent upon a regulatory cascade which begins with the transcription of the primary 

regulator VirF (Dorman and Porter 1998). Maximal transcription of the virF gene occurs 

at 37 °C when accompanied by moderate osmolarity and moderate pH (Porter and 

Dorman 1997a) . These conditions would be encountered by the bacterium as it 

transitions from outside of the host to the inside of the host. Additional environmental 

cues may also be sensed as Shigella enters the colon or invades cells of the colonic 

epithelium, which would provide a signal necessary for initiation of transcription when 

virulence factor production is necessary. 

 Metabolites are an example of one class of environmental factors known to 

regulate gene transcription in bacterial cells. Catabolite repression is one of the most 

widely studied mechanisms for “sensing” metabolite presence and transforming that 

information into a regulatory response (reviewed in (Kolb et al. 1993)). Catabolite 

repression occurs when the presence of a preferred carbon source leads to the 

transcriptional repression of genes required for catabolism of a non-preferred carbon 

source. This mechanism ensures catabolism of the preferred carbon source prior to 

catabolism of one or several other carbon sources. This effect is sometimes referred to as 

the “glucose effect” due to the repressive effects glucose was observed to have on the 

transcription of genes encoding catabolic enzymes specific for other carbon sources in 
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Escherichia coli (Epps and Gale 1942). In fact, transcription of the lac operon, which 

encodes three genes involved in the catabolism of lactose, is not truly repressed but rather 

transcriptional activation is prevented due to the presence of glucose. The cyclic AMP 

(cAMP) receptor protein (CRP) acts as a transcriptional activator for the lac operon but 

requires cAMP as a cofactor for binding (de Crombrugghe et al. 1984, Emmer et al. 

1970). In the absence of glucose, the adenylate cyclase enzyme, encoded by the cyaA 

gene, catalyzes the conversion of ATP to cAMP and pyrophosphate (Harwood and 

Peterkofsky 1975). Therefore, the absence of glucose allows for cAMP production which 

can then be used as a cofactor for transcriptional activation of the lac operon by CRP. 

Transcriptional activation of the lac operon leads to production of enzymes necessary for 

lactose catabolism. 

 Pathogenic bacteria are also known to use this carbon “sensing” mechanism in 

order to regulate the transcription of virulence genes. The transcription of two, alternately 

expressed toxin encoding genes in enterotoxigenic E. coli (ETEC) has been shown to be 

dependent upon CRP binding (Bodero and Munson 2009). ETEC expresses two toxins, a 

soluble heat-labile toxin (LT-1) typically expressed in the duodenum and a heat-stable 

toxin (STa) typically expressed in the ileum. Interestingly, CRP binding prevents 

transcription of eltAB, the two genes encoding LT-1 while CRP is required for 

transcriptional activation of the STa gene, eltAp (Bodero and Munson 2009). This 

regulatory network allows for continued toxin production while exposed to a decreasing 

glucose gradient as the bacterium moves through the duodenum and into the ileum. 

Catabolite repression has not yet been shown to transcriptionally regulate any S. 

flexneri virulence genes, although little work has been done in this area. Reports of CRP-
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dependent transcriptional regulation of virulence genes in other enteric pathogens, such 

as ETEC, however, raises the possibility that some Shigella virulence genes may also be 

regulated by catabolite repression. Analysis of the Shigella virulence plasmid has 

revealed that three Shigella virulence genes are associated with promoters that encode 

putative CRP binding sites (Table 3) (G. P. Munson, personal communication). The CRP 

binding site consensus sequence consists of a palindromic TGTGA separated by a six-

base-pair spacer (Kolb et al. 1993). These three genes, ipaJ, phoN1, and ipaH7.8 encode 

a substrate of the type III secretion system with unknown function (Buysse et al. 1997), a 

periplasmic non-specific phosphatase (Uchiya et al. 1996), and a secreted E3 ubiquitin 

ligase (Rohde et al. 2007, Singer et al. 2008, Zhu et al. 2008), respectively. 

 

The ipaJ gene appears to be transcriptionally regulated in a temperature-

dependent fashion and previous data also suggests ipaJ is also regulated through the 

regulatory activities of both VirF and VirB (Buysse et al. 1997, Le Gall et al. 2005a). 

Although, ipaJ mutants were Sereny positive, attenuation of keratoconjunctivitis was 

observed (Buysse et al. 1997). The secreted protein is a Shigella immunogen and does 

react with convalescent sera in western blot analyses (Buysse et al. 1997, Slagowski et al. 

2008). An ORF encoding a protein with 49% homology to IpaJ was also found on a small 

  
TABLE 3. Predicted CRP binding sites 

Gene Promoter sequence with predicted CRP binding site 

ipaJ 5’-tggtgtgacctgtatcacaata-3’ 
phoN1 5’-ttatgtgatagcacacacaatt-3’ 

ipaH7.8 5’-attattgactgcagccacaata-3’ 
a 

Underlined sequences signify the predicted CRP binding sites 
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plasmid present in Salmonella choleraesuis, an important swine pathogen (Liu et al. 

2002). 

The protein encoded by the phoN1 gene exhibits a non-specific phosphatase 

activity mostly within the periplasm and this activity is optimally expressed at a pH of 6.6 

and a temperature of 37 °C (Uchiya et al. 1996). Mutation of phoN1 does not appear to 

affect invasiveness or intercellular spread as demonstrated by infections of epithelial cell 

monolayers (Uchiya et al. 1996). Transcription of phoN1 does increase following a drop 

in pH but does not appear to be affected by the same regulatory elements involved with 

expression of other Shigella virulence genes such as temperature or VirB (Cheng et al. 

2007, Le Gall et al. 2005a). The phoN1 gene has an 83% sequence similarity with another 

virulence plasmid-encoded phosphatase, phoN2 (apy), which encodes an apyrase that is 

dependent upon the VirF and VirB regulatory cascade for transcription and does appear 

necessary for efficient intercellular spread (Berlutti et al. 1998, Santapaola et al. 2006). 

 The ipaH7.8 encoded E3 ubiquitin ligase marks host cell proteins for degradation 

by the eukaryotic proteasomes within the cytoplasm. This activity of IpaH7.8 has been 

demonstrated to be important in bacterial escape from the endocytic vacuole of the 

macrophages and may be involved in suppression of the host inflammatory response 

(Fernandez-Prada et al. 2000). Transcription of ipaH7.8 has already been shown to 

require both the transcriptional activator MxiE and the chaperone IpgC which acts as a 

coactivator for MxiE (Mavris et al. 2002). Four other ipaH family members (ipaH 9.8, 

4.5, 2.5, and 1.4) possessing the same E3 ubiquitin ligase activity but involved in 

different stages of infection are also found on the virulence plasmid (Hartman et al. 

1990). 
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 Since little is known about the regulation of ipaJ, phoN1, and ipaH7.8 or the roles 

of the encoded proteins in Shigella virulence, this study examines the role CRP plays in 

the transcriptional repression of these three virulence plasmid-encoded genes.  

 

3.2 Results and Discussion 

3.2.1 The Promoter Activity of phoN1 Is Adenylate Cyclase and CRP Dependent 

To assess whether the three genes are dependent upon CRP for promoter 

activation, the promoter regions of ipaJ, phoN1, and ipaH7.8 were transcriptionally fused 

to the lacZ gene and the resulting constructs (pCTH05, pCTH06, and pCTH07, 

respectively) were cloned into a parent E. coli strain (BW25113), an adenylate cyclase 

(cyaA) mutant (JW3778-3), and a crp mutant (JW5702-2). β-galactosidase assays were 

then conducted with exponential phase cultures to see if the promoters of either of the 

three genes is dependent upon CRP and the cofactor cAMP for transcriptional activation. 

The phoN1 transcriptional fusion exhibited strong promoter activity in the wild 

type background, yet this activity was greatly reduced when the construct was in a strain 

missing either CRP or the enzyme responsible for the production of the CRP cofactor 

(Fig. 8). This indicates that the promoter for the phoN1 gene is dependent on both 

adenylate cyclase and CRP for retention of wild type promoter activity (Fig. 8). This 

suggests that phoN1 may be transcriptionally regulated by catabolite repression through 

activation by CRP. Since glucose concentrations are reduced in the digestive tract as the 

bacterium moves towards the colon (Bodero and Munson 2009), the catabolite repression 

signaling mechanism may allow for additional phosphate scavenging by PhoN1 in a 

phosphate limited environment such as the colon. Alternatively, increased transcription of 
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phoN1 and resulting PhoN1 production could result in the increased concentration of 

phosphates which are known to increase adenylate cyclase activity (Liberman et al. 

1985). Increased adenylate cyclase activity would lead to more cAMP production 

resulting in more transcriptional activation leading to a positive feedback loop. More 

information is required about the cellular implications of increased PhoN1 activity before 

any conclusions can be drawn about the purpose for CRP-dependent regulation of the 

phoN1 gene.  

The ipaJ and ipaH constructs exhibited no significant promoter activity in the 

wild type strain or in any of the mutants. It should be remembered that these assays were 

conducted in an E. coli background which lack the Shigella-specific transcriptional 

regulator VirB. Since previous studies suggest ipaJ may be positively regulated by the 

virulence gene regulator VirB, future experiments should test the activity of the ipaJ 

promoter in a wild type Shigella strain that expresses VirB, or in an E. coli strain 

expressing VirB from an inducible plasmid. Once the appropriate conditions for ipaJ 

expression have been found, the CRP dependence of the promoter can then be tested 

using the crp and cyaA mutants under those conditions to measure the effect CRP plays 

in ipaJ expression. Furthermore, the ipaJ promoter encodes an exact match of the 

palindromic consensus sequence required for CRP binding, suggesting that CRP does 

play some role in ipaJ transcriptional regulation.  Similar work is also needed before 

CRP dependence of the ipaH7.8 gene can be tested. Unlike the ipaJ promoter, the 

predicted CRP binding site of the ipaH7.8 promoter contains several base pair variations 

from the consensus sequence which may suggest this site is less than optimal for CRP 

binding. Currently, attempts to activate the ipaH7.8 promoters through expression of 
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plasmid-based mxiE and ipgC genes originally similar to the methods used by Mavris et 

al. (Mavris et al. 2002) did not significantly enhance promoter activity and no difference 

was observed between the wild type strain and the mutant strains (data not shown) .  

While further testing is required to truly understand the transcriptional regulation 

of all of the genes examined in this study, the CRP-dependent regulation of phoN1 

indicates that catabolite repression is involved in the transcriptional regulation of at least 

one gene encoded by the S. flexneri virulence plasmid, phoN1. 

  

   
crp        cyaA crp        cyaA crp        cyaA 

   
ipaJ ipaH7.8 phoN1 

FIGURE 8. Activities of the ipaJ, phoN1, and ipaH7.8 promoters in wild type E. coli 

(BW25113), the CRP mutant (JW5702-2), and the adenylate cyclase mutant (JW3778-3). 

Assays were run in triplicate and the means and standard deviations are shown. 
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3.3 Materials and Methods 

3.3.1 Bacterial Strains, Plasmids, and Media 

The bacterial strains and plasmids used in the present study are listed in Table 4. 

E. coli strains were grown at 37 ˚C in Luria-Bertani (LB) broth with aeration or on LB 

agar (LB broth containing 1.5% [wt/vol] agar). When required, chloramphenicol was 

added at a final concentration of 25 μg ml-1. 

3.3.2 Construction of the PicsP-lacZ Reporter Plasmids 

The starting point for this work was the PicsP-lacZ reporter plasmid pHJW20 

(described in (Castellanos et al. 2009); Table 1). All PicsP-lacZ reporter plasmids were 

constructed through PCR amplification of the gene promoter regions from a S. flexneri 

2457T strain using oligonucleotide primers with SalI and XbaI restriction sites. The PCR 

fragments were digested with SalI and XbaI, and the resulting DNA fragments were 

ligated into pHJW20 previously digested with SalI and XbaI. To create pCTH05, the ipaJ 

promoter region was PCR amplified using oligonucleotides W195 (5’-

TGAGGTCGACCTGCATATATCATTACTGC-3’) and W196 (5’- 

TGAGTCTAGATTCTCTTGGTATAGCCC-3’). To create pCTH06, the phoN1 

promoter region was PCR amplified using oligonucleotides W197 (5’- 

TGAGGTCGACTCCGTTAAACTCAGGCTACC-3’) and W198 (5’- 

TGAGTCTAGATTCCCGGAGGGAATGATG-3’). To create pCTH05, the ipaH7.8 

promoter region was PCR amplified using oligonucleotides W199 (5’- 

TGAGGTCGACTGCATTCCAGTGATTCAGGATAT-3’) and W200 (5’- 

TGAGTCTAGAGAAAGCACTGGGAGAGTC-3’). 



46 

 

3.3.3 Quantification of icsP Promoter Activity Using the PicsP-lacZ Reporter and 

Derivatives 

Activities of the examined promoters were determined by measuring β-

galactosidase activity (as described previously (Castellanos et al. 2009) by using the 

Miller protocol (Miller 1972)) in strains carrying pCTH05, pCTH06, or pCTH07. 

Routinely, transcription was analyzed in three independent transformants in exponential 

phase cultures. Cells were routinely back-diluted 1:100 and grown for 2 h in LB, to 

ensure gene expression. Optical densities were measured using a DU 520 general purpose 

UV/Vis spectrophotometer (Beckman Coulter). 

TABLE 4. Bacterial strains and plasmids 

Strain or plasmid Description
a
 

Source or 

reference 
Strains      

E.coli  
   

BW25113 Δ(araD-araB)567,  ΔlacZ4787(::rrnB-4), 

lacIp-4000(lacIQ), lambda-, rpoS396(Am) 

(but made rpoS+), rph-1, Δ(rhaD-rhaB)568, 

hsd514  

(Baba et al. 

2006, 

Datsenko and 

Wanner 2000) 
JW5702-2 
JW3778-3 

BW25113 crp::Kan
r 
100 

BW25114 cyaA::Kan
r 
751 

(Baba et al. 

2006)  
(Baba et al. 

2006) 
      

Plasmids     
pHJW20 Cloning vector; pACYC derivative Cm

r
 (Castellanos et 

al. 2009) 
pCTH05 PipaJ-lacZ promoter fusion Cm

r
 This work 

pCTH06 PphoN1-lacZ promoter fusion Cm
r
 This work 

pCTH07 PipaH7.8-lacZ promoter fusion Cm
r
 This work 

a

 Cm
r

, chloramphenicol resistance; Kn
r

, kanamycin resistance. 
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CHAPTER 4 

 

DISCUSSION 

The results of these investigations demonstrate that some Shigella virulence genes 

are transcriptionally regulated through more gene-specific mechanisms in addition to the 

seemingly en bloc regulation mediated by the Shigella virulence gene regulatory cascade, 

that classically involves VirF and VirB. In Chapter 2, I discuss my identification of a 

second icsP promoter, which allows for translation of an additional IcsP protein product. 

Although I was unable to identify conditions which would allow for differential 

regulation of the icsP gene, the mere presence of this complex regulatory structure 

suggests the two icsP promoters are poised to respond differently to some modulation in 

the intercellular environment. In Chapter 3, I present evidence of phoN1 transcriptional 

regulation by CRP, which indicates a more precise and distinct pattern of gene expression 

does exist for at least one virulence gene. The regulation of phoN1 by CRP also suggests 

the expression of some virulence plasmid-encoded genes may be influenced by 

environmental conditions such as carbon availability and not just by temperature, pH, and 

osmolarity. While the study of individual virulence genes, both by others and in support 

of this thesis, has provided insight into the specific transcriptional regulation of these 

genes, recent developments have allowed for a more global view of virulence gene 

expression. From these studies, we can identify particular patterns of gene expression and 

possibly identify any anomalies. 

One recent example of a genome-wide study of virulence gene expression in 

Shigella was completed by Le Gall and others. This work utilized macroarray analysis to 

simultaneously study the gene expression of 71 virulence plasmid-encoded genes (Le 
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Gall et al. 2005a). Their data suggest three general and distinct patterns of expression 

exist for virulence genes. The first expression pattern appears to be constitutive and is not 

dependent on temperature or VirF. The second pattern includes those genes which are 

known to be temperature dependent and rely on VirF-dependent regulation for gene 

transcription. Many of these genes, although not all, are actually regulated by VirF 

indirectly through the VirF-mediated production of VirB. The final subset of genes rely 

on VirF and VirB production, but are further regulated through the transcription factor, 

MxiE.  What is striking from the results of this broad study of virulence gene expression 

by Le Gall, is the fact that the expression levels of similarly regulated genes are highly 

disparate suggesting other regulatory elements could be influencing expression rates of 

these genes. The genes examined in my work appear to fall into all three patterns of 

expression. Expression of icsP is clearly temperature dependent in the Le Gall study and 

shares a similar expression pattern with ipaJ.  Maximal transcription of the ipaH7.8 gene 

requires the transcription factor, MxiE. As mentioned previously, phoN1 regulation 

appears to be independent of the VirF/VirB-dependent regulatory cascade even though 

the very similar phoN2 gene does appear to be regulated via this regulatory cascade and 

most likely requires additional input from MxiE. 

Production of enzymatically active proteins is the result of many regulatory steps 

throughout transcription and translation, which collectively determine protein expression 

levels. In Chapter 2, my data show that while initiation of icsP transcription, as measured 

by promoter activity, appears to be mostly dependent on the newly identified promoter 

(P2), the mRNA message, as measured by primer extension analysis, appears to be 

mostly from the originally annotated promoter (P1) (Fig. 3). This contradiction may be 
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due to the inherent bias of primer extension analysis in favor of the shorter transcript or it 

could be an indication that the IcsP transcripts may be differentially regulated post-

transcriptionally possibly through increased degradation of the longer transcript. The idea 

of post-transcriptional regulation appears to also be supported by my western blot 

analysis. The western blot data indicates more IcsP is produced from the downstream 

translation start site and not the P2-specific upstream translation start site, although the 

difference is small (Fig. 6a). Consequently, the agreement between the primer extension 

analysis and the western blot analysis suggests that P2-generated transcripts are subject to 

negative regulation following initiation of transcription. It is possible that the longer 

leader sequence present on the P2-generated transcript contains sequence elements which 

may negatively influence mRNA half-life. The post-transcriptional modulation of 

virulence gene expression has been observed for the gene encoding the global 

transcription factor, VirB. The stability of VirB mRNA was shown to markedly decrease 

upon a reduction in temperature from 37 to 30 °C and was due to increased binding of the 

transcripts by the RNA-binding protein Hfq (Mitobe et al. 2009). Similar post-

transcriptional modifications may be affecting the ultimate production of other virulence 

factors throughout all stages of Shigella pathogenesis. 

Chapter 3 focused on the CRP-dependent activation of phoN1 suggesting a link 

exists between carbon metabolism and virulence gene expression. Other evidence to 

support the importance of carbon metabolism in virulence gene expression includes the 

attenuation of virulence accompanied by the production of end products following lysine 

decarboxylation and the metabolism of glycerol 3-phosphate in Shigella. In both of these 

examples, the metabolic pathways and their end products contribute to an attenuation in 
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virulence, although the mechanism of this attenuation is not completely understood. 

Decarboxylation of lysine by lysine decarboxylase (LDC) leads to cadaverine production, 

which inhibits enterotoxic activity of Shigella following invasion (Maurelli et al. 1998). 

While over 90% of E. coli isolates express LDC, all Shigella strains share a large 

deletion, termed a “blackhole”, in the region containing the cadA gene which encodes 

LDC in E. coli (Maurelli et al. 1998). More recently, the presence of the virulence 

plasmid has been shown to decrease expression of genes within the glp regulon, which 

are important in degradation of glycerol 3-phosphate and its precursors (Zhu et al. 2010). 

These metabolic processes allow for utilization of glycerol and glycerol phosphates 

following breakdown of phospholipids. Another observation related to the seemingly 

antagonistic nature of some metabolic processes to pathogenesis, is that Shigella is a 

nicotinamide adenine dinucleotide (NAD) auxotroph due to gene alterations preventing 

the conversion of L-aspartate to quinolinate, a NAD precursor. Quinolinate was found to 

actually inhibit multiple stages of Shigella pathogenesis resulting in attenuation of 

virulence (Prunier et al. 2007). The fact that multiple independent origins of Shigella 

species all share similar phenotypes with respect to metabolism suggests that these 

metabolic processes are detrimental to the virulent lifestyle of this obligate pathogen 

(Escobar-Paramo et al. 2003). The CRP-dependent regulation of virulence genes may 

help uncover other metabolism/pathogenesis relationships or provide insight into the 

effects of metabolism on pathogenesis through studies of gene expression patterns. 

 Many of the variations noted in Shigella virulence gene expression levels may be 

due to the strength of promoter elements in attracting the RNA polymerase or the strength 

of VirB binding sites in recruiting the transcription factor. This simplified mechanism for 
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differentially regulating gene transcription could also include the use of alternative σ 

factors. While Chapter 2 suggests that, according to sequence analysis, alternative σ 

factors do not appear to be involved in differentially regulating icsP, alternative σ factors 

could provide a unique mechanism for differentially regulating genes with respect to the 

regulatory cascade since transcription of both the virF and virB gene are not dependent 

upon the most commonly used alternative σ factor, σ
S
 (Porter and Dorman 1997d). 

This work raises the possibility that virulence gene regulation in S. flexneri is not 

just simply controlled through activation of a regulatory cascade. The observations 

reported in Chapter 2 suggest that some genes possess unique mechanisms for fine tuning 

their own expression through multiple promoters, as exhibited by the icsP gene, and that 

the expression of these genes may also be affected by post-transcriptional mechanisms. 

Also, the expression of some virulence genes may be independent of the regulatory 

cascade and may involve unique transcription factors as seen in, as exhibited by the CRP-

dependent regulation of phoN1 shown in Chapter 3. Ultimately, further study is required 

to truly understand the transcriptional regulation of virulence genes and how virulence 

gene expression is modulated throughout different phases of pathogenesis in the obligate 

pathogen, S. flexneri. A better understanding of virulence gene expression and how it 

relates to Shigellosis in the host is the key to identifying a possible molecular weakness 

of the pathogen, which may lead to new treatments or preventative techniques. 
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APPENDIX 1 

SUPPLEMENTARY DATA 

 

SUPPLEMENTARY FIGURE 1. Position-specific scoring matrix for ribosome binding 

sites associated with the S. flexneri 2a strain 301 virulence plasmid pCP301 

(NC_004851.1) and chromosome (NC_004337.1). Six nucleotide-long motif 

overrepresented in immediate upstream regions of annotated start codons identified by 

MEME (http://meme.sdsc.edu) and used to search for Shine-Dalgarno sequences 

upstream of predicted additional start codons. Data collected by Olga Kamneva, 

University of Wyoming. 
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SUPPLEMENTARY FIGURE 2. Distribution of p-values for predicted ribosome binding 

sites with respect to both the annotated translation start sites (black) and the predicted 

additional translation start sites (red). Data collected by Olga Kamneva, University of 

Wyoming. 
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