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ABSTRACT 
 

The Larval Salivary Gland of Drosophila Melanogaster: A Model System for 
Temporal and Spatial Steroid Hormone Regulation 

 
by 

Benjamin F.B. Costantino 

Dr. Andrew J. Andres, Examination Committee Chair 
Associate Professor of Biological Sciences 

University of Nevada, Las Vegas 
 

Drosophila melanogaster provides an ideal model organism to test genetic and 

molecular biological mechanisms within the context of a living animal.  For over one 

hundred years Drosophila continues to produce a boundless extent of informative and 

important scientific data providing crucial insight into development, disease progression 

and genetic interactions.  A century as a model organism allowed for the development of 

an abundance of unique genetic and molecular tools allowing researchers to tease apart 

cellular mechanisms with very little limitation.  From the whole adult body to tissue 

function to molecular networks, if a biological question arises it most likely can be 

answered using the fruit fly. 

The Drosophila larval salivary gland is an organ that not only takes advantage of the 

many biological tools available, but also has innate properties favoring it as a model 

tissue to investigate nuclear hormone activity.  In the final larval stage (third instar) of 

Drosophila, the salivary gland responds to the steroid hormone, 20-hydroxyecdysone 

(20E) by synthesizing and secreting a glycosylated polypeptide glue mix (glue).   

In the mid-third instar, a low titer of 20E initiates a complex of gene expression that 

targets the glue genes resulting in the synthesis of glue.  Using fluorescent markers 

tagged to the glue, this event is easily monitored using confocal microscopy.  The first 
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part of my dissertation describes a model in which glue synthesis is a 20E-coordinated 

event and that surprisingly did not act through a canonical nuclear hormone receptor. 

Prior to my research, it was known that 20E-activated genes act through a nuclear 

hormone receptor comprised of a heterodimer between two proteins, ecdysone receptor 

(EcR) and ultraspirical (USP).  However, I show that 20E-regulated glue synthesis is 

USP independent.  Included in this section of my dissertation are experiments designed to 

test this model of glue synthesis that is independent of USP and to investigate the 

potential for another co-receptor functioning with EcR to initiate glue synthesis.   

Following the logic that another receptor is functioning with EcR in 20E-mediated 

glue synthesis, I investigated other candidate receptors.  I found the nuclear receptor, 

DHR96, to be required for glue synthesis and performed experiments that suggest 

DHR96 may work with EcR to initiate glue synthesis in response to a 20E signal.  

The remaining sections of my dissertation are focused on the latter half of the third 

instar.  This stage of the larval life cycle is the late-third instar and is marked in the 

salivary gland by the secretion of mature glue granules into the lumen of the gland in 

response to a large pre-metamorphic pulse of 20E.  During this period, 20E initiates the 

expression of proteins that are mostly transcription factors; however, a gene was 

identified that had sequence similarity to both calmodulin and myosin light chains.  This 

gene, E63-1, has been shown to trigger precocious glue secretion in glands 

overexpressing E63-1.  However, E63-1 mutants secrete glue normally.  Interestingly, 

calmodulin has been shown to prevent glue secretion in experiments using calmodulin 

inhibitors.  These data provoked a model that E63-1 and calmodulin are both needed for 
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secretion to be successful.  The goal of chapter 4 was to test this model using available 

molecular and genetic tools.   

Finally, I analyze a secretion phenotype caused by the overexpression of GDP 

dissociation inhibitor (GDI) that produces rubble-like glue granules, which do not 

secrete.  Part of this analysis involved describing the localization and morphology of 

wildtype cells using fluorescently tagged markers.  When I compared the markers from 

the wildtype cells to those overexpressing GDI, I found a number of cellular disruptions.  

GDI overexpression caused an extension of ER membrane, a failure of membrane 

recycling and a failure for the glue granules to acidify.   

 Thus, through the use of molecular and genetic tools, I characterize 20E-signaling 

events in the third instar salivary gland, and more importantly, I lay the foundation to test 

novel models of 20E signaling and intracellular trafficking mechanisms. 
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CHAPTER I 

INTRODUCTION 

1.1: Nuclear Receptors. 

Small lipophilic hormones such as steroids, retinoids, thyroid hormones and vitamin 

D were first isolated and evaluated in the beginning of the twentieth century.  However, it 

was unclear how these molecules functioned until Jensen and Jacobsen observed 

radiolabeled estradiol would translocate from the cytoplasm to the nucleus in target 

tissues and remain unmodified.  Further, radiolabeled estradiol would complex with 

proteins in the nucleus in sucrose-density sedementation experiments [1, 2].  These early 

findings were important, because they helped to established a link between the control of 

transcription and the activity of a hormone.  To further support this link, the Ashburner 

lab demonstrated that the insect hormone, 20-hydroxyecdysone, would trigger the 

formation of chromosomal puffs on polytenized chromosomes, indicating regions of 20E 

responsive gene activity [3].  The above are key studies leading to the current model that 

the nuclear receptor superfamily are ligand regulated transcription factors.  This special 

family of receptors are essentially an efficient single step mechanism to transduce and 

amplify a lipophilic hormone signal that genetically reprograms target tissue cells.   

Since then, we have more insight into the function of nuclear hormone receptors and 

evidence that they are the key regulators of growth, development and maturity of all 

vertebrates and some classes of sponges [4].  Nuclear receptors can function as either 

homodimers or heterodimers.   An example of nuclear receptor homodimer activity is the 

glucocorticoid receptor (GR), first cloned by the Evans lab [5].  GR has been shown in 

vertebrates to bind ligand in the cytoplasm, homodimerize and then translocate into the 
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nucleus to regulate target gene expression.  It was thought that nuclear receptors that 

function as heterodimers, such as thyroid receptor (TR) or retinoic acid receptor (RAR), 

must dimerize with a retinoid X receptor (RXR).   However, some recent evidence 

supports an alternative to the RXR heterodimer; suggesting that a TR/RAR heterodimer 

has a distinct biological function [6].  Some nuclear receptor heterodimers repress gene 

transcription when not associated with ligand and are bound to DNA complexed with a 

co-repressor [4].  When a ligand binds the receptor the co-repressor dissociates and a co-

activator is recruited.  Thus, the nuclear receptor does not translocate upon ligand binding 

and instead has a gene-repressive function.    

Nuclear receptors have distinct domains common to the entire super family: 

transactivating domain(A/B), DNA binding domain (C), hinge region (D), and ligand 

binding domain (E/F) (Fig. 1-1A).  The E/F domain is also the site of transcriptional 

activation (AF-2) and possibly dimerization [7].  Although no function for the F domain 

has been elucidated, studies of the mammalian estrogen receptor (ER) show that the 

deletion of the F domain confers an agonist activity to tamoxifen and also an increase in 

dimerization in HeLa, MCF-7 and CHO cell lines, but not in 3T3 cells [8]; suggesting a 

tissue specific regulatory role for the F domain in estrogen receptors.  All nuclear 

receptors contain two zinc finger domains in the C domain that are capable of binding a 

target sequence on the DNA or a hormone response element (HRE) (Fig. 1-1B).  The 

HRE is part of the gene promoter and is primarily two hexameric, half-site sequences 

configured as palindromes, inverted repeats or direct repeats [9].   Because of the 

important roles in the success of animal development, these receptors have changed little 

evolutionarily and as-such are highly conserved throughout the animal kingdom. 
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Interestingly, while all receptors share sequence homology, cognate ligands have not 

been found for all nuclear receptors.  Nuclear receptors with no known ligand are referred 

to as orphan receptors.  In Drosophila, there are 21 known or putative nuclear hormone 

receptors, based on sequence homology (Table 1-1).  Surprisingly, only EcR and E75 

have known ligands, 20-hydroxyecdysone (20E) and heme respectively [10], although, 

recent experimental evidence has shown that cholesterol may bind to DHR96 to regulate 

cholesterol metabolism [11].  The haemolymph of Drosophila is rich with ecdysteroid 

metabolites, some of which are only present at certain developmental times.  This lends a 

valuable opportunity to discover ligands for orphan receptors and potentially explain the 

mechanism behind temporal and spatial hormone responses in target tissues. 
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Figure 1-1: A schematic of nuclear receptor domains.   

(A) The nuclear receptor super family have distinct domains.  The A/B domain is a 

ligand independent transactivating domain.  The C domain contains two zinc finger 

domains that bind target sites on DNA (shown in B).  The D domain is a hinge region.  

The E/F domain forms the ligand binding allosteric site and the E domain is also the site 

of transcriptional activation.  It has been suggested that the E/F domain may also be the 

site of dimerization. 
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Table 1-1: The 21 nuclear hormone receptors in Drosophila melanogaster. 
 

Gene Symbol Synonyms Chromosome Isoforms Cyto Location 
 

EcR CG1765 2R 5 42A9-42A12 
 

HR39 Cg8678 2L 4 39B4-39C1 
 

Eip75B E75 3L 4 75A10-75B6 
 

HR46 DHR3 2R 3 46F5-46F7 
 

CG16801 PNR, HR51 2R 3 51F7-51F7 
 

svp NR2F3 3R 3 87B4-87B5 
 

tll NR2E2 3R 1 100A6-100A6 

Hnf4 
Hematocyte Nuclear 

Factor4 2L 3 29E4-29E4 
 

Hr38   2L 2 38D5-38E3 
 

USP NR2B4 X 1 2C7-2C7 
 

ERR Estrogen Related Receptor 3L 2 66B11-66B11 
 

Eip78C E78 3L 3 78C2-78C3 
 

dsf dissatisfaction 2L 1 26A1-26A2 
 

ftz-F1   3L 2 75D8-75E1 
 

HR78   3L 4 78D4-78D4 
 

HR96 NR1J1 3L 1 96B16-96B17 
 

CG10296 Fax1, HR83 3R 1 83E4-83E4 
 

HR4 GRF X 1 2C1-2C1 
 

Knrl Knirps like 3L 1 77D4-77E1 
 

Kni Knirps, NR0A1 3L 1 77E3-77E3 
 

Eg Eagle 3L 2 78F2-78F3 
 

* These receptors were identified using the PSI-BLAST algorithm.
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1.2: The Ecdysone Receptor and Insect Hormone 20-hydroxyecdyone. 

Ashburner in 1974 performed classic experiments on 20E gene regulation by 

observing chromosomal puffs on explanted Drosophila larval salivary glands in culture 

supplemented with the hormone [12].  These puffs were an indication of 20E induced 

gene activity and grouped into a hierarchical set of genes known as early and late 

response genes. The original Ashburner model of genetic control of 20E was that 20E 

would bind its hypothesized target receptor and regulate genetic transcription by directly 

inducing the early genes and repressing late genes (Fig. 1-2).  The early genes encoded 

transcription factors that would have differential secondary functions either suppressing 

early gene function or inducing late gene expression.   

