
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2010

Dynamic indexing Dynamic indexing

Viswada Sripathi
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Databases and Information Systems Commons, and the Library and Information Science

Commons

Repository Citation Repository Citation
Sripathi, Viswada, "Dynamic indexing" (2010). UNLV Theses, Dissertations, Professional Papers, and
Capstones. 759.
http://dx.doi.org/10.34917/2040701

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1018?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1018?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/2040701
mailto:digitalscholarship@unlv.edu

DYNAMIC INDEXING

By

Viswada Sripathi

Bachelor of Technology, Computer Science and Engineering

Jawaharlal Nehru Technological University, India
May 2008

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2010

iii

ABSTRACT

Dynamic Indexing

by
Viswada Sripathi

Dr. Kazem Taghva, Examination Committee Chair

Professor, Department of Computer Science
University of Nevada, Las Vegas

 In this thesis, we report on index constructions for large

document collections to facilitate the task of search and retrieval. We

first report on classical static index construction methods and their

shortcomings. We then report on dynamic index construction techniques

and their effectiveness.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

ACKNOWLEDGEMENTS .. vii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 SEARCH ENGINES .. 5

2.1 Vector Space Model ... 6

CHAPTER 3 INDEXING ... 14

3.1 Hardware Basics .. 14

3.2 Index Construction ... 15

 3.2.1 Algorithm to create an inverted index .. 19

CHAPTER 4 DYNAMIC INDEXING ... 27

4.1 Algorithm Logarithmic Merging .. 34

CHAPTER 5 CONCLUSION AND FUTURE WORK ... 42

BIBLIOGRAPHY ... 44

VITA ... 46

v

LIST OF TABLES

Table 2.1.1 Document Collection .. 7
Table 2.1.2 Document Vectors .. 8
Table 2.1.3 Cosine Similarity Measures... 9
Table 3.1.1 Hardware Assumptions... 15
Table 3.2.1 Document Collection .. 16
Table 3.2.2 Frequency Matrix ... 17
Table 3.2.3 Transposed Equivalent of Frequency Matrix 18
Table 3.2.4 Sort based inversion for the text 25
Table 3.2.5 Sort based inversion ... 26

vi

LIST OF FIGURES

Figure 1.1 Process of information retrieval 2
Figure 2.1.1 Collection of documents .. 10
Figure 2.1.2 Output of tokenization .. 10
Figure 2.1.3 Output after removing stop words 11
Figure 2.1.4 Output after stemming .. 12
Figure 2.1.5 Inverted index of collection .. 13
Figure 4.1 Block Structure... 29
Figure 4.2 Logarithmic merging of I0 and Z0 35
Figure 4.3 In-memory and indexes ... 36
Figure 4.4 Logarithmic merging of (I0, Z0) and (I1, Z1) 37
Figure 4.5 Structure of Index file ... 38
Figure 4.6 Index file allocating blocks .. 40
Figure 4.7 Index file allocating blocks with two words 41

vii

ACKNOWLEDGEMENTS

 I would like to take this opportunity to sincerely thank my

committee chair, Dr. Kazem Taghva for all his support and guidance

throughout this thesis research. Without his guidance and persistent

help, completion of this thesis would not have been possible.

I sincerely thank my graduate coordinator Dr. Ajoy K Datta for his

help and invaluable support through my masters program and also for

being my committee member. I extend my gratitude to Dr. Laxmi P.

Gewali and Dr. Venkatesan Muthukumar for accepting to be a part of my

committee. A special thanks to Mr. Ed Jorgensen, Ms. Leslie Nilsen, Mr.

Darren Paulson, Ms. Donna Ralston and Ms. Sonia Taylor for all their

help and support during my work under them. I would also like to take

this opportunity to thank the staff of Computer Science department for

their help.

I would also like to extend my appreciation towards my parents,

brother, cousins and all my friends and family members for always being

there for me through all phases of my work, for their encouragement and

patience and giving me their invaluable love and support without which I

would never be where I am today.

1

CHAPTER 1

INTRODUCTION

Information Retrieval (IR) is the process of extracting, representing,

storing and capturing the required information [1]. However, the field of

IR includes several systems of any type of unstructured data such as

multimedia objects used by many users every day. An information

retrieval system uses phrases to index, retrieve, organize and describe

documents. Information Retrieval came into existence in the 1950s [2].

Information retrieval systems, generally called search engines, are now

an essential tool for finding information in large scale, diverse, and

growing corpuses such as the Internet. Information Retrieval is an

essential aspect of Web search engines, when the data consists of

information found on the Web. The process of indexing and retrieving

text documents is known as document retrieval. The purpose

of information retrieval (IR) is to provide satisfactory information needs to

the users. For a given query, documents are retrieved which consists of

similar query terms, based on having some number of query terms

present in the document [3]. The retrieved documents are then ranked

according to the frequency of occurrence of the query terms, host

domain, link analysis. The purpose of information retrieval is to match

the requested item partially or completely and provide the most accurate

matching results. The likelihood of the relevance of the item depends on

the extent of the match in IR [4].

2

 In typical information retrieval process Figure 1.1 [5], the user

Figure 1.1 Process of Information Retrieval

gives a query and the contents of the query are searched. In the

documents collected the stop words and stemming are removed and a

database is formed. The purpose of indexing is to provide an efficient way

to search from a large collection of the database. In order to generate

meaningful retrieval results, recent retrieval systems have incorporated

users' relevance feedback to modify the retrieval process. Finally the

retrieval results are displayed with the aid of an indexing scheme.

3

Several models have been proposed to retrieve information. The

three most commonly used retrieval models are the vector space model,

the probabilistic model, and the inference network model [2].

The documents and queries are represented as vectors in the

Vector Space Model. The success or failure of the vector space model

mainly depends on term weighting [21]. Terms represent words, phrases,

or any other keywords used to identify the contents of a text. This model

involves constructing a vector that represents terms in the document and

another vector that represents terms in a query. Next, a method must be

chosen that represents the closeness between document vector and

query vector. The traditional method of determining closeness between

the vectors is to use the size of the angle between them. This angle can

be measured using Cosine Rule. The angle between the two vectors

would be zero i.e. �=0 if the two vectors are identical which implies cos�

= 1.

The Probabilistic Model was first presented by Maron and Kuhns in

1960 and later many different probabilistic models were proposed with

different probability estimates [6]. The Probabilistic Model is based on the

estimation of the probability of the relevance of the documents for a given

query. In other words this model clarifies the question: what is the

probability that this document is relevant to a given query [7]. The

documents are ranked according to decreasing probability of relevance

hence, it is known as Probabilistic Ranking Principle (PRP) [20].

4

The Inference Network (IN) model has the skill to execute ranking

given many sources of inference by performing a combination of evidence

[8]. The IN model is basically used to model documents, the document

contents, and the query. The Document Network (DN) and the Query

Network (QN) are the two sub-networks in the IN model. During indexing

the DN is produced and it is static during retrieval. QN is produced from

the query text during retrieval. The retrieval result is extracted by

performing two processes. The complete IN is formed by attaching QN to

DN during the attachment process and this is done when there is a

similarity in the concepts of both the networks. The formation of the

probability relevance to the query in the evaluation process is done by

evaluating the complete IN for each document node. During the

evaluation the document node’s one output is initialized to 1 and rest of

the other document nodes are initialized to 0. This process is applied for

each document node in turn until the entire network is evaluated.

Finally, the final node I is used to produce the ranking and also the

probability of document relevance.

In this thesis, we start with the importance of search engines in

everyday life. Next we discuss about indexing and its types. Finally we

discuss about dynamic indexing, its features and importance.

5

CHAPTER 2

SEARCH ENGINES

 Finding information has always been very difficult. After the

invention of computers it has become much easier for the users to find

information [9]. Internet plays a major role in the information retrieval.

We can find information on the web using search engines. Search

engine’s purpose is to search a given query from a collection of

documents and return list of documents where the query is found. In

the recent years, World Wide Web search engines have vastly become a

primary source for electronically retrieving information. The information

maybe some sort of images, web pages, information and other types of

files like media files. Once the data has been gathered, the search

engines construct lexicons and indexes. When a user enters a query into

the search engine the user will expect the results that match the given

query. The most commonly used search engines are ‘Google’, ‘Yahoo’,

and ‘Alta Vista’. Search engines use ‘spider’ or ‘crawler’ to fetch the list of

documents which match the given query. A crawler is an automated

software agent which reads each and every site. Later the data for each

web page is stored in an index. The purpose of an index is to get fast and

accurate results. Whenever a query is given it is not that you are

searching it in the search engine; here you are actually searching the

index which is created by the search engine. As we have noticed

sometimes when a query is being searched we get some dead links in the

6

search results. This is because the index might be created when those

links were working and the index might not been updated after that so, it

displays the dead links.

2.1 Vector Space Model

 We already discussed a brief introduction to the vector space

model in Chapter1. As mentioned earlier one of the most popular and

common way to measure the similarity between document vector and

query vector is known as cosine rule. The Cosine rule for ranking can be

calculated as mentioned below [10].

 Cosine (Q, Dd) =
�

Wq Wd
 ∑ wq, t . wd,t �

���

Where,

 Wq = √∑ w2
q, t

�
��� and Wd = √∑ w2

d, t
�
���

 Here, wq,t represents the query term weights and wd,t represents

the document term weights respectively. There are many different

algorithms to weigh these terms and which one to choose depends on the

characteristics of the collection [22]. In vector space model, each

document will be represented by a vector in n-dimensional space and the

query is also represented as a n-dimensional vector for any query weight,

document weight or cosine measure.

Now consider a small collection of documents and calculate the

cosine similarity measure to rank the documents. Here the values in the

brackets indicate the number of times a term appears in a document

7

[11]. Term weights can be calculated in different ways. Here we use the

following formulae to calculate them. The table below shows the

collection of documents.

Document ID Text

Doc 1 book(2) pencil(3) pen(1)

Doc 2 book(1) flower(2) ribbon(1) box(3)

Doc 3 pencil(4) ribbon (2)

Doc 4 pencil(1) pen(3) flower (5)

Doc 5 book(1) pencil(2) flower(1) ribbon(3)

Table 2.1.1 Document Collection

 Using the values in the above collection we calculate the values of

wt, fd,t , rd,t , wd,t , wq,t, Wd. Here in this example the total number of

documents in the collection is 5.

wq,t (weight of query vector) = rq,t . wt

wd,t (weight of document vector) = r d,t

rd,t (relative term frequency) = 1 + loge fd,t

rq,t (query term frequency) = 1

wt (weight of the term t) = loge (1+
�

	

)

Wd (weight of the document) = √∑ w2
d, t

�
���

8

Wq (weight of the query) = √∑ w2
q, t

�
���

Where,

N - Number of documents in the collection

ft - Number of documents that contain term t

 The below table below indicates the document vectors with

calculated values of Wd, wd,t, ft, wt and rd,t.

Doc

ID
book pencil pen flower ribbon box Wd

Doc1 1.69 2.09 1.0 0.0 0.0 0.0 2.86

Doc2 1.0 0.0 0.0 1.69 1.0 2.09 3.03

Doc3 0.0 2.38 0.0 0.0 1.69 0.0 2.91

Doc4 0.0 1.0 2.09 2.60 0.0 0.0 3.48

Doc5 1.0 1.69 0.0 1.0 2.09 0.0 3.03

ft 3 4 2 3 3 1

wt 0.98 0.84 1.25 0.98 0.98 1.79

Table 2.1.2 Document Vectors

 The table below shows the cosine similarity measure i.e. Cosine (Q,

Dd) for two queries {box} and {pencil, box} from the collection of

documents. Here the Wq values are calculated for the given two queries.

The ranking is simple for a single query term {box} as it appears only

9

once in the document collection. For the second query we need to

calculate the cosine similarity measure for both the terms in the query

i.e. pencil and box.

Doc ID box

Wq = 1.79

pencil, box

Wq = 2.18

Doc 1 0.0 0.28

Doc 2 0.68 0.56

Doc 3 0.0 0.31

Doc 4 0.0 0.11

Doc 5 0.0 0.21

Table 2.1.3 Cosine Similarity Measures

 As discussed earlier, the cosine similarity measure is based on the

ranking so, the documents are sorted in the descending order of their

measure [10]. For the query {box}, the top ranked document would be

Document 2. Similarly for the query {pencil, box} order of ranking would

be Document 2, Document 3, Document 1, Document 5 and Document 4

respectively.

 The next step is indexing, but before we perform indexing some

preprocessing steps must be performed to facilitate fast and accurate

information retrieval. Indexing plays an important role in information

10

retrieval otherwise without it the search engine has to scan all the

documents which results in waste of time and computing power.

Indexing increases the performance and speed in searching a query from

a collection of documents. As mentioned above the preprocessing steps

include tokenization, removal of stop words and stemming.

 Before preprocessing, collect all the documents to be indexed. In

the preprocessing steps, the first step is tokenization. Tokenization is a

process where sentences are broken into words known as tokens [12].

Tokens can be represented in XML. During the process of tokenization all

the unnecessary characters like punctuations are eliminated [1]. Let us

consider a collection of documents and perform tokenization. The

example below shows a list of sentences ‘The box consists of toys.’ ‘So,

take it.’

Figure 2.1.1 Collection of documents

Figure 2.1.2 Output of Tokenization

The box consists of toys. So, take it.

The box consists of toys So

take it

11

After performing tokenization these sentences are chopped into a

list of tokens ‘The’, ‘box’, ‘consists’, ‘of’, ‘toys’, ‘So’, ‘take’, ‘it as shown in

figure 2.1.2.

In the next step, stop words are removed from the previous step.

Stop words are the frequently occurring words that are not searchable.

These words include ‘the’, ‘a’, ‘is’, ‘of’, ‘be’, ‘as’, ‘and’, ‘has’ etc. As these

words are not necessary search engines do not record these extremely

common words in order to save index space and to speed up the

searches. The figure below shows the elimination of stop words i.e. stop

words are removed.

Figure 2.1.3 Output after removing stop words

 The final step is stemming. Stemming is a process of reducing the

words into their base or root form [13]. Stemming algorithms reduce

words for example ‘brighter’, ‘brighten’, ‘brightest’ to their root form

‘bright’. Several types of stemming algorithms are available but they

differ in their performance and accuracy. A common algorithm known as

Porter’s Algorithm is available in several programming languages on the

web [1]. After performing stemming the pre-processing steps are

box consists toys take

12

completed. Now the document collection can be indexed. The figure

below shows the final list of words to be indexed.

Figure 2.1.4 Output after Stemming

 Now the next step after completing the pre-processing steps is to

perform indexing. Indexing helps the search engine provide accurate

results. The figure below [1] shows an inverted index for the collection of

documents in table 2.1.1. The inverted index is created after the

stemming process. The inverted index is constructed for the unique

terms or tokens known as index terms. For constructing an inverted

index first the terms are sorted in an alphabetical order. In the next step

the corresponding posting for the first term i.e. ‘book’ is stored in the

memory.

 The postings of the remaining terms are compared against the

postings in the memory. The final result must be the list of documents

which has all the terms in the query. For example consider an example

query ‘pen, flower’ then the result will be Document 4. We can say that

indexing plays a major role in information retrieval.

box consist toy take

13

 Term Document frequency Postings

 Postings

Figure 2.1.5 Inverted Index of collection

book 3

box 1

flower 3

pen 2

pencil 4

ribbon 3

1 2 5

2

2 4 5

1 4

1 3 4

2 3

5

5

14

CHAPTER 3

INDEXING

 As we discussed earlier information retrieval is defined as

exploring the information from large documents like the World Wide Web

(WWW). Using Indexing the required information is collected, parsed and

stored to provide high speed and exact information retrieval [14]. Indexer

is the machine that is responsible for indexing. Mostly the information

retrieval designing is based on the characteristics of the hardware used.

The examples and algorithms discussed in this chapter are taken from

‘Managing Gigabytes’. We start with the review of the hardware basics.

3.1 Hardware Basics

The data in memory is accessed much faster than the data on disk.

The time taken by a disk head to relocate to a place where the data is

located is known as seek time [14]. The data must not be transferred

from disk during the positioning of the disk head. Therefore it is much

faster to transfer a large chunk of data from disk to memory than to

transfer a lot of small chunks. We can say that disk input/output is

block based as we are reading and writing entire blocks. Here the size of

the blocks is 8 KB to 256 KB. The IR systems use servers with some

several GB of main memory, sometimes tens of GB. The disk space

available is several times larger to the order of the magnitude. Fault

tolerance machines are very expensive so, regular machines can be

15

used as they are much cheaper. The table below shows hardware

assumptions [14].

symbol Statistic value

s average seek time 5 ms = 5 x 10−3 s

b transfer time per byte 0.02 µs = 2 x 10−8 s

 processor’s clock rate 109 s−1

p

low-level operation

(e.g., compare & swap a word)

0.01 µs = 10−8 s

 size of main memory several GB

 size of disk space 1 TB or more

Table 3.1.1 Hardware Assumptions

3.2 Index Construction

 The most challenging task while building a database is

construction of an index. As we think it not that easy to construct an

index, it gives rise to many problems. The process of building an index is

known as the inversion of the text. As we all know inversion is nothing

but reverse of a given thing or turning something upside down. To

16

construct an index the same procedure is used. Inversion is a familiar

term used by all in many fields. For example consider a mathematician

performing transposition operation which is nothing but inverting a

matrix. This process of transposition is also used while constructing an

index. Consider a collection of six documents as shown below [15].

Document Text

1 pease porridge hot, pease porridge cold

2 pease porridge in the pot

3 nine days old

4 some like it hot, some like it cold

5 some like it in the pot

6 nine days old

Table 3.2.1 Document Collection

In the table above each line indicates a document. The text in each

of the documents contains index terms and each index term appears in

some of the lines. Here we express the document collection as frequency

matrix where each row corresponds to one document and each column

17

corresponds to one word. The table below shows the frequency matrix

where each document collection is summarized in one row of this

frequency matrix. It shows the frequency matrix for the given collection

of six documents with all the terms and the document numbers. Here

rows indicate each document listed in the collection [15].

 Term

cold days hot in it like nine old pease porridge pot some the

1 1 - 1 - - - - - 2 2 - - -

2 - - - 1 - - - - 1 1 1 - 1

3 - 1 - - - - 1 1 - - - - -

4 1 - 1 - 2 2 - - - - - 2 -

5 - - - 1 1 1 - - - - 1 1 1

6 - 1 - - - - 1 1 - - - - -

Table 3.2.2 Frequency matrix

18

Number Term

Document

1 2 3 4 5 6

1 cold 1 - - 1 - -

2 days - - 1 - - 1

3 hot 1 - - 1 - -

4 in - 1 - - 1 -

5 it - - - 2 1 -

6 like - - - 2 1 -

7 nine - - 1 - - 1

8 old - - 1 - - 1

9 pease 2 1 - - - -

10 porridge 2 1 - - - -

11 pot - 1 - - 1 -

12 some - - - 2 1 -

13 the - 1 - - 1 -

Table 3.2.3 Transposed equivalent of frequency matrix

19

To create an index the matrix must be transposed i.e. inverted to

form a new version in which the rows are the terms. The inverted file can

be created by building a transposed frequency matrix in memory. In the

next step read the text in the order of the document column by column

at a time and write the matrix to disk row by row in the order of the

terms.

The table 3.2.3 above shows the transposed equivalent of

frequency matrix. The table consists of terms and the corresponding

term numbers and the document numbers. It shows some values which

indicate the number of times each term occurs in each document. Here

in the above table the document collection consists of thirteen words and

there are six documents.

3.2.1 Algorithm to create an inverted file:

1. Given a collection of N documents and n terms.

For each document 1 ≤ d ≤ N.

For each term 1 ≤ t ≤ n.

Set f [d, t] ← 0

2. For each document Dd

a. Read the document parsing it into terms.

b. For each index term t є Dd

20

Set f [d, t] ← f [d, t] + 1

3. For each term 1 ≤ t ≤ n

a. Start a new inverted file entry

b. For each document if f [d, t] > 0 then add <d, f [d, t]> to the

entry.

c. Append this to inverted file.

Using an inverted frequency matrix, it is easy to construct an

index. As all this approach seems to be easy, but in reality this process is

difficult to implement because of the size of the frequency matrix. As the

size of the document increases, the size of the frequency matrix also

increases. For example consider that the text Bible has to be inverted.

Collection Bible is the King James Version of the Bible, with each verse

taken to be a document, including the book name, chapter number and

verse number. The Bible contains 31, 101 documents and 8,965 distinct

terms. If for each entry in the frequency matrix a four-byte integer is

allowed then, the matrix will occupy 4*8,965*31,101 bytes of main

memory. This is barely managed on a large machine as it comes to more

than 1 Gigabyte. For TREC (Text Retrieval Conference) collection, the size

of the matrix becomes more difficult if a four byte integer is allowed for

each entry i.e. 4*535,346*741,856 bytes or 1.4 Terabytes [15].

21

Supposing that one byte is sufficient to record each within-

document frequency fd, t (for TREC it is not adequate) does not help either

the space requirements for the two collections which are 250 Mbytes and

350 Gbytes respectively and the algorithm still is not viable. Boolean

matrix is sufficient if only a Boolean access is required. The frequencies

can be reduced to 31 Mbytes and 46 Gbytes but it still requires a large

amount of memory. A machine with large virtual memory can be used

and the operating system can be responsible to page the array into and

out of memory as required. There will be one page fault for each pointer

in the index due to the column-by-column access when the matrix is

created. To build a Bible index it requires about 700,000 page faults at

the rate of 50 page replacements per second, which requires 1400

seconds i.e. about 4 hours [15].

The virtual memory subsystem of a processor implements the

virtual address spaces provided to each process [16]. Each process has

one page table and during the execution process it is completely loaded

into the main memory. There are few page tables which cannot be fully

held in main memory as their processes as very large. For example each

process can have a virtual memory of up to 232 = 4 Gbytes in a 32 bit x

64 architecture. For example consider a two-level scheme with 32 bit

address. Consider 4 Kbyte pages then the offset part of virtual address is

12 bits in size then this will leave 20 bits as the selector of the page

directory and a table with 220 entries is not practical. If each page table

22

requires 4 bytes, then a page table with 220 entries requires 4 Mbytes.

Page fault occurs when a page is not in the main memory and later that

page should be loaded by the operating system.

In TREC Collection

Number of documents= 5*106

Number of distinct terms= 1*106

To read the entire text, parse and filter through the dictionary

takes 5 hours. During this time, the temporary file is written, containing

400 million 10-byte records.

cold <t, d, fd,t > takes 12 bytes

This takes half hour. The temporary file is sorted, if for 48 Mbytes

of main memory, k ≈ 4,000,000. Use quick sort, 1.2 k log k ≈ 110

seconds. Total sorting is 3 hours. During this internal sorting, the entire

temporary file is both read and written, so another hour should be

allowed to cover reading and writing. Sorting the temporary file takes 13

hours. Finally, the temporary file is again read, and written to disk. This

takes 1
�

�
 hour. So the complete inversion takes 20 hours.

Algorithm

 To produce an inverted file for a collection of documents [15].

1. /* Initialization */

23

Create an empty dictionary structure S. Create an empty

temporary file on disk.

2. /* Process text and write temporary file */

For each document Dd in the collection 1 ≤ d ≤ N

a. Read Dd, parsing it into index terms.

b. For each index term t є Dd

i. Let fd, t be the frequency in Dd of the term t

ii. Search S for t

iii. If t is not in S, insert it

iv. Write a record <t, d, fd, t > to the following temporary

file, where t is represented by its term number in S.

3. /* Internal sorting to make runs */

Let k be the number of records that can be held in main memory.

a. Read k records from the temporary file.

b. Set into non-decreasing t order and for equal values of t,

non-decreasing d order.

c. Write the sorted run back to the temporary file.

d. Repeat until there are no more runs to be sorted.

4. /* Merging */

24

Pair wise merge run in the temporary file until it is one sorted run.

5. /* Output the inverted file */

For each term t, 1 ≤ t ≤ n

a. Sort a new inverted file entry.

b. Read all triplets < t, d, fd,t > from the temporary file for t.

c. Append the inverted file entry to the inverted file.

The sorting algorithm is not efficient for large collections [15]. For

the example inversion, each of these contains about 10 x 400 million

bytes, which requires a total of 8 Gbytes of disk space at the peak of the

process. This accounts to more than 20 times the size of the index that is

eventually produced and 60 percent larger than the text being inverted.

Of course the text being inverted is probably stored compressed and also

the temporary disk space required is more than twice the space required

to store raw collection. As the requirement of disk space is more we can

say that the sort based inversion is suitable for moderate collection of

documents of size between 10 to 100 Mbyte ranges. This is not

applicable for large collections which are gigabyte range.

For the document collection pease, porridge, sort-based

inversion is performed and the values are retrieved.

25

Term Term Number

cold 4

days 9

hot 3

in 5

it 13

like 12

nine 8

old 10

pease 1

porridge 2

pot 7

some 11

the 6

Table 3.2.4 Sort based inversion for the text

26

<1, 1, 2>
<2, 1, 2>
<3, 1, 1>
<4, 1, 1>
<1, 2, 1>
<2, 2, 1>
<5, 2, 1>
<6, 2, 1>
<7, 2, 1>
<8, 3, 1>
<9, 3, 1>
<10, 3, 1>
<11, 4, 2>
<12, 4, 2>
<13, 4, 2>
<3, 4, 1>
<4, 4, 1>
<11, 5, 1>
<12, 5, 1>
<13, 5, 1>
<5, 5, 1>
<6, 5, 1>
<7, 5, 1>
<8, 6, 1>
<9, 6, 1>
<10, 6, 1>

 →

<1, 1, 2>
<1, 2, 1>
<2, 1, 2>
<2, 2, 1>
<3, 1, 1>
<4, 1, 1>
<5, 2, 1>

<6, 2, 1>
<7, 2, 1>
<8, 3, 1>
<9, 3, 1>
<10, 3, 1>
<11, 4, 2>
<12, 4, 2>

<3, 4, 1>
<4, 4, 1>
<5, 5, 1>
<11, 5, 1>
<12, 5, 1>
<13, 4, 2>
<13, 5, 1>

<6, 5, 1>
<7, 5, 1>
<8, 6, 1>
<9, 6, 1>
<10, 6, 1>

 →

<1, 1, 2>
<1, 2, 1>
<2, 1, 2>
<2, 2, 1>
<3, 1, 1>
<3, 4, 1>
<4, 1, 1>
<4, 4, 1>
<5, 2, 1>
<5, 5, 1>
<6, 2, 1>
<6, 5, 1>
<7, 2, 1>
<7, 5, 1>
<8, 3, 1>
<8, 6, 1>
<9, 3, 1>
<9, 6, 1>
<10, 3, 1>
<10, 6, 1>
<11, 4, 2>
<11, 5, 1>
<12, 4, 2>
<12, 5, 1>
<13, 4, 2>
<13, 5, 1>

 initial sorted runs merged runs

Table 3.2.4 Sort based inversion

27

CHAPTER 4

DYNAMIC INDEXING

 In the previous chapter we discussed that the document collections

were static. Most of the indexing techniques are ‘static’ as they are

performed in two phases [19]. To build temporary internal files, input

files are read during the first phase. In the next phase these temporary

internal files are optimized to prepare for retrieval. Once the optimization

is finished the indices are static so, it is not possible to add new

documents without rebuilding the whole new index. Also, the queries for

the retrieval of documents cannot be completed until the second phase of

indexing is performed.

To overcome the limitations caused by static indexing techniques,

dynamic indexing has been introduced. Now we discuss about the

document collections which are dynamic. Static indexing can be used for

document collections which do not change and remain same and we find

such collections in rare cases. Each time for a query to be retrieved the

indexes which are present in the index files are checked without the

optimization of the internal files. In dynamic indexing, the postings for

the words are stored in an index file which is organized into a set of fixed

length blocks. These blocks are the ones which pack the postings for

much of the words together with free space being more or less. The block

numbers for each posting are stored in an address record table. A free

28

block list is kept for the blocks which contain enough amount of free

space and which store information related to them.

Dynamic indexing helps in providing methods for indexing a

collection of documents in a single phase. Using this, the queries are

retrieved without optimizing and generating internal files. The postings

for a word are stored sequentially in memory in order to retrieve the

postings from memory by performing less number of input/output

operations and allow retrieval at all times. According to one aspect of

dynamic indexing, the words found in the documents of a database are

allocated with blocks of index file to the postings. The index file is

allocated with a predetermined initial block size and further the block is

divided into blocks with decreasing sizes successively. For a successive

level, each block is divided into n blocks of equal size [19]. The size of the

initial block is the sum of the sizes of blocks in each of the successive

levels.

There are many collections where documents are added, deleted

and updated i.e. which change frequently. Whenever new documents are

added to the database then the collection of indexes becomes large and it

takes time for the index file to get updated. Blocks of index files are

allocated to the postings for words that are contained in the index file in

an information retrieval interface. The word in the first block of the index

file is updated by the information retrieval interface. The postings which

29

are updated consist of some additional postings for the word in the

documents which are added to the database [17].

b byte

block

 Figure 4.1 Block Structure

From a free block list a second block is searched by the

information retrieval interface which is free to accommodate the updated

postings for the word. The free block list contains information which

record number Address

record number address

 record number address

....

free space

record

record

record

block
table

records

30

indicates whether or not a block is free. The postings for the word are

moved from the first block to the second block by the information

retrieval interface.

In the figure above, each block contains a block address table,

some records and some free space. The number of records stored in the

block and also for each record stored, the record number and an address

within the block for the record is listed by the block address table [19].

The records themselves are packed at the other end of the block from the

block table, and there is some free space between the block table and the

records. In the memory, a record address table is maintained that stores,

for each record number, the block number currently containing that

record. Also in memory is a free list that describes blocks that currently

have an amount of free space greater than a given tolerance. Finally, the

current last block of the file is kept in main memory rather than on disk.

The record address table is used to find the correct block number

to access a record with given ordinal record number. The block address

table searches for the record number and the whole block is read into

memory. This yields the address of the record within the block, so the

record can then be located and the contents used. Now consider the

problem of extending a specific record. First, the block which consists of

the record is retrieved. The extended record can still be accommodated, if

the block contains sufficient free space such that the records are linearly

shifted in the block to make the correct space, the extension added to the

31

record, the block table updated, and the altered block written. This may

also have some effect on the free list.

If there is insufficient free space within the original block, then the

smallest record can be deleted whose removal leaves enough space for

the extended record from the block. If there is no such record, then the

record being extended is removed. Again, the block table and free list

should be updated, and the block must be written back to the disk. In

this case, however, still extant is a record that has no block i.e. either a

record that was removed to make space for the extension or the newly

extended record itself. This record is treated as an insertion.

A record is inserted by consulting the free list and determining if

there is any block in the file that has space. If there is, that block is

retrieved from disk; the record is inserted; the block table, record address

table, and free list are all updated and the block is written back to the

disk. In this case, however, still extant is a record that has no block i.e.

either a record that was removed to make space for the extension or the

newly extended record itself. This record is treated as an insertion.

To insert a record, the free list is consulted to determine if there is

any block in the file that has space for it. If there is, that block is

retrieved from disk; the record is inserted; the block table, record address

table, and free list are all updated; and the block is written back to disk.

If there is not if all the blocks on the free list are sufficiently full that they

cannot absorb this record attention is switched to the last record, it is

32

inserted and the various tables are updated. If it cannot, the last block is

written and perhaps added to the free list, and a new, completely empty,

last block created in memory. Finally, the record can be inserted into this

empty block.

In most cases, a record extension can be carried out with one block

read and one block write. The worst that can be required is four disk

operations: a block read to been removed from that block; a block read

to retrieve a block that does have enough is sufficiently high that in this

raw form the scheme is not likely to be useful.

For example consider collections like The Complete Works of

Shakespeare, dictionaries, encyclopedia etc which have undergone many

changes with new information is being discovered and added. For such

collections, each time the posting lists and the dictionary should be

updated whenever there are any changes made to the collection. These

modifications can be done to the index by reconstructing it from the

beginning. This can easily be done if the modifications are small and the

delay caused in searching new documents is acceptable.

We can say a collection to be dynamic for one of the two ways. To

append a new document to the existing collection an ‘insert’ operation

has to be used which adds a new document without changing the

previous collection. When a document contains many words and is

inserted into a database, then the postings of all these words are

expanded in a manner of multipoint insertion rather than a simple

33

append operation. Also, the ‘edit’ operation is important using which

changes can be made to the existing collection and unnecessary

documents can be removed. The problem of reconstructing a new index

can be solved by maintaining two indexes; one is a small auxiliary index

for storing new documents which is stored in main memory and second

is a large main index. The required information is retrieved by performing

a search process in both the indexes and the final results are merged.

There is an invalidation bit vector which stores all the deleted

documents. The search final results are displayed after removing the

deleted documents. We can say a document to be updated when it

performs insertion and deletion operations. This process helps the

information retrieval system to dynamically index a collection of

documents in the database.

The auxiliary index is merged into the main index whenever it

becomes too large and the cost of merging depends upon the storage of

the index in the file system. The merge includes only extending each of

the auxiliary index postings list with its corresponding postings lists of

the main index, if each postings list is stored as a separate file. The

auxiliary index is mainly used to reduce the number of disk seeks that

are necessary over time. We require Mave disk seeks to update each

document separately. Here Mave represents the average size of the

vocabulary of documents in a collection. An additional load is put on the

disk for with an auxiliary index, when the main index and auxiliary index

34

are being merged. Large number of files cannot be handled by most of

the file systems, because of this one-file-per-postings-list scheme is

infeasible. To overcome this, the entire postings list can be concatenated

i.e. the index is stored as one large file [14].

4.1 Algorithm Logarithmic Merging

LMERGEADDTOKEN (indexes, Z0, token)

1 Z0 ← MERGE (Z0, {token})

2 if |Z0| = n

3 then for i ← 0 to ∞

4 do if Ii ∈ indexes

5 then Zi+1 ← MERGE (Ii, Zi)

6 (Zi+1 is a temporary index on disk)

7 indexes ← indexes − {Ii}

8 else Ii ← Zi (Zi becomes the permanent index Ii)

9 indexes ← indexes ∈ {Ii}

10 BREAK

11 Z0 ← Φ

LOGARITHMICMERGE ()

1 Z0 ← Φ (Z0 is the in-memory index)

2 indexes ← Φ

3 while true

4 do LMERGEADDTOKEN (indexes, Z0, GETNEXTTOKEN ())

35

 In this algorithm each token is added to Z0, the in-memory index

by LMERGEADD TOKEN. The LOGARITHMICMERGE initializes Z0 and

then indexes. Here each posting is processed [T/n] times as it is touched

during each [T/n] merges. Here n represents the size of the auxiliary

index and T represents the total number of postings. Here the docIDs are

considered and the representation of terms is neglected. Hence we can

say that � (T2/n) gives the overall time complexity. For this purpose, it

can be said that the postings list is nothing but a list of docIDs.

 ADD Token(Z0, token)

 Merge(I0, Z0)

 21n

Figure 4.2 Logarithmic merging of I0 and Z0

The overall time complexity of � (T2/n) can be made much better

by advancing log2 (T/n) with indexes I0, I1, I2, I3,.... with sizes 20 x n, 21 x

token indexes
in-memory
size: 20n 20n
21n

I1 I0 Z0

Z1

36

n, 22 x n, 23 x n …. On each level the postings are processed only once

and are percolated up this sequence of indexes. We call this scheme as

logarithmic merging.

The logarithmic algorithm is discussed above. As discussed above

an in-memory auxiliary index can accumulate up to n postings which we

call as Z0. After reaching a limit n, a new index I0 is created on the disk.

Figure 4.3 In-memory and indexes

and the 20 x n postings in Z0 are transferred into this new index I0. If Z0

is full, a new index known as Z1 of size 21 x n is created by merging Z0

with I0. If there is no I1 existing then Z0 is stored as I1 or if I1 exists then

Z1 is merged with I1 into Z2 and so on. The in-memory Z0 is queried by

servicing all currently valid indexes Ii and search results on disk and

merging the results [18].

 indexes
in-memory

size: 20n

I2 I1 I0 Z0

37

Each posting is processed only once on each of log (T/n) levels

hence, the overall index construction time is Q (T log (T/n). This

efficiency gain can be traded for a slowdown of query processing and the

results from log (T/n) indexes need to be merged as it is opposed to the

main and auxiliary indexes. The very large indexes should be merged

occasionally in the auxiliary scheme and this results in slow down of the

search system during the merge. This process occurs less frequently and

the indexes present in a merge on an average are small.

 ADD Token(Z0, token)

 Merge(I0, Z0) Merge(I1, Z1)

 21n 22n

Figure 4.4 Logarithmic merging of (I0, Z0) and (I1, Z1)

The figure 4.5 below shows a block structure where each block

represents a portion of memory for the index file [19]. Each level consists

token
 indexes
in-memory

size: 20n 20n 21n 22n

I2 I1 I0 Z0

Z2 Z1

38

of blocks which are of equal sizes. The index file initially consists of a

block with some predetermined size and it is divided into various blocks

of successive sizes. The figure ranges from high level to low level. Here

 101

 Level n

 Level n-1

 103 . 105

•

 107 109

 Level 1

 Level 0

 111 113

Figure 4.5 Structure of index file

the higher level is level n and the lower level is level 0. The higher level

consists of a single block which is large in size whereas the lower level

consists of smaller blocks with minimum size. The amount of memory

that is wasted during fragmentation can be minimized by the smaller

blocks with minimum size. Here the block 101 is in the higher level i.e.

39

level n and in level n-1; it is portioned into two blocks 103 and 105 of

equal sizes. Each higher block is partitioned into two blocks of equal

sizes. In the level 1 the block 107 is partitioned into two blocks 111 and

113 of equal sizes in the lower level i.e. level 0. The blocks 103, 105, 111

and 113 are the child blocks whereas the blocks 101 and 107 are the

parent blocks. The size of parent blocks is twice the size of the child

blocks as each parent is divided into two child blocks. The size of the

block in higher level n is 2n, the size of the block in lower level 0 is 20 i.e.

1 and the size of the block in level 1 is 21 i.e. 2. The parent block is thrice

the size of the child block if it has 3 children. The size of the block in

lower level 0 will be 1 and the size of the block in the higher level n will

be 3n. When the index file is opened then the information is read from

the secondary memory into the main memory and when the index file is

closed then the information kept in the main memory is written back to

the secondary memory.

For example, consider an index file allocating a block to the

postings list for a word from the document collection. Consider the

document collection as shown below. There are four documents in the

collection.

doc1 pen, pencil, box, cap

doc2 cap, duck, ball

doc3 pen, duck, box, drum

doc4 pencil, box, ball, cap

40

Now consider the word ‘box’ is seen in many documents. It appears

in doc1, doc3 and doc4 respectively so, the postings of ‘box’ are [doc1,

doc3, doc4]. The index file is partitioned into blocks to store the postings

of ‘box’.

 311

Level 4

 309

Level 3

 301

Level 2

 box

Figure 4.6 Index file allocating blocks

The block structure is partitioned to allocate the word ‘box’ in level

2. The largest block 311 in the level 4 is deleted and a new block 309 and

301 are added in the level 3 and level 2 respectively.

The figure 4.7 below shows the indexing file allocation two words.

Now consider the word ‘duck’ which is present in doc2 and doc3 and the

postings for ‘duck’ are [doc2, doc3] respectively. The block 301 is

partitioned into blocks 303 and 305 in level 1. The posting for ‘duck’ are

allocated to block 303 in level 1. The block 301 is removed from the free

block list and block 305 id added in level 1.

41

Level 4

Level 3

 307 301

Level 2

 box 303 305

Level 1 duck

Figure 4.7 Index file allocating blocks with two words

The maintenance of collection wide statistics becomes complicated

when there are multiple indexes. For example, the spelling correction

algorithm gets affected which selects the corrected alternative with the

most hits [14]. It is no longer a simple lookup for the correct number of

hits for a term with multiple indexes and an invalidation bit vector. In

logarithmic merging, the aspects of an IR system i.e. query processing;

index maintenance, distribution etc. are more complex. Some of the large

search engines allow a reconstruction from scratch strategy due to the

complexity of dynamic indexing. So, they do not construct indexes

dynamically; instead a new index is built from scratch periodically.

Finally while processing a query the old index is deleted and searched

using the new index.

42

CHAPTER 5

CONCLUSION AND FUTURE WORK

The main objective of this thesis was to survey the importance of

indexing and especially dynamic indexing in retrieving information. We

discussed about the various procedures involved in retrieving

information. First we discussed about search engines and vector space

model in chapter 2 and discussed the importance of indexing in

retrieving information. In chapter 3 we discussed about different types of

indexing and their drawbacks. Finally we discussed about dynamic

indexing and how it is used in retrieving information from large

document collections. The document collections require frequent changes

and this can be done using dynamic indexing and modifications made in

the collections can immediately be visible in the index.

 Dynamic indexing technique is mainly focused on large document

collections and to reconstruct the index from scratch when new

documents are added to the database and the old one is deleted.

Different operations can be used in building the index like insert, delete,

update etc.

The document collections which require frequent changes can be

modified using dynamic indexing and modifications made in the

collections can immediately be visible in the index. In future it can be

capable of making indexed documents available for query immediately

43

after they are indexed, which typically can take a small fraction of a

second.

44

BIBLIOGRAPHY

1. Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze, ‘Introduction to Information Retrieval’, Chapters 1, 6, 8,
9, 11 & 12, Cambridge University Press, 2008.
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html.

2. Amit Singhal, ‘Modern Information Retrieval: A Brief Overview’,
IEEE Data Engineering Bulletin, Volume 24, pages 35-43, 2001.

3. C. J. Van Rijsbergen, ‘Information Retrieval’, Second Edition,
Chapters 1, 6 & 7, Information Retrieval Group, University of
Glasgow, London: Butterworths, 1979.

4. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, ‘Managing
Gigabytes’, Second Edition, Chapter 4, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

5. Ricardo Baeza Yates, Berthier Riberio Neto, ‘Modern Information
Retrieval’, Chapter 1, Addison Wesley, Addison Wesley Longman,
1999.

6. K. Sparck Jones, S. Walker and S. E. Robertson, ‘A Probabilistic
model of Information Retrieval: Development and Comparative
Experiments’, Part 1, Information Processing and Management: an
International Journal, Pergamon Press, Inc, Volume 36, Issue 6,
January 2000.

7. ChengXiang Zhai, ‘A Brief Review of Information Retrieval Models’
October 2007.

8. Andrew Graves, ‘Video retrieval using an MPEG-7 Based Inference
Network’, Department of Computer Science, University of London,
August 2002.

9. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, ‘Managing
Gigabytes’, Second Edition, Chapter 10, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

10. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, ‘Managing
Gigabytes’, Second Edition, Chapter 4.4, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

11. Kazem Taghva, ‘Database Management Systems’, Lecture Notes,

Fall 2009, University of Nevada, Las Vegas.

45

12. HappyCoders,‘TokenizingJavasourcecode’(n.d.)
http://www.java.happycodings.com/Core_Java/code84.html

13. Martin Porter, ‘The Porter Stemming Algorithm’, Jan 2006.
http://tartarus.org/~martin/PorterStemmer/.

14. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze,

‘Introduction to Information Retrieval’, Chapter 4, Cambridge
University Press, 2008.
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html.

15. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, ‘Managing

Gigabytes’, Second Edition, Chapter 5, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

16. Ulrich Drepper, ‘Article on Virtual Memory’, October 2007.
https://lwn.net/Articles/253361/

17. Ian H. Witten, Alistair Moffat, and Timothy C. Bell, ‘Managing
Gigabytes’, Second Edition, Chapter 5.7, Morgan Kaufmann
Publishers, Inc, San Francisco, May 1999.

18. Hatena:: Diary:: Naoya, ‘Logarithmic Merging’, May 2009.
http://d.hatena.ne.jp/naoya/20090512/logarithmic_merging
http://bloghackers.net/~naoya/ppt090512logarithmic_merging.
ppt

19. Frank Smadja, Haifa (IL), ‘Dynamic Indexing Information Retrieval
or Filtering System’, February 2004.

20. S. E. Robertson, C. J. van Rijsbergen and M. F. Porter,
‘Probabilistic models of Indexing and Searching’, Proceedings of the
3rd annual ACM conference on Research and development in
information retrieval, Cambridge, England, Page(s): 35 - 56, June
1980.

21. Dik L. Lee, Huei Chuang, Kent Seamons, ’Document Ranking and

the Vector- Space Model’, IEEE, Volume 14, Issue 2, Page(s): 67 -
75, March/April 1997.

22. Kazem Taghva, Julie Borsack and Allen Condit, ‘Effects of OCR

Errors on Ranking and Feedback Using the Vector Space Model’,
Information Science Research Institute, UNLV, Inf. Proc. and
Management, 32(3): 317-327, 1996.

46

VITA

Graduate College
University of Nevada, Las Vegas

Viswada Sripathi

Degrees:
Bachelor of Technology in Computer Science and Engineering, 2008
Jawaharlal Nehru Technological University, India

 Master of Science, Computer Science, 2010
 University of Nevada, Las Vegas

Thesis Title: Dynamic Indexing

Thesis Examination Committee:

Chair Person, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D
Graduate College Representative, Dr. Muthukumar Venkatesan, Ph.D

	Dynamic indexing
	Repository Citation

	Microsoft Word - $ASQ62067_supp_undefined_AE1A7E48-A053-11DF-9192-C86F3012225A.docx