When molecular cloning became available, Koelle et al. [13] identified the steroid 

receptor EcR as the hypothesized target receptor in Ashburner’s model and performed 

experiments that provided valuable insight as to the characteristics of EcR.  From Koelle 

et al. we learned that EcR has an 850-fold sequence specific DNA binding preference to 

an ecdysone regulatory element (EcRE) on DNA.  Also, it was shown that 20E binding 

activity was not observed in cell lines or embryonic extracts treated with anti-EcR to 

remove EcR protein.  Additionally, ecdysone responsiveness measured by an EcRE-lacZ 

reporter activity was absent in S2 cell lines deficient in the EcR protein, but EcRE-lacZ 

activity was restored upon the transfection of the cells with EcR expression plasmids 

[13].   Koelle did not demonstrate clearly, however, that the 20E response is conferred 

through EcR alone.  Citing the lack of purified EcR protein in the above experiments, 

Koelle et al. do not claim that EcR is sufficient to convey the 20E response and 

hypothesize that a complex of receptors may be involved in in vivo 20E gene regulation. 
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Powerful genetic tools allowed for the identification of more nuclear receptors in 

Drosophila.  Of these, ultraspiracle (USP) was of great interest.  USP is the vertebrate 

RXR homolog exhibiting more than 86% amino acid similarity in the DNA-binding 

domain and 49% in the ligand binding domain [14].  Because of the amino acid 

similarities, it is reasonable to expect that function has been conserved between species 

and, like the vertebrate RXR homolog, can form heterodimers with other nuclear 

receptors.  Research done by Yao et al. has shown that the 20E response in fact does 

depend on the heterodimerization of EcR and USP [15].  Binding was demonstrated by 

USP antibody supershift of the specific EcRE DNA sequence.  In addition, mixing 

purified EcR and USP proteins increased the affinity to binding the EcRE compared to 

individual proteins [15].  In light of this evidence, the Ashburner model was refined to 

include 20E signaling occurring through a functional ecdysone receptor consisting of an 

EcR/USP complex.  However, the availability of orphan receptors in these target tissues 

and the recent finding that not all 20E responses are dependent on USP [16] have led to a 

rethinking of the model altogether.  



  9 

Figure 1-2: A broad view of the 20-hydroxyecdysone genetic hierarchy.  

The original model of genetic control of 20E was that 20E would bind to a target 

receptor and regulate transcription directly by activating early genes.  These early genes 

would in turn activate late genes and suppress additional early gene activation. 



  10 

 



  11 

     There are three isoforms of EcR; EcR-A, EcR-B1 and EcR-B2 with different lengths 

and sequences of the N-terminal A/B domain, but conserved DNA binding C domains 

(Fig. 1-3).  EcR-A and EcR-B1 are encoded by overlapping transcriptional units and are 

controlled by different promoters.  EcR-B2 is a splice isoform of the transcript encoded 

by the EcR-B1 transcriptional unit [17].   It has been suggested that these three isoforms 

have distinct functions and are not interchangeable, because neither EcR-A nor EcR-B2 

overexpression could rescue early gene repression in EcR-B1 mutant salivary glands; 

only overexpressing EcR-B1 returned the early and late genetic hierarchy to wildtype 

levels [18].  Additionally, while all isoforms can rescue larval development in EcR 

homozygous mutants, EcR-B2 is the most efficient [19].  Further experiments showed 

that distinct EcR isoforms were present in varying morphological stages and cause lethal 

phenotypes at different stages [20], suggesting different isoforms can contribute to the 

diversity of the 20E response. 

During development and before the onset of metamorphosis, USP is expressed in all 

tissues, though at varying times [21, 22]. When USP partners with EcR, the heterodimer 

of EcR/USP is able to induce the expression of many genes required for metamorphosis 

[23].  However, USP is considered to have promiscuous binding properties.  For 

example, USP can function by dimerizing with different receptors.  An example of USP 

promiscuity was demonstrated by Sutherland et al. 1995, who show that USP can 

heterodimerize with hormone receptor 38 (DHR38) and act to regulate ecdysone levels in 

target tissues.  DHR38 competes in vivo with EcR for USP binding and can limit the 

expression of ecdysone-regulated genes [24].  Because USP is promiscuous, it stands to 

reason that other nuclear receptors may possess similar promiscuous characteristics and a 
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hypothesis can be drawn that perhaps temporal and spatial regulation of 20E occurs via a 

promiscuous ecdysone receptor.  Experiments that closely examined the EcRE help to 

support such a hypothesis. 

One ecdysone receptor binding site (EcRE) was elucidated by Antoniewski to be a 

palindromic inverted repeat separated by a nucleotide consensus sequence: 5’-

PuG(G/T)T(C/G)A(N)TG(C/A)(C/A)(C/t)Py-3’ [25].  The best-characterized EcRE is the 

conserved half site, AGGTCA, of the heat shock protein 27 (hsp27) promoter.  The 

EcR/USP heterodimer can bind direct repeats of AGGTCA separated by 1-5 nucleotides 

with various affinities [26].   Interestingly, research into EcRE binding has shown that 

three other receptors, DHR38, DHR78, and DHR96, can also bind either the hsp27 EcRE 

or other EcRE sequences [27].  One can imagine yet another model of temporal and 

spatial regulation that involves crosstalk between these receptors and EcR or USP at 

EcRE sequences upstream of target genes to direct distinct 20E responsiveness in target 

tissues.  The most promising of these receptors is DHR96. 
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Figure 1-3: The domain organization of EcR and USP.  

Three isoforms of EcR differ in the length of their A/B domain. USP shares similarity 

to EcR in all domains except the A/B domain. The amino acid lengths of the EcR 

isoforms A/B domains are shown.   
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The Drosophila hormone receptor 96 (DHR96) is a strong candidate to be part of the 

ecdysone receptor complex, forming a heterodimer with EcR to temporally regulate the 

20E response.  DHR96 recognizes the same AGGTCA half sequence as the EcR/USP 

complex as demonstrated in gel shift assays [27].  Additionally, and most importantly 

DHR96 is thought to be 20E-inducible because it has a temporal expression profile 

correlating to times of 20E exposure [27].  

The DHR96 gene codes for a 2.8 kb transcript that is expressed throughout the third 

instar larva and codes for a protein that has 64% amino acid similarity to the vertebrate 

vitamin D receptor DNA binding domain (Fig. 1-4).  DHR96 is 20E inducible in cultured 

larval organs and is distinctly expressed in larval fat body, Malpighian tubules, midgut 

gastric caecae and the larval salivary gland. With the exception of the salivary gland, 

DHR96 expression is limited to tissues known to monitor and metabolize xenobiotics 

[28].   Homozygous DHR96 mutant flies show a downregulation of xenobiotic genes: 

CG4500, acyl-CoA synthetase, Turandot gene family members TotM and TotX, Jonah, 

and sugarbabe.  The downregulation of these genes by DHR96 makes the fly more 

sensitive to phenobarbitol and the insecticide DDT [28] making a strong case for DHR96 

being a xenobiotic regulatory receptor. Yet, the function of DHR96 in the salivary gland 

remains unknown. 

More DHR96 research by Sieber and Thummel demonstrate that DHR96 null mutants 

reduce the levels of triacylglycerol (TAG) in the midgut and the mutants are more 

sensitive to starvation [29].  Furthermore, mass spectrometry analysis identified 

cholesterol as a target ligand for DHR96.  DHR96 mutants cause an accumulation of 

excess cholesterol on high cholesterol diets and lethality on low cholesterol diets [11].  



  16 

Taken together, the role of DHR96 in the fat body, Malpighian tubules, and midgut is to 

metabolize xenobiotics or to sense and maintain cholesterol homeostasis.  

 One potential problem of the above studies of DHR96 mutants is the use of an “ends 

in” site-directed mutagenesis technique to generate a DHR96 mutant [30] (Fig. 1-5). This 

method can be used to create a loss of function mutant of gene of interest using 

homologous recombination to introduce deletions.  In the case of the DHR96 mutant, the 

donor DNA contained a deleted exon.  Southern blot analysis on the mutant confirmed 

the deletion, but whether the presence of a single deletion is enough to cause a genetic 

null is still debatable.  I have analyzed the mutant in PCR fragment studies and can 

confirm that the fourth exon is absent; however, western blots using polyclonal 

antibodies generated for DHR96 indicate the presence of additional low molecular weight 

bands.  This could suggest a truncated form of the protein being expressed that may still 

harbor a function and could be enough to influence a heterodimeric partner binding to 

EcR or 20E. 
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Figure 1-4:  An amino acid comparison of sequence similarity between DHR96 and 

the vertebrate homolog, vitamin D receptor DNA binding domain. 

 Comparing the DNA binding domain of DHR96 with the vertebrate homolog vitamin 

D receptor in clustalW. Amino acid residues are colored accordingly: yellow represents 

proline, orange represents glycine, red represent basic residues, purple represent acidic 

residues, blue represent small hydrophobic residues, green represent basic residues with 

hydroxyl and amine groups.  The quality of the sequence identity is shown.  Highly 

conserved sequences are ranked higher and less conserved sequences are ranked lower. 

Below in black is the consensus match. 
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Figure 1-5: An overview of the “ends-in” site-directed mutagenesis technique used 

to generate DHR96 mutant flies. 

A transgene that expresses a site-specific recombinase, a transgene that expresses a 

site-specific endonuclease, and a transgenic donor construct that carries recognition sites 

for both enzymes and DNA from the locus to be targeted. Flies with all three parts are 

generated, and expression of the enzymes are induced by heat-shocking the flies. The 

concerted action of these two enzymes produces an extrachromosomal recombinogenic 

donor DNA molecule in the cells of these flies. Progeny with gene-targeting events can 

be recovered by test-crossing. This gene-targeting technique provides a way to mutate 

genes that are identified only by sequence, and then to analyze their functions. 
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1.3: 20-hydroxyecdysone. 

20-hydroxyecdysone (20E) is a 27-carbon polar steroid hormone derived from 

cholesterol that directs the development of all insect tissues.  Cholesterol is formed from 

phytosterols that come from the insect diet, and is then converted to !-ecdysone in the 

prothoracic cells of the ring gland of the larva [31].  Circulating !-ecdysone is further 

processed to 20E in the fat body by a p450 monooxygenase enzyme coded by the gene 

shade that functions to hydroxylate ecdysone at carbon 20 [31] (Fig. 1-6 red arrow).  

While it has been suggested that !-ecdysone itself may function as a hormone [32, 33], 

20E has been confirmed to be the major “molting” hormone in Drosophila. 

Structurally, 20E is a sterol with similarities to the mammalian steroid hormones such 

as estradiol and testosterone.  Unlike the mammalian steroids however, 20E is heavily 

hydroxylated; the molecule contains a 3"-OH, that is present in the sterol precursors, and 

also includes hydroxylation of the steroid nucleus and side chain. Although these 

additional hydroxylations make 20E highly water-soluble, the current model of 20E 

transport into cells is via passive diffusion.  
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Figure 1-6: 20-hydroxyecdysone stereochemical structure compared with estrodiol 

and testosterone.   

20E is similar to mammalian steroids like estrodiol and testostorone.  20E is 

synthesized from a cholesterol precursor to an !-ecdysone form that is then hydroxylated 

at the carbon 20 (red arrow) in the larval fat body and other peripheral tissues by the p450 

monooxygenase enzyme, Shade. 
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Throughout the life cycle of Drosophila, successful development of Drosophila is 

dependent upon specific temporal changes in the titer of 20E.  For example, a high titer of 

20E must be present between instars in order for the insect to molt and generate a new 

cuticle.  Also, in the third instar, changing temporal pulses of 20E initiate a complex 

hierarchy of gene expression that includes early primary response genes that activate 

secondary response genes required for metamorphosis [3].  Historically, the pulses of 20E 

occurring in the third instar have been correlated to specific changes in the polytenized 

chromosomes in the form of puffs that are indicators of gene activity [34].  It was the 

observation of these puffs that originally outlined a hierarchical model of gene expression 

in response to the temporal pulses of 20E.  Recently, the exact titers of 20E in the third 

instar have been measured by Warren et al. 2005 [35] allowing for a more detailed look 

at the molecular biology occurring in response to these temporal changes and how these 

genes coordinate tissue specific cellular events in response to a 20E signal.  Warren et al. 

2005 determined the whole body concentrations of 20E throughout the third-instar larva 

using a combination of High Performance Liquid Chromatography (HPLC) and 

radioimmuno-assay analysis; the results shown in Figure 1-7 indicate the concentration of 

20E (in picograms per animal) of the distinct temporal pulses found in the third instar 

(Fig. 1-7 [35]).  The important peaks relative to glue synthesis and secretion start at 16 

hrs and 32 hrs after the last molt, and have a molar concentration of 1.8x10-8M and 

1.2x10-7M per animal respectively (Costantino unpublished).   Drawings of the salivary 

glands physiological response from the different 20E titers are shown in Figure 1-7.   

Although the concentration of 20E was determined in whole animals, one might 

expect specific tissues to have varying exposures to the sterol depending on cell specific  
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Figure 1-7: 20-hydroxyecdysone titers in the third instar larva.   

Shown is an image redrawn from Warren et al. 2006 [34] that has been modified to 

include the physiological events of the salivary gland.  After a small increase in the 

systemic titer of 20E in the mid-third instar, the salivary gland begins to synthesize glue 

(yellow).  The next high titer pulse of 20E intitiates the secretion of the glue into the 

lumen of the gland and finally the gland is histolyzed. 
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20E regulatory mechanisms.  However, the peaks correlate nicely with previous 

chromosomal puff studies done in the larval salivary gland and therefore make the gland 

an important model tissue to study the mechanisms of the 20E response. 

1.4: 20E-Regulated Genes in the Salivary Gland. 

 The major role of the third-instar salivary gland is to synthesize secretory 

polypeptides, known as the glue proteins, and then secrete the glue mixture onto a solid 

surface to secure the animal for pupariation and metamorphosis.  As the animal 

pupariates the salivary gland enters programmed cell death that will effectively destroy 

the larval gland and allow the adult organ to develop in its place.  These events are 

carefully coordinated by gene products that are expressed in a hierarchical fashion in 

response to the temporal changes in the 20E titer.  Figure 1-8 is a series of confocal 

images taken at different time points throughout the third instar of the salivary gland. In 

these images glue is tagged with a fluorescent protein (glueRED) and is first visualized in 

Fig. 1-8 B corresponding to 16 hours after the final molt and then secreted into the lumen 

of the gland in (C).  

 In the early-mid third instar, corresponding to 0-24 hrs after ecdysis (last larval 

molt), the low titer pulse of 20E induces the transcription of the genes: Broad Complex 

(BR-C), forkhead (fkh), E23, Gld, IMP-L2, Pig-1, Uro, Lsp-1!, Lsp-2, Adh, Fbp-2, E74 

and E75 [34].  Of these genes, BR-C, fkh, E74, and E75 code for regulatory transcription 

factors; E23 codes for an ATP-binding cassette (ABC) transporter family member; Gld, 

Adh, Fbp-2 and Uro are enzymes; IMP-L2, is a secreted insulin-like protein; Lsp-1! and 

Lsp-2 are serum proteins; Pig-1 is unknown.  Followed by this low titer pulse, a robust 

secondary response involving the induction of the sgs genes (glue) occurs. 
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The proteins encoded by the BR-C transcriptional unit directly regulate glue gene 

expression.  The BR-C proteins are transcription factors that are isoforms differing in 

zinc finger domains.  Interestingly,  fkh is expressed early in the third instar and acts as an 

inhibitor of programmed cell death (PCD) by inhibiting BR-C from activating PCD genes 

until fkh expression is suppressed in the late third instar and the larger premetamorphic 

pulse of 20E can initiate PCD [36].  In summary, two major functions of the salivary 

gland are initiated at the early-mid third instar and then suppressed by 20E at a later time. 

In the late third instar salivary gland, a premetamorphic pulse of 20E induces the 

expression of a set of early genes coding for mostly transcription factors that inhibit more 

early gene expression or induce the expression of late genes.  We are particularly 

interested in two 20E-inducible early genes expressed at this stage that are not 

transcription factors: the ABC transporter E23 and a calcium binding protein E63-1.  It is 

hypothesized that E23 expression is linked to 20E induction as an intracellular regulator 

of 20E ([23], Paladino unpublished).  It is at this stage (~40 hrs after the last larval molt) 

that the cells secrete the glue proteins synthesized at the early-mid third instar into the 

lumen of the gland.  Secretion of glue is concurrent with 20E induction of E63-1 and thus 

helps to shape a functional model for E63-1 as a requirement for secretion to occur.  The 

details of how these 20E-induced genes, E63-1 in particular, can coordinate distinct 

temporal effects such as glue synthesis and secretion remain unknown.  This dissertation 

aims to fill such gaps in our knowledge. 
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Figure 1-8: Confocal images of the salivary gland taken at different time points in 

the third instar. 

Prior to the mid-third instar titer of 20E (A) the glands do not express glueRED, until 

they have been exposed to the mid-third instar 20E titer (B).  As granules mature they are 

secreted in response to the high premetamorphic pulse of 20E (C) until emptied of glue 

cargo (D). 
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1.5: E63-1 and Calmodulin. 

The E63-1 locus was an early puff originally described by Ashburner in 1974 and 

further elucidated by Andres and Thummel in 1995.  The 63F puff corresponds to a locus 

containing two genes E63-1 and E63-2 that are induced directly by 20E in the presence or 

absence of cyclohexamide [37].  E63-1 is temporally and spatially distinct from E63-2, in 

that it is expressed only in the late third instar salivary gland. 

The E63-1 ORF encodes a 22kD protein that has considerable sequence identity to 

calmodulin (CaM) and other myosin light chains (see chapter 4 Fig. 4-1).  As expected, 

E63-1 contains four EF hands grouped in pairs and are capable of binding Ca2+ in vitro.  

Ectopic expression of E63-1 using a heat shock inducible form of E63-1 leads to a 

precocious secretion of glue [38].  This, coupled with the similarity of E63-1 to myosin 

regulatory light chains, suggests a model in which binding of E63-1 to target myosin 

motor proteins can activate the motors and drive secretion of glue granule cargos. 

CaM can also function as a light chain for many unconventional myosin proteins [39-

41].  CaM binds to the IQ motif on unconventional myosin I in chicken intestinal 

epithelial brush border cells and acts as a myosin light chain [42, 43].  Since there is 

strong sequence similarity between E63–1, Acam, and CaM, we hypothesized that E63–1 

may affect glue secretion in the salivary gland by acting as a light chain for 

unconventional myosins, as described further in the next section.  Moreover, E63-1 

ectopic expression can drive glue secretion, but E63-1 null mutants fail to block 

secretion, leading us to predict that CaM has a redundant role with E63-1 in the third 

instar salivary gland in which it to acts as a myosin light chain and contributes to the 

success of complete glue secretion. 
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1.6: Myosin Motor Proteins. 

Spermatid individualization of Drosophila is regulated by the tissue-specific myosin 

light chain, androcam (Acam).  Acam binds to and colocalizes with myosin VI in the 

larval testis and both are necessary components of the moving actin cone that rearranges 

the plasma membrane that form individual sperm.  In the testis only androcam and not 

calmodulin coimmunoprecipitates with myosin VI and binds to the IQ motif and insert 2 

of myosin VI [44].  The research into Acam function is important because it begins to 

build a foundation for a model describing a class of tissue-specific myosin light chains 

that can modify the behavior of unconventional myosin motor proteins.  The model for 

Acam is testes specific and can easily be applied to other tissue specific myosin light 

chains like E63-1.  

In Drosophila, the myosin superfamily consists of one conventional muscle myosin 

and 17 unconventional myosin heavy chains [45] which all share motor domain sequence 

similarity.  Myosin heavy chain proteins are actin-based motor proteins that have such 

diverse roles as organelle/vesicle trafficking, structural maintenance, phagocytosis and 

cellular motility.  Members of the myosin family contain an actin associated motor 

domain with catalytic activity and an alpha-helical domain that includes one or more IQ 

motifs, which are sites of regulatory light chain binding.  Many of the myosin heavy 

chains have differing C-terminal tail domain that could imply specialization. These tail 

domains have been theorized to bind cargo or plasma membrane.  I hypothesize that a 

myosin heavy chain is necessary to regulate the movement of secretory vesicles to the 

site of secretion. 
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1.7: Why the Salivary Gland? 

To investigate steroid hormone signaling, I took advantage of a particular well-suited 

model tissue, the larval salivary gland of Drosophila melanogaster.   Several key 

determinants argue that the Drosophila larval salivary gland has important molecular and 

genetic advantages over other tissues and these factors enable us to contribute 

considerably to our knowledge of hormone signaling and endocrinology.  Among these 

factors include: a long history of research, a wide variety of available genetic and 

molecular tools, and the benefit of kingdom wide homology of the hormone signaling 

components.  

The Drosophila larval salivary gland was initially described in 1939 and 1950 by 

Sonnenblick [46, 47].  The observation and identification of glue secretion at the end of 

the third instar was noted by Bodenstein in 1943 and 1950 [48, 49].  It was the work of 

Ashburner and his colleagues in the 1970’s, however, that made clear the true potential of 

the salivary gland as a model tissue for nuclear hormone study.  As previously shown in 

Figure 1-2, Ashburner and his contemporaries established a nuclear signaling hierarchy 

and meticulously catalogued cytological maps based on puffing of the polytenized 

chromosomes in response to 20E.  The puffs contained important genes that have since 

been discovered, described, and verified, and continue to aid in describing a complete 

model of hormone signaling.  The discovery and detailing of the 20E responsive puffs of 

the salivary gland nurtured innovative molecular and genetic tools to help investigate the 

20E response. 

Coupling the use of transgenic lines (containing fluorescent reporter genes) with 

transposon insertion has been vital to molecular genetic work in Drosophila.  The most 
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widely used transgenic expression system is the Gal4/UAS binary expression system co-

opted from yeast [50].  The Gal4/UAS system allows researchers to ectopically express 

target genes downstream of the UAS enhancer in a temporally and spatially specific 

manner using tissue specific drivers upstream of a Gal4 coding sequence.  In addition to 

these tools, the sequencing of the Drosophila genome has been completed and an effort 

has been made to tag each protein with a GFP (green fluorescent protein) marker by 

inserting the GFP gene as an artificial exon into all protein encoding genes [51].  Also, 

the Vienna Drosophila RNAi Center (VDRC) and the National Institute of Genetics in 

Kyoto, Japan (NIG-FLY) are continuing to develop UAS-RNAi lines for all known 

Drosophila genes, which would be a powerful tool to silence target gene function.  These 

are just some of the important molecular and genetic tools we can use in the salivary 

gland to identify, silence, observe, and characterize important genes and proteins 

necessary for proper nuclear hormone signaling. 

Finally, the salivary gland has three distinct physiological responses to a single 

hormone (20E): synthesis of glue, secretion of glue and programmed cell death of the 

tissue.  These are all temporally regulated and have different nuclear receptor 

components associated with each activity.  While glue secretion is mediated by EcR/USP 

heterodimer (FXR/RXR), we have shown that glue synthesis is independent of an RXR 

protein.  This discovery challenges nuclear receptor signaling models established for all 

animals by showing a nuclear receptor heterodimer independent of an RXR component.  

Because the homology and sequence conservation between species is high and the ability 

to test these genes using a number of molecular tools, investigating 20E signaling in the 
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larval salivary gland is a valuable model tissue that has and will continue to shape a 

complete model for nuclear hormone signaling.
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CHAPTER 2 

A NOVEL ECDYSONE RECEPTOR MEDIATES STEROID-                   

REGULATED DEVELOPMENTAL EVENTS 

This chapter has been published in PLoS Genetics and modified slightly to satisfy in the 

style of this dissertation. The complete citation is: 

Costantino BF, Bricker DK, Shen K, Merriam JR, Antoniewski C, Callender JL, Henrich 

VC, Presente A, Andres AJ. A novel ecdysone receptor mediates steroid-regulated 

developmental events during the mid-third instar of Drosophila. PLoS Genetics 2008 Jun 
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2.1: Introduction. 

 During metamorphosis in Drosophila melanogaster, pulses of the steroid hormone, 

20-hydroxyecdysone (20E), stimulate diverse tissue-specific responses such as the 

histolysis of many larval tissues along with the simultaneous differentiation of adult 

structures from imaginal discs [reviewed in [1]].  In addition, multiple pulses of 20E 

during the last (third) larval instar (L3) trigger different responses within the same target 

tissue, raising the interesting question of how a generalized developmental signal is 

manifested into distinct physiological responses that are separated by time.  The salivary 

gland of L3 and prepupae is an ideal assay system in which to investigate the molecular 

mechanisms responsible for such temporally specific developmental specifications.  In a 
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36-hour period, the gland responds to three distinct pulses of 20E in three fundamentally 

different ways.   

During most of larval life, the salivary gland is engaged in the synthesis of non-

digestive enzymes that probably aid in the lubrication of the food through the gut [2-4].  

However, about midway through the L3 stage, the pattern of gene expression is altered 

dramatically by the synchronous activation of a small number of genes (at least 8) that 

are abundantly expressed in the salivary gland [5].  These are known to encode 

components of the glue mix that cements animals to a solid surface during 

metamorphosis, and they were first identified because their induction is responsible for 

the “intermolt” puffs formed on the giant polytene chromosomes of the gland [6, 7].  

Approximately 18 hours later, in response to different pulse of 20E that occurs at the 

end of L3, glue synthesis abruptly ceases [5,8] because the hormone represses 

transcription from these genes [9,10].  At the same time, the salivary gland begins to 

express another set of genes, many of which were originally described because they 

formed “early” and "late" puffs on the polytene chromosomes [reviewed in 11].  The end 

result of this 20E-mediated response is that glue granules are secreted into the lumen of 

the gland [12,13]. 

Finally, approximately 10 hours later at the end of prepupal development, the salivary 

gland responds to yet another pulse of 20E to initiate the histoloysis of the tissue via a 

modified autophagic cell-death mechanism [14,15]. 

 The details of how 20E initiates glue secretion and gland histolysis are well 

understood.  The hormone is known to bind to a receptor consisting of a heterodimer of 

EcR and USP proteins [16-18].  Both receptor components are members of the nuclear-
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hormone receptor superfamily, both contain well conserved DNA- and ligand-binding 

domains, and both are needed for the physiological responses of target tissues to 20E at 

the end of the third instar and at the end of prepupal development [reviewed in 19].  

However, little is known concerning the mechanism of receptor mediation during the 

middle of L3 when glue genes are coordinately activated.  Although it is generally 

assumed that these events are also mediated by a receptor consisting of EcR and USP, 

other explanations can be invoked including the use of a different 20E receptor.   

Here we examine the requirements for EcR and USP in the induction of the glue 

genes at mid L3.  By employing the GAL4/UAS binary expression system [20] with 

transgenic inducible dominant-negative and RNAi constructs we are able to limit 

perturbations of 20E signaling specifically to the salivary gland at defined developmental 

stages.  We show that 20E is responsible for inducing a tagged glue transgene as a 

secondary response to the hormone, and that this programmed developmental response 

requires components of the 20E-inducible primary-response genes of the Broad Complex 

(BRC).  However, we clearly demonstrate that the mid-instar hormone response requires 

a receptor that has not yet been characterized.  The receptor consists of EcR but not USP.  

These results challenge the traditional model that most developmental events triggered by 

20E must signal through a heterodimer of EcR and USP, and they support alternative 

explanations that either EcR homodimers or other members of the nuclear hormone 

receptor superfamily play active roles in the diversity of developmental responses to 

steroid hormones in Drosophila. 
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2.2: Materials and Methods. 

2.2.a: Drosophila Stocks and Culture 

 All flies were raised on standard cornmeal-molasses medium supplemented with live 

baker’s yeast as recommended by the Bloomington Stock Center (Bloomington, Indiana, 

United States) (http: //flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood. 

htm).  w1118 (FBst0307124), GFP.nls [{UAS-GFP.nls}14 (FBst0004775)], EcRi 

[{UAS-EcR-RNAi}104 (FBst0009327)], EcR-DN [{UAS-EcR.B1-DC655.F645A}TP1 

(FBst0006869)], and the EcR isoform stocks [EcR-A {UAS-EcR.A}3a (FBst0006470), 

EcR-B1 {UAS-EcR.B1}3b (FBst0006469), EcR-B2{UAS-EcR.B2}3a (FBst0006468), 

and EcR-C {UAS-EcR.C}Tp1-4 (FBst0006868)] were obtained from the Bloomington 

Stock Center.  

 The following stocks were provided as generous gifts: UAS-hid [60] from Eric 

Baehrecke, the hsGal4 driver on the third chromosome [20] from Robert Holmgren, and 

the stocks containing specific isoforms of the BRC (UAS-BRC-Z1, UAS-BRC- Z2, 

UAS-BRC-Z3, and UAS-BRC-Z4) [61] from Xiaofeng Zhou. 

2.2.b: Generation of Transgenic Flies 

 Transgenic flies containing glueRED were prepared by digesting pDsRed2-C1 

(Clonetech, Palo Alto, California, United States) with AgeI and KpnI restriction enzymes 

to isolate a DNA fragment containing the open reading frame for DsRED. This fragment 

was cloned into pBS-Sgs#3GFP [13] that was digested with the same enzymes to remove 

the eGFP tag and generate a vector with compatible ends. The resulting intermediate 

construct was digested with AgeI and the 39 recessed ends were filled in and religated to 

restore the open reading frame between Sgs3 and DsRED. The Sgs3- DsRED sequence 
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was removed from the Bluescript vector (Stratagene, La Jolla, California, United States) 

as a NotI/KpnI fragment and inserted into the NotI and KpnI sites of the pCaSpeR-4 fly 

transformation vector (FBmc0000178). DNA was sent to the vonKalm laboratory at the 

University of Central Florida for the generation of transgenic flies using standard 

techniques [62]. 

To produce the UAS-USPi stock, a PCR fragment was amplified from a USP cDNA 

plasmid [63] using the primers AAGAATTCGGTACCAGTATCCGCCTAACCATCC 

and TTAGATCTCGCTTCATCTTTACACTCAG. The resulting ampli- fication product 

(corresponding to a 924 bp fragment between positions 467 and 1390 relative to the USP 

mRNA sequence) was cloned in the pUAST vector (FBmc0000383) using two steps. 

First a reverse fragment was placed between the vector BglII and KpnI sites. A second 

forward-orientated fragment was cloned between EcoRI and BglII sites. Recombinant 

UAS-USPi constructs were transformed at 30°C in Sure-competent bacteria (Stratagene) 

to minimize DNA recombination and screened using appropriate restriction enzyme 

digestions. Transgenic lines were generated as previously described using a w1118 strain 

as a recipient stock. 

 UAS-USP+ stocks were prepared as follows: The vector pUAST- USP+ was 

constructed by PCR amplification of the USP open reading frame with the forward 

primer TTTTGCGGCCGCACC ATG GAC AAC TGC GAC CAG GAC and the reverse 

primer TTTTTCTAGA CTA CTC CAG TTT CAT CGC CAG using pZ7-1 cDNA as a 

template [63]. The NotI and XbaI restriction sites flanking the PCR product were used for 

subsequent ligation into the corresponding sites in the pUAST vector. The pUAST-USP+ 

vector was transformed into flies at the Duke University Medical Center. 
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The UAS-Control line (LA1216) contains an insert of the construct P{Mae-

UAS.6.11} (FBtp0001327). This vector was designed for gene-misexpression screens 

because it contains a copy of the UAS/GAL4 binding sequences oriented to express 

flanking genes when inserted into the genome [64]. 

2.2.c: Selecting a Salivary-Gland Specific Driver 

 We tested four Gal4-drivers obtained from the Bloomington Stock Center [AB1-Gal4 

(FBst0001824), C147-Gal4 (FBti0024396), T155-Gal4 (FBti0002598), and 34B-Gal4 

(FBst0001967)] with expression patterns reported to be restricted to the larval salivary 

gland. To ascertain which of these was best for tissue-specific expression studies, we 

crossed them to a stock in which the hid/ Wrinkled cell-death gene (FBgn0003997) was 

expressed under UAS control. Because the major function of the salivary gland in the 

larval stages is the reported synthesis of mucin-like proteins that help lubricate the food 

as it moves through the gut [2,3], we reasoned that animals could survive without a 

salivary gland only if they were provided a diet of freshly produced moist yeast paste. 

Thus, by using UAS-hid we could ablate the salivary gland and test if such animals were 

viable when raised on soft food. 

 The initial analysis using the above listed drivers indicated that no larvae were able to 

survive, probably due to expression of the hid gene in other vital tissues. But because 

these are derived from the GawB vector, we used a heat shock 70-Gal4 driver that is also 

GawB derived. These animals were able to survive to puparium formation when crossed 

to UAS-hid and raised on a diet of freshly prepared yeast paste. Crossing hsGal4 to a 

stock containing both UAS-hid and UAS-GFP.nls confirmed that larval salivary glands 

could not be detected and were ablated. Great care was exercised to raise the animals 
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crossed to sgGal4 at temperatures below 30uC to prevent exposing them to a stress that 

might induce Gal4 in all cells. Because the GFP.nls transgene was used in most of the 

experiments, a non-specific response could easily be detected by the presence of green 

nuclei in other tissues. 

2.2.d: Salivary Gland Organ Culture 

20E (Sigma, St. Louis, Missouri, United States) was prepared as a stock solution of 

10-2 M in 100% ethanol and stored at 220uC. The stock solution was diluted to the proper 

working concentra- tion in Schneider’s medium (Sigma). 

Flies of the appropriate genotype were crossed and reared in a small population cage 

containing approximately 500 females and 500 males. The cage was presented with hard-

agar plates (10% molasses, 3.5% agar) containing a dab of fresh yeast paste (prepared as 

a 1:1 mixture of dry baker’s yeast with water) 2–3 times per day to collect fertilized eggs. 

Collection plates were aged at 25°C and first-instar larvae were collected in 1-hour 

intervals as they hatched. The first-instar larvae were added in groups of 100 to vials 

containing standard cornmeal-molasses-yeast medium and aged at 25°C for 

approximately 68 hours (a developmental stage that precedes glue induction by 

approximately 4 hours) before being washed from the food with Schneider’s medium. 

Animals were torn in half lengthwise using small dissecting forceps (Fine Scientific 

Tools, Foster City, California, United States). Larvae prepared in this manner were 

transferred to clean microscope slides containing 25 ml of Schneider’s medium with or 

without 20E. A range of 20E dilutions (1026, 1027, 1028, 1029 M) was prepared for each 

experiment. Small strips of Number 1 Whatman filter paper (Millipore, Billerica, 

Massachusetts, United States) were placed around the culture as spacers before adding a 
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22 mm2 coverslip. The culture was placed on a platform shaker in a box into which O2 

was continuously infused during the culture period. Cultures were incubated at 25°C for 

4–6 hours before being assayed for glue production as detected by the presence of green 

fluorescent protein from the glueGRN transgene. 

2.2.e: Microscopy and Imaging 

 Whole larvae were selected from the food, washed 36in water, blotted on filter paper, 

placed in a depression slide, and killed with a few drops of ether. After the ether 

evaporated, animals were mounted in glycerol between two slides using glass coverslips 

as spacers. Larvae were photographed within 30 minutes of preparation. For isolated 

tissues, animals were dissected in Drosophila PBS (DPBS) [65] or Schneider’s medium. 

Low-resolution images of whole animals or dissected tissues were obtained on a Leika 

fluorescent stereo microscope containing filter cubes for GFP and/ or DsRED. Images 

were captured with the Spot Insight QE Model #4.2 digital camera (McBain Instruments, 

Chatsworth, California, United States) and prepared with Canvas (ACD Systems, Miami, 

Florida, United States) graphics software. 

 High-resolution images of dissected salivary glands were imaged on a LSM 510 

Axioplan confocal microscope (Carl Zeiss SMT, Peabody, Massachusetts, United States) 

equipped with LSM 510 image-analysis software. 

2.2.f: Northern Blots 

Northern blots were prepared as previously described [5]. Briefly, RNA was isolated 

from larvae by grinding animals in SDS lysis buffer, digesting the homogenate with 250 

mM Proteinase K (NEB, Ipswich, Massachusetts, United States), extracting the sample 

with phenol/chloroform, and precipitating the aqueous phase with ethanol. Ten 
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micrograms of total RNA were fractionated on 1% formaldehyde/MOPS/agarose gels and 

blotted onto Duralon-UV membranes (Stratagene). Probes for each glue gene and the 

rp49 control were prepared as gel-isolated fragments from digested clones and hybridized 

with labeled random oligonucleotides using a Prime-it kit (Strategene) and 32P dCTP (GE 

Healthcare, Piscataway, New Jersey, United States) as previously described [5]. After 

washing, signals were detected using the Typhoon 8600 Variable Mode Phosphorimager 

equipped with Image Quant scanning software (GE Healthcare). 

2.2.g: Protein Detection 

 Dissected tissues were prepared for antibody staining as previously described [66]. 

Tissues were stained using the AB11 USP mouse monoclonal antibody [67] (gift from 

Carl Thummel) at a dilution of 1:50. Protein levels were visualized using a goat-anti-

mouse secondary antibody conjugated to FITC (Jackson Immuno Research, West Grove, 

Pennsylvania, United States). 

 To prepare protein extracts for Coomassie staining or Western-blot analysis, salivary 

glands were dissected in DPBS as described above. Typically 10–20 pairs of glands were 

collected in DPBS, pelleted in a microfuge, and resuspended in lysis buffer containing a 

cocktail of protease inhibitors [68]. Glands were homogenized and boiled for 5 minutes 

before being stored at -20°C for less than one week. Samples were divided in two and 

resolved on separate 12% SDS polyacrylamide gels that were run in the same 

electrophoresis rig. One was stained with Coomassie brilliant blue (J. T. Baker, 

Phillipsburg, New Jersey, United States) and the other was transferred to Immobilon P 

membranes (Millipore) as previously described [66]. Blots were incubated with the 

following antibodies: mouse anti-!-Tubulin primary (Sigma) diluted 1:15,000; rabbit 
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anti-DsRED primary (Clontech) diluted 1:15,000; mouse anti-USP primary diluted 1:100; 

goat anti-mouse-HRP secondary (Jackson Immuno Research) diluted 1:40,000; and goat 

anti-rabbit-HRP secondary (Jackson Immuno Research) diluted 1:25,000. 

Protein levels were visualized and quantified using Chemiluminescence ECL(+) 

Western-blotting detection system (GE Healthcare) and a Typhoon 8600 Variable Mode 

Phosphorimager (GE Healthcare). 

2.3: Results. 

2.3.a: The Sgs3 Transgene is Induced by 20E 

It is generally assumed that the glue genes (Sgs1, Sgs3, Sgs4, Sgs5, Sgs6, Sgs7, Sgs8, 

and I71-7) are induced by a pulse of 20E that occurs midway through the third instar.  

This inference is based on the dramatically coordinated developmental induction at mid 

L3 of most of these genes [5], and on studies in which Sgs expression is examined in 

backgrounds mutant for genes thought to be involved in 20E production or transport 

[21,22].  The model further proposes that induction of the glue occurs as a secondary 

response to 20E, because Sgs expression is significantly perturbed in mutants defective 

for BRC and E74, which are known to be direct targets for the hormone/receptor complex 

[23-25].  However, an Sgs3-derived reporter transgene is induced when temperature-

sensitive ecd1ts (FBgn0000543) mutants— known to produce low circulating levels of 20E 

[26]—are shifted to the non-permissive temperature before the L3 stage, and the same GFP 

reporter is also induced in animals that are mutant for USP, EcR-B1, and EcR-B2 receptor 

components [13]. 

Thus, the literature contains contradictory reports concerning the role of 20E in 

inducing some of the glue genes.  Therefore, we began this analysis with an in vitro 

culture of salivary glands dissected from mid L3 because we know of no published 
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reports that directly test if glue-gene transcription can be induced by 20E in wildtype 

animals.  To simplify the analysis, we dissected salivary glands from a line of flies in 

which the coding information for Sgs3 had been tagged with GFP (glueGRN).  This stock 

(formally called SgsGFP) contains adequate regulatory information for the proper 

temporal, spatial, and high-level expression of the Sgs3 gene.  It has also been 

extensively characterized and shown to be an accurate reporter for the secretion and 

expectoration of endogenous SGS3 glue protein [13].   

Larvae were synchronized at hatching and raised to the early-third-instar stages 

approximately 5 hours prior to the normal transcriptional induction of the glue genes.  

Salivary glands were then dissected and exposed to media containing different 

concentrations of 20E (ranging 10-9 to 10-6 M) or in medium without hormone.  Under 

these circumstances glueGRN accumulation was detected 4-6 hours later in cultures 

incubated with 10-8 or 10-9 M 20E (Fig. 2-1, experiment performed by Asaf Presente), but 

not in untreated cultures or those incubated with higher concentrations of the hormone.  

Thus, the concentration needed for induction of glueGRN is 2-3 orders of magnitude 

lower that the titer (~10-6 M) reported to trigger "early" polytene puff formation, imaginal 

disc eversion, and glue secretion [13,27,28]—all developmental events that occur near 

puparium formation in response to a much better characterized pulse of 20E.  The result 

is consistent with the concentration of a small pulse of hormone that has been reported to 

occur in the hemolymph of developing larvae a few hours prior to the transcriptional 

activaton of the glue genes [29]. 
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Figure 2-1:  Glue genes are induced by 20E in cultured glands. 

Mid-L3 animals were torn in half and incubated with ethanol as a control (A), or with 

20E at a final concentration of 10-8 M (B).  The induction of glue proteins in the salivary 

glands was detected by the presence of a GFP-tagged Sgs3 protein (glueGRN).  Note that 

the positions of the salivary glands in (A) are outlined with dashed lines.  The 

fluorescence detected in the pharynx (arrowheads) is non-specific and was used to 

standardize photographic exposures.  Both photographs were taken at the same 

magnification indicated by the bar in A. Experiment performed by Asaf Presente. 
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2.3.b: Sgs3 Transgene Induction Requires Functional EcR 

The EcR gene encodes three different protein isoforms, EcR-A, EcR-B1, and EcR-

B2. All three contain the same DNA- and ligand-binding domains, but they contain 

different amino terminal A/B sequences due to the use of alternative promoters and 

differential splicing [16].  Null mutations for EcR die early in development and cannot be 

assayed for glue synthesis [30].  However, mutations that remove EcR-B1 and EcR-B2 

[31] do produce glue [13].  These observations raise the possibility that either EcR is not 

required for the induction of Sgs3, or that any EcR isoform is sufficient for the process. 

To distinguish between these possibilities and to take advantage of more powerful genetic 

tools that allow for tissue-specific manipulations of gene products, we utilized the 

GAL4/UAS binary expression system [20] to analyze glue-gene induction in developing 

salivary glands. 

To perform this analysis in the most precise way, it was first necessary to identify a 

temporally and spatially restricted driver—a transgenic stock of flies in which the Gal4 

transcription factor is under the control of specific Drosophila enhancers that limit its 

expression to larval salivary glands at least 10 hours preceding the normal induction of 

Sgs3. In our search for the best reagent, we noticed that a number of the drivers classified 

as salivary-gland specific were produced from the P{GawB} enhancer-trap element 

(FBtp0000352).  Our lab and others have observed that GawB-derived elements display 

constitutive expression of GAL4 in larval salivary glands [32], perhaps because part of 

the GawB vector contains a cryptic larval salivary-gland-specific enhancer element. To 

test this hypothesis we used a hs-Gal4 stock that contains the Hsp70Bb (FBgn0013278) 

controlling elements driving Gal4 in a GawB vector.  In the absence of heat stress these 
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animals produced GAL4 in the L1 (first instar), L2 (second instar), and L3 salivary 

glands as indicated when they were crossed to the GFP.nls responder. In this stock GFP 

is expressed under GAL4 control (it contains UAS elements that are binding sites for the 

GAL4 transcription factor) and it is targeted to nuclei (Figure 2-2, experiment was 

performed by Kate Shen).  Thus, in subsequent experiments we used hsGal4 (now 

referred to as sgGal4) to drive spatially restricted expression of UAS-transgenes only in 

larval salivary glands. 

With a spatially restricted driver on hand, we now crossed sgGal4 to both UAS-

dominant-negative- (EcR-DN) and UAS-RNA-interference-(EcRi) constructs of EcR. The 

EcR-DN protein is defective in ligand-activated transactivation so that it competes with 

endogenous EcR isoforms to block normal hormone responses [33]. The EcRi construct 

contains an inverted repeat of a DNA region common to EcR-A, B1, and B2 so that its 

expression silences all isoforms [34]. When either was crossed to a tester stock 

containing sgGal4 and glueGRN, no green fluorescence was detected in L3 larval glands. 

These results are consistent with a requirement that at least one EcR isoform must be 

present in the salivary gland for glueGRN synthesis (data not shown). 
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Figure 2-2:  sgGal4, a GawB-derived driver, has an expression pattern restricted to 

the salivary glands during larval stages. 

Flies containing sgGal4 were crossed to the UAS-GFP.nls reporter and all 

developmental stages were examined for the spatial expression of GFP as indicated by 

green fluorescence in the nuclei of live animals.  The only tissues that contained green 

protein were the salivary glands.  Depicted are a first-instar larva (A), a second-instar 

larva (B), an early-third-instar larva (C), and the anterior half of a later instar larva (D).  

Anterior is to the left in all photographs, and all were taken at the same magnification 

indicated by the bar in (D). Experiment performed by Kate Shen. 
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One potential caveat with the above experiments is that by perturbing EcR in the 

salivary gland, we were killing it or causing it to develop too slowly to induce the Sgs3 

transgene. To address this possibility, we utilized another tester stock containing three 

transgenic elements: glueRED; GFP.nls; sgGal4. The glueRED element is an 

endogenously tagged Sgs3 gene (under its own promoter/enhancer elements). It contains 

the same DNA sequence as glueGRN except the coding information for GFP is replaced 

with that of DsRED [35]. As with glueGRN, the glueRED element produces a protein 

that is synthesized (Figure 2-3A), secreted (Figure 2-3B), and expectorated in exactly the 

same manner as endogenous SGS3. Thus, when this tester stock was crossed to EcR-DN 

(Figure 2-3C) or EcRi (Figure 2-3D) no glueRED was produced, but GFP was still 

localized to nuclei that are similar in size to those of the control glands producing 

glueRED (Figure 2-3A,B). These results indicate that neither EcR-DN nor EcRi 

expression is killing the cells or preventing their normal nuclear polytenization. Thus, 

EcR function in the salivary gland is required for glueGRN and glueRED production. 
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Figure 2-3:  20E-mediated glueRED induction requires functional EcR proteins. 

Confocal images of salivary glands from stocks containing sgGal4; UAS-GFP.nls; 

glueRED transgenes.  Normally glueRED (indicated by red fluorescence) is synthesized 

during the mid-L3 stage and loaded into large granules that remain within the cell until 6-

8 hours prior to pupariation (A).  At the end of the instar (in response to another pulse of 

20E) glue becomes secreted into the lumen (B).  No glueRED is produced in animals 

expressing a dominant-negative form of EcR (C) or an inverted repeat of EcR that 

induces RNA interference (D).  Note that UAS-GFP.nls is expressed in both EcR-

compromised glands.  The GFP marker serves to mark the nucleus (green fluorescence), 

which is able to survive and polytenize to the same degree in all cells presented.  All 

photos were taken at the same magnification indicated by the bar in (C).  Arrowheads and 

“L” mark the position of the lumen into which glue should be secreted. 
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2.3.c: Sgs3 Transgenes Can be Induced by Any Isoform of EcR 

To test the hypothesis that any isoform of EcR can be used to induce glue synthesis, 

we crossed each UAS-EcR isoform-specific transgene into a background in which EcR-

DN was expressed in the salivary gland (under sgGal4 control) using the glueRED and 

GFP.nls transgenes to assay gland physiology. To confirm that extra copies of UAS-

transgenes were not diluting the effects of EcR-DN in a non-specific manner, we 

included a UAS-control construct that contains a cassette of UAS/GAL4 binding sites. 

By itself, the expression of the UAS-control does not lead to a block in glueRED 

synthesis when driven by sgGal4 (data not shown). Furthermore when crossed into an 

animal producing EcR-DN and GFP.nls, it does not overcome the block in glueRED 

synthesis (Figure 2-4). This control eliminates the concern that the expression of EcR-DN 

may be reduced by the introduction of an additional transgene containing UAS elements. 

 In contrast to the UAS-control, introducing each of the known EcR-specific isoforms 

into the same genetic background completely rescues the block in the production of 

glueRED caused by EcR-DN. The rescue is fully penetrant and normal in the semi- 

quantitative scoring scheme that is presented in Figure 2-4. It is even more interesting 

because an artificially constructed EcR isoform— EcR-C, which contains only the 

common regions of EcR because it is missing the isoform-specific A/B domain—also 

rescues the block in glueRED synthesis in approximately 90% of the animals examined. 

These results confirm an earlier conclusion that any isoform of EcR expressed in the 

salivary gland is capable of transmitting the 20E signal to induce the transcription of 

Sgs3- derived genes. 
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Figure 2-4:  Any isoform of EcR or BRC is sufficient to induce glueRED synthesis. 

The percentage of glands displaying each synthesis phenotype is indicated below a 

low-resolution representative (all photographed at the same magnification as indicated in 

E).  Categories include glands that are not producing any glue (A), glands in which only a 

few cells produce glue (B), glands in which approximately 25% of the cells are producing 

glue (C), glands in which approximately half the cells are producing glue (D), and glands 

in which all the cells are producing glue (F).  Higher resolution images of cells 

representing each genotype (transgene addbacks) were all taken at the same 

magnification (indicated bottom right). 
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2.3.d: Proteins Encoded by the Broad Complex Control the Expression of Sgs3 

Transgenes 

 The BRC is a large transcription unit that produces several different isoforms of a 

transcription factor containing C2H2 zinc- fingers. Although multiple transcripts are 

derived from the locus [36], only four general types of proteins are produced. Each 

isoform contains an identical NH2 terminus, but it has a different combination of DNA 

binding domains [37]. The four proteins, referred to as BRC-Z1, BRC-Z2, BRC-Z3, and 

BRC-Z4, have been shown to play an important role in the production of SGS3 and other 

glue proteins. This conclusion is based on the phenotypic analyses of null or isoform-

specific hypomorphic mutants that either do not produce SGS3 or display a prolonged 

developmental delay in the accumulation of transcripts from the locus [13,23,24,38]. 

Because it has been shown that BRC is regulated as a primary response to 20E (the 

hormone/receptor complex directly binds to DNA elements within the gene and induction 

does not require de novo protein synthesis) [39], the above effects on Sgs3 activation 

have led to a model in which glue production occurs as a secondary response to the 

hormone. Thus, the BRC zinc-finger transcription factors are probably responsible for 

activating promoter/enhancer elements within the glue genes as suggested by DNA 

binding studies on Sgs4 [40]. 

To test this hypothesis in more detail, we utilized transgenic stocks in which each 

BRC-Z isoform was expressed under UAS control in larvae also containing glueRED; 

sgGal4; GFP.nls; and EcR-DN. As indicated in Figure 2-4, each BRC-Z isoform is 

capable of partially rescuing the block in glue synthesis imposed by the production of 

EcR-DN. Rescue was scored using five categories that indicated the approximate 



  65 

percentage of cells within a gland that produced glueRED (none, few, 25%, 50%, 100%). 

However, not all BRC isoforms are equal in their ability to suppress the synthesis defect 

imposed by EcR-DN. BRC-Z2 (no glands were observed that were completely empty of 

glue, and 58% had full wildtype levels) and BRC-Z4 rescue the best; whereas, BRC-Z1 

and BRC-Z3 (60% of the animals have glands with no glueRED) rescue poorly. The 

variability in rescuing the synthesis-blocked phenotype may reflect the partially 

redundant activities or regulatory dependencies that have been reported among the four 

types of BRC isoforms [37], or it may reflect the differences in expression levels among 

the different transgenes. 

Two additional points are worth noting. First, expression of all forms of UAS-BRC 

altered the expression/localization of GFP.nls in some cells, but this failure to localize 

GFP did not correlate with a defect in glueRED production. In all cases, a few cells 

producing glueRED were observed with large prominent nuclei that did not contain GFP. 

Because we never observe this effect in the experiments performed with EcR isoforms or 

the UAS-control, it is unlikely that extra transgenes containing UAS elements are 

titrating a limiting amount of GAL4 transcription factor. 

Second, we sometimes observe the appearance of glueRED in L1 and L2 animals 

when BRC isoforms are ectopically expressed (data not shown). This early expression of 

glueRED or glueGRN is never observed in control animals or in crosses where EcR-

specific isoforms are ectopically expressed. This result may indicate that BRC proteins 

are sufficient for SGS3 production at any stage of larval salivary gland development, but 

that critical levels of BRC isoforms are normally restricted to mid-to-late L3 stages in 

wildtype animals [5]. 
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2.3.e: EcR is Required for the Induction of Other Glue Genes 

Glue is a mixture of at least eight different glycoproteins [41,42], which are 

coordinately induced midway through the third instar in a tissue-restricted fashion. To 

test whether perturbing EcR signaling disrupts the synthesis of most glue proteins, we 

assayed glue production in EcR-compromised glands in two different ways. First, we 

examined the glands directly. The cytoplasm of EcR- compromised cells is very small 

with no detectable secretory granules (Figure 2-3C,D). If other abundant non-tagged glue 

proteins were being loaded into granules, this result would not be expected. Second, 

when we examined the expression pattern of Sgs3, Sgs4, Sgs5, Sgs7, and Sgs8 transcripts 

by Northern analysis, we found very little signal for any of the five glue genes tested in 

animals in which EcR was compromised in the salivary gland (Figure 2-5). Note the 

normal developmental expression pattern in the control lanes (C-1; C-2). Transcript 

levels for all glue genes should be high in wandering larvae (L), and they should be low 

or undetectable at the time of puparium formation (W). 
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Figure 2-5:  EcR, but not USP, is needed for glue synthesis. 

Northern blots of whole-animal extracts from wandering-third-instar larvae (L) and 

animals at the white prepupal stage (W).  Because the glue genes are known to be 

repressed by the 20E pulse that triggers secretion, RNA levels for each of the 5 different 

glue genes examined [Sgs3 (and it derivative glueGRN), Sgs4, Sgs5, Sgs7, and Sgs8] are 

expected be high in (L) and low or undetectable in (W) as they are in the controls (C-1 

and C-2).  C-1 is the parental glueGRN stock, and C-2 is a “driver only” control 

(glueGRN crossed to sgGal4).  However, when EcR-DN or EcRi is expressed in the 

salivary glands, no glue expression can be detected.  Blots were hybridized for rp49 as a 

loading and blotting control.  Interestingly, when glands from the USPi cross are assayed, 

all glue genes examined are expressed, but they are not repressed at the W stage.  This 

result is expected if USP is not required to turn the genes on, but is needed to turn them 

off at the end of the instar. Experiment performed by Andrew Andres. 
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2.3.f: Induction of the Glue Genes does not Require USP 

 Because all known 20E signaling pathways that control in-vivo developmental events 

are thought to be mediated through an ecdysone receptor consisting of EcR and USP, we 

wanted to test the requirement for USP in the synthesis of glue. Thus, we utilized a 

transgenic RNAi construct that contains an inverted repeat of USP under UAS control 

(USPi). We expressed this construct using the sgGal4 driver and the reporter genes 

(glueRED; GFP.nls) described above in order to selectively silence USP in larval salivary 

glands. Under these circumstances glands were indistinguishable from parental stocks 

(compare Figure 2-3A with Figure 2-6A), and 100% of the glands produced wildtype 

levels of glueRED (Table 2-1). This result suggests that USP is not part of the receptor 

needed for glueRED expression. An alternative explanation is that the USPi construct is 

not effectively knocking down USP levels in the salivary gland, but three lines of 

evidence make this possibility very unlikely. 

First, we examined wildtype- and USPi-compromised salivary glands for USP protein 

using a well-characterized USP antibody.  As shown in Fig. 2-6, no USP protein can be 

detected in the nuclei of salivary glands where the USPi construct is expressed.  This is in 

contrast to the wildtype glands of similar L3 stages (compare the tissues marked as SG in 

C-E with those outlined by a dashed line in C'-E'), and in contrast to USPi animals where 

the fat body (FB), nervous system (NS), imaginal discs (ID) and midgut (MG) clearly 

display the expected nuclear staining. This result is consistent with sgGal4 driving USPi 

only in salivary glands and not in other tissues. In addition, no USP protein is detected in 

salivary- gland extracts when a Western-blot analysis is performed on glands expressing 

the USPi construct (Figure 2-7). 



 

  70 

Table 2-1:  Overexpressing USP blocks the synthesis of glueRED.

Genotype 
(Transgene 

Addback) 
 

Empty 
 

Few 
 

Quarter 
 

Half 
 

Full 

 
Number 
Assayed 

SgGal4 
UAS-GFP.nls 

glueRED 
USP-USPi 

 
 

0% 

 
 

0% 

 
 

0% 

 
 

0% 

 
 

100% 

 
 

50 

SgGal4 
UAS-GFP.nls 

glueRED 
UAS-USP(+) 

(at 25°C) 

 
 

34% 

 
 

2% 

 
 

17% 

 
 

25% 

 
 

22% 

 
 

56 

SgGal4 
UAS-GFP.nls 

glueRED 
UAS-USP(+) 

(at 29°C) 

 
 

53% 

 
 

11% 

 
 

16% 

 
 

13% 

 
 

7% 

 
 

61 
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Figure 2-6:  Silencing USP in the salivary gland does not block glueRED synthesis. 

Confocal images in which RNAi against USP is expressed in the salivary glands  

demonstrate that glueRED synthesis is normal but not secreted at the time of puparium 

formation (A).  Overexpression of wildtype USP blocks glueRED synthesis (B) in many 

animals producing a synthesis-defective phenotype that is similar to those observed when 

EcR is compromised.  Both images were taken at the same magnification, which is 

identical to that presented in Fig 2-3.  

Confocal images of L3 tissues from wildtype animals (C-E) and larvae in which 

RNAi was induced against USP (USPi) in the salivary glands (C'-E').  Tissues are stained 

with a USP antibody and visualized with a FITC-conjugated secondary.  Fluorescence is 

detected in the nuclei of early third (C, C'), mid-third (D, D'), and late-third (E, E') 

instars.    The positions of the salivary glands (SG and dashed outlines in C'-E'), nervous 

system (NS), imaginal discs (ID), fat body (FB), and midgut (MG) are marked for 

comparison to indicate that that USP silencing is restricted to the salivary gland as 

expected with a tissue-specific driver.  Note that the gain  in E' is increased to emphasize 

the lack of USP staining in the nuclei of the salivary glands.  Photos C-E' were taken at 

the same magnification indicated by the bar in E. 
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     Second, because glue secretion (dumping of granules into the lumen of the gland) at 

the end of L3 has been shown to be 20E dependent [12] and to require functional EcR 

and USP [13], we expected that USPi glands would not be able to secrete the glueRED 

that was produced at an earlier stage. This prediction was always supported by the data. 

Note that the photograph of the gland in Figure 2-6A was taken at the time of puparium 

formation and that no glueRED can be detected in the lumen (L) of the tissue. In wildtype 

parental glands, secretion of the tagged glue into the lumen (Figure 2-3B) always occurs 

by the white prepupal stage. 

Third, because it has been reported that USP is necessary to repress the glue genes at 

the time of puparium formation, we expect that transcript accumulation for each Sgs gene 

should not decrease at the white prepupal stage. The data presented in Figure 2-5 

(compare L with W in the USPi lanes) support this hypothesis. 

Another possible caveat for the observation that RNAi against USP does not prevent 

glueRED expression is that a small amount of USP protein may be very stable in the 

salivary gland and thus not subject to efficient silencing by the RNAi mechanism. 

Following this logic, the protein turn over might take 4 days to reach a critical threshold 

level. Thus, there would be enough USP protein for glueRED synthesis in 3-day old 

larvae (the age when glue genes are induced by 20E), but not enough in 4-day old larvae 

(the age when 20E causes glue secretion). To test the ability of the USPi construct to 

silence USP effectively in a short time frame, we used the glueGal4 driver 

(FBst0006870) to express transgenes in the salivary gland from mid-L3 until puparium 

formation. Under these circumstances glue secretion was blocked even though the USPi 

responder was only being expressed for 24 hours prior to the assay (data not shown). 
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Because it is known that USP can heterodimerize with EcR at the end of the larval 

period, we predicted that an overproduction of USP at mid-L3 might prevent a critical 

amount of EcR from forming the functional receptor needed for glue-gene induction. 

However, if even a small amount of a receptor consisting of EcR and USP is required to 

induce the glue genes, overproducing the USP component at an earlier time should not 

affect the response. Thus, we generated transgenic flies in which the coding information 

for wildtype USP was placed under UAS controlling elements. When this transgene 

(USP+) was driven by sgGal4, a large amount of USP protein was detected on Western 

blots of salivary glands (Figure 2-7), and the production of glueRED was reduced (Figure 

2-6B; Table 2-1). We verified that this construct produces functional protein by crossing 

it to flies carrying both the glueGal4 driver and USPi responder. Under these conditions 

the USP+ construct was able to rescue the block in glue secretion caused by USPi. 

Although the overproduction of USP in the salivary gland perturbs glueRED 

expression (34% of the glands produce no product), the block was not complete because 

animals were able to express varying levels of glueRED in some salivary-gland cells 

(Table 2-1). To more precisely quantify the amount of glueRED produced under these 

conditions, we performed the Western blot presented in Figure 2-8. As expected, no 

DsRED-tagged protein can be detected in the lanes in which EcR-DN or EcRi are 

expressed in the salivary glands (Figure 2-8B). In addition, the levels of glueRED are not 

reduced when USPi is expressed in the salivary glands because both control lanes (w1118 

x sgGal4; glueRED) and experimental lanes (USPi x sgGal4; glueRED) contain the same 

band intensities when quantified and adjusted for protein loading using a-Tubulin (Figure 

2-8A,B). However, the levels of glueRED are reduced 3 fold when USP is overexpressed 
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(USP+ x sgGal4; glueRED) in the salivary gland compared to the control and USPi lanes 

(Figure 2-8B). 

One explanation for the reduction, but not elimination of glueRED, is that the amount 

of USP produced under these conditions is at a threshold level needed to antagonize the 

20E-signaling pathway mediated by EcR. To test this hypothesis, we crossed the USP+ 

line to sgGal4; GFP.nls; glueRED and raised the larvae derived from the cross at two 

different temperatures (25°C and 29°C). Because temperatures closer to 30°C are 

reported to produce higher GAL4 activities [43] (probably because GAL4 is a yeast 

transcription factor), we predicted that larvae raised at 29°C would produce less glueRED 

(due to the overproduction of more USP that should antagonize 20E receptor formation). 

As indicated in Table 2-1, these differences were observed when animals were raised at 

the two different temperatures (53% of the glands failed to produce any glue when raised 

at 29°C compared to 34% that failed to produce any glue when raised at 25°C). In 

addition, we confirmed that raising control animals at 29°C did not perturb glueRED 

production, and raising experimental animals at the elevated temperature did not cause a 

non-specific induction of the heat shock promoter in other tissues because GFP.nls was 

only detected in the nuclei of salivary glands (data not shown). 

Finally, to ascertain the role of USP in the production of other glue proteins, we 

compared the overall pattern of protein synthesis using Coomassie staining of SDS-

PAGE. As shown in Figure 2-8C, the appearance of most of the glue proteins can be 

identified when whole salivary-gland-protein extracts are stained because the Sgs genes 

are abundantly expressed in this tissue. We were able to confirm the presence of the 

major glue bands by comparing extracts of secreted glue plugs [6] that were prepared as 
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ethanol precipitates from the lumens of white prepupae (data not shown). As expected, 

the accumulation of most glue proteins is reduced drastically in glands in which EcRi and 

EcR-DN are expressed. Also as expected, they are not reduced when USPi is expressed, 

but they are affected when USP is overproduced. 

Taken together these results are very compelling, and they indicate that USPi is very 

efficient at gene silencing in the salivary gland when driven by sgGal4. Therefore, USP is 

not needed for the 20E-mediated induction of the glue genes through the BRC. 
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Figure 2-7:  Western-blot analysis comparing USP levels derived from different 

transgenic stocks. 

 Protein extracts were prepared from larval salivary glands at the white prepupal stage 

dissected from three different crosses.  Flies of the tester stock (sgGal4; UAS-GFP; 

glueRED) were crossed to a control to ascertain the normal amount of USP protein 

present in third-instar glands (w1118), a line in which RNAi against USP could be 

produced in the salivary glands under UAS control (USPi), and a line in which wildtype 

USP could be overexpressed (USP+) under UAS control.  The blot was cut; one part was 

incubated in AB11 antibody against USP and the other was incubated in primary 

antibody against !-Tubulin as a loading/blotting control. 
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Figure 2-8:  Overexpressing USP blocks the synthesis of glue proteins. 

 Protein extracts were prepared from larval salivary glands at the white prepupal stage 

dissected from 7 different crosses.  Two SDS-page gels were produced, one was stained 

(bottom) and the other was blotted for the Tubulin loading control (top) or transgenic 

dsRED (middle).  C1 is w1118 crossed to Canton S as a control for wildtype levels of SGS 

proteins.  C2 is w1118 crossed to sgGal4; UAS-GFP; glue RED as a “driver only control 

for endogenous glue and glueRED protein production.  C3 is w1118 crossed to UAS-USP+ 

as a USP responder only control for levels of SGS proteins.  The remaining 4 crosses 

were the tester stock (sgGal4; UAS-GFP.nls; glueRED) crossed to UAS-EcR-DN (DN); 

UAS-EcR-i (EcRi); UAS-USPi (USPi) and UAS-USPwildtype (USP+).  Note that all glue 

protein bands from the stained gel are affected by the EcR and USP reagents as predicted 

according to the model that glue-genes are induced by 20E through a receptor that 

requires EcR but not USP.  The position of glue proteins correspond to band sizes 

observed when secreted glue plugs were precipitated with ethanol and subjected to 

SDS/Page.  
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2.4: Discussion. 

2.4.a: The Glue Genes are Induced by 20E 

Previous reports using mutants that are defective in 20E production or signaling 

yielded contradictory results concerning the role of 20E in the induction of the glue genes 

in the salivary gland. Here we demonstrate that a glue-gene reporter derived from the 

Sgs3 gene can be induced by 20E in cultured glands dissected from wildtype animals at 

mid L3.  Furthermore, unlike the 20E-mediated events that occur at the end of the larval 

period, the induction of Sgs3 and other glue genes is mediated by a lower titer of 

hormone (10-9 to 10-8 M). This result is consistent with a report of a small titer of 20E 

that has been detected in a population of synchronized animals two hours prior to the 

induction of the glue genes [29]. In addition, because the ecd1ts mutation probably 

reduces the concentration of 20E in the hemolymph, mutant animals shifted to the non-

permissive temperature might still be exposed to enough 20E to induce the Sgs genes. 

We have also shown that the induction of the glue genes occurs as a secondary response 

to the hormone because the requirement for EcR can be bypassed if BRC isoforms are 

ectopically expressed. This finding is supported by published evidence that some 20E-

regulated transcription factors (BRC, E74B) can be induced in cultured organs by a pulse 

of hormone that is much lower than that produced at the end of the third instar ~10-8 M 

versus ~10-9 M [44]. 

2.4.b: The Induction of the Glue Genes Requires a Different 20E Receptor 

The dogma for the action of 20E during Drosophila development is that EcR and USP 

are associated as a heterodimer and often bound to the EcREs of target genes. When not 
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bound by ligand, the heterodimer associates with a repressor complex to prevent 

transcription from those genes. Hormone binding (to the ligand- binding domain of EcR) 

leads to a conformational change in the complex, the dissociation of the repressor 

complex, and the recruitment of co-activators for high-level transcriptional activa- tion 

[reviewed in 19]. Although this model is well supported by evidence that both EcR and 

USP are required to initiate events during the late-larval and prepupal periods, our study 

presents compelling evidence for the existence of another bona fide receptor for 20E that 

consists of EcR but does not use USP as its heterodimeric partner. 

We have provided evidence that SGS3 production (and probably glue synthesis in 

general) is a 20E-mediated event. We have also demonstrated that EcR is required for the 

induction of the glue genes, and that any isoform of EcR can be involved in the activation 

of Sgs3. This result is interesting because EcR-B1 is reported to be the predominant form 

that is normally expressed in the larval salivary gland [45]. Also, because expression of 

BRC is necessary and sufficient for the induction of Sgs3, these experiments suggest that 

the A/B domain of EcR does not participate in the expression of BRC by the smaller 

pulse of 20E that occurs midway through the L3 stage. 

In contrast to the results for EcR, we have provided convincing evidence that USP is 

not the other half of the heterodimer needed for the 20E-mediated initiation of glue 

synthesis. In a previous report [13] we confirmed that USP mutants can be rescued from 

embryonic lethality by providing exogenous USP from a heat-shock driven transgene 

[46]. Furthermore, if these animals are not provided with a source of USP during the L2 

and L3 stages (by being deprived of subsequent heat pulses that would induce the 

transgenic cDNA), they will not pupariate, but they will grow, molt, and express an Sgs3 
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derived reporter [13]. 

In the current study we have used strong tissue-specific drivers that are exclusively 

expressed in the salivary gland at two different time points. We have demonstrated that 

the USPi stock is an effective reagent for silencing endogenous USP in the salivary gland 

(Figures 2-6; 2-7), even if it is only produced for 24 hours before the assay (i.e. inducing 

it with glueGal4 blocks glue secretion). Thus, when it is driven during all larval stages (3 

days before glue synthesis) no USP protein can be detected by immunostaining, and this 

absence of USP protein has no effect on the production of glue. To further confirm that 

USP is not needed for glue synthesis, we demonstrated that when wildtype USP is 

overexpressed in the salivary gland during the larval stages, glue protein production is 

drastically reduced. Because USP is known to heterodimerize with EcR at a later 

developmental stage, the simplest explanation for this observation is that extra USP 

protein is preventing EcR from forming the functional 20E receptor needed for glue 

synthesis in mid L3. Such a result is not expected if only a small amount of functional 

EcR/USP is needed to induce the glue genes. 

Interestingly, other researchers have observed similar effects. One report generated 

clones of USP-/USP- mutant tissue in the salivary gland, and although they do not 

discuss the effects of glue production in mutant tissue, the presence of glue granules is 

apparent in the clones from late-L3 glands [47]. This and other studies also describe the 

developmental differences of clones of USP- tissue in imaginal discs. 

For example, movement of the morphogenetic furrow—a 20E mediated event 

responsible for eye development [48]—is actually accelerated across a USP- patch of 

tissue [49,50]. In addition, others have noted that the 20E-dependent differentiation of 
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chemosensory neurons in the wing margin occurs precociously in the absence of USP 

function [51].   

Furthermore, when target-gene expression is examined, transcripts from the BRC 

(BRC-Z1) accumulate earlier in development in mutant clones within the eye and wing 

discs [47,51]. These observations led to the hypothesis that in the absence of ligand, the 

EcR/USP heterodimer can act as a repressor in some tissues by binding to the response 

elements of a select group of target genes. The function of the hormone is to de-repress 

the target genes by removing the EcR/USP complex from the promoter region allowing 

other bound transcription factors to activate transcription [34]. Thus in a USP- clone, 

genes controlled by this mechanism should be precociously activated. We do not think 

that the induction of the glue genes is controlled by a de-repression of BRC through 

EcR/USP for two reasons. First, the glue genes are not induced (de-repressed) if EcR is 

silenced with an EcRi construct. Second, we do not see precocious activation of glue 

genes when a USPi construct is expressed. 

Our model proposes that USP is acting as a repressor by heterodimerizing with EcR 

to prevent the association of EcR with another nuclear-hormone receptor (NR-X). Our 

hypothesis may also explain some of the data generated with the use of USP- clones in 

imaginal discs. For example, if we assume that movement of the morphogenetic furrow is 

induced by an earlier and lower pulse of 20E (as has been reported for Manduca) [52], 

we would speculate that furrow movement is controlled by EcR/NR-X regulating 

downstream genes including BRC-Z1. The normal presence of USP in this tissue at that 

time might serve to control the amount of functional EcR/NR-X available for high-

affinity hormone binding. Thus in a USP- clone, we would expect the morphogenetic 
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furrow to move faster over the patch and the induction of BRC-Z1 to be premature. Such 

observations were reported [47,49,50]. 

The normal expression of USP in the salivary gland at mid L3 (Figures 2-6; 2-7) may 

also be needed to ensure that the response of glue-gene induction is precisely regulated. 

In any case, the induction of a 20E-regulated pathway that does not require USP as part 

of the receptor has no precedence in the Drosophila literature. Thus, a better 

characterization of this response at the molecular level is critical for our understanding of 

normal insect development. 

2.4.c: Transcriptional Regulation of the Glue Genes 

In this report we demonstrate that EcR is necessary for the expression of most of the 

glue genes at mid L3, and that USP is not needed for this expression. In addition, we 

show that any isoform of BRC can be sufficient for Sgs3 transgene expression even if the 

EcR component of the receptor is compromised with EcR-DN, and that overexpression of 

some BRC isoforms in first- and second-instar larvae is enough to induce expression of 

the Sgs3 transgenes days before they would normally be transcriptionally active. 

However, it is interesting to note that although Sgs3 and Sgs4 appear to be 

coordinately expressed in mid-L3 salivary glands, different binding sites for regulatory 

proteins have been identified in their promoter/enhancer regions. These include response 

elements for EcR/USP, and binding sites for BRC [40], GEBF- I (FBgn0013970) [53], 

Forkhead (FBgn0000659) [54–56], and SEBP3 (FBgn0015293) [57]. The binding of 

different transcription factors to these sites may modulate the levels of expression of the 

two genes or they may contribute to their restricted expression patterns in the salivary 

gland or other tissues. For example, although we have shown that Sgs3 derived 
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transgenes are exquisitely restricted to the salivary glands of third-instar larvae, others 

have reported the expression of different glue genes in tissues outside this cell type. 

These include Sgs4 expression in the proventriculus [58] and I71-7 expression in the 

midgut and hemocytes [59]. Such expression patterns raise the interesting possibility that 

these highly glycosylated mucin secretions may perform other functions stemming from 

their propensity to form a sticky substance in aqueous solution. These functions could 

include the formation of the peritropic membrane around the food or the formation of 

extracellular aggregates that might be involved in antimicrobial responses [59]. 

2.4.d: What is the Composition of the 20E Receptor Responsible for Inducing the Glue 

Genes? 

If we assume that members of the nuclear-hormone receptor superfamily form dimers 

to produce the active receptor needed for glue-gene expression, we can formulate two 

hypotheses concerning the composition of that functional receptor. First, the active 

receptor may be a homodimer of EcR proteins.  Homodimers are known to function as 

receptors for steroid hormones in vertebrates using a different mechanism of ligand 

activation than that observed with RXR heterodimeric receptors (USP is the insect 

homolog of RXR), but to our knowledge no biological activity has been ascribed to EcR 

homodimers during Drosophila development. Our analysis does not rule out the 

possibility that EcR homodimers are responsible for the induction of the glue genes. 

The second possibility is that another member of the superfamily may be able to 

complex with EcR to transmit the hormone signal. Many of these receptors have pre-

existing mutations and many more have UAS-RNAi lines that are now available from the 

RNAi Stock Centers in Vienna (http://www. vdrc.at) and Japan 
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(http://www.shigen.nig.ac.jp/fly/nigfly/index. jsp). At this point we have assayed 

production of glueRED in mutants or RNAi lines that knock down DHR38 

(FBgn0014859) and DHR78 (FBgn0015239), but no effects on glueRED synthesis were 

observed (A. Andres, unpublished observations). However, the existence of transgenic 

RNAi lines should simplify the analysis because it is expected that when a specific 

nuclear receptor is silenced in the salivary gland, it should display a phenotype that is 

defective in glue synthesis. It would then be very interesting to screen the controlling 

region of the BRC to establish the nature of the EcRE(s) that control the response at the 

molecular level, and to test if this type of receptor could control other developmental 

events (perhaps molting of the instars or some aspect of early imaginal disc development) 

that are regulated by 20E during earlier larval stages. 
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CHAPTER 3 

THE ROLE OF DHR96 AS PART OF A NOVEL RECEPTOR REQUIRED FOR GLUE 

SYNTHESIS 

3.1: Introduction. 

 Steroid hormone signaling is an essential biological event that is necessary for the 

successful development of all animals.  Proper steroid hormone signaling occurs when a 

hormone ligand binds to and activates its target nuclear receptor.  In vertebrates the 

activation of the nuclear receptor occurs in the cytoplasm and the hormone receptor 

complex is transported into the nucleus as a transcription factor that binds to specific 

DNA regulatory sequence elements to initiate a genetic reprogramming of the target cell 

type.  The activated receptor can take the form of a ligand-bound monomer, homodimer, 

or heterodimer.  In some cases, inactivated nuclear hormone receptors are heterodimers 

that are in a complex with co-repressors to repress gene activity.  When ligand binding 

activates the nuclear receptor, the co-repressors dissociated and co-activators are 

recruited to initiate target gene transcription.    

 In Drosophila, 20-hydroxyecdysone (20E) is the systemic steroid hormone 

responsible for major developmental changes that occur in molting and metamorphosis.  

Throughout insect development temporal changes of the 20E titer cause diverse 

physiological responses in the whole animal.  For example, 20E is required for the 

intermolt transition in the larval stage and for metamorphosis (a complete reprogramming 

of larval tissues) to occur.  Although the 20E signaling hierarchy has been studied 

extensively, the exact nature of how individual tissues respond to different pulses of 20E 
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remains to be understood.   A model tissue that is well suited to address this gap in our 

knowledge is the third instar (L3) larval salivary gland.  

 In the final larval stage, the third instar, there is a dramatic whole-body response to 

two different peaks in the ecdysone titer that are presumably required to set up the 

genetic programming required for metamorphosis.  Warren et al. (2005), used a 

combination of HPLC and radioimmuno assays to carefully identify these pulses in the 

whole body [1] and validate long held models of temporal genetic reprogramming in the 

third instar that were classically analyzed by Ashburner as puffs on polytenized 

chromosomes [2].   In the salivary gland, the two 20E pulses in the L3 stage trigger three 

distinct events that are temporally distinguished: the synthesis of glycosylated 

polypeptides (glue), the secretion of glue, and the programmed cell death of the secretory 

cells of the gland.   

 The function of the salivary gland prior to the L3 stage is thought to be that of an 

organ that assists in digestion of food by producing mucins.  The larvae spend ~48 hours 

in the L3 stage.  At the end of the L3 stage, the salivary gland secretes glue that aids the 

organism in securing itself to a substrate during metamorphosis.  Once this task it 

complete, the larval salivary gland activates programmed cell death to make way for the 

adult structure.  20E signaling coordinates all of these events at different times 

throughout the L3 stage.  

 First, a pulse of the steroid hormone at the mid L3 stage occurring around ~68 hours 

after hatching, or 20 hours after entering the third instar molt, initiates the transcription of 

glue peptides that when mature become highly glycosylated (glue) and serve as an 

adhesive substance during metamorphosis [3].  Then, in response to a premetamorphic 
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pulse of 20E occurring ~40-44 hours after entering the third instar, the salivary gland 

secretes the mature glue granules into the lumen of the gland and subsequently 

expectorates the glue in the white prepupal stage (WPP).  Lastly, the tissue is removed 

via programmed cell death by 20E responsive enzymes repressed by Forkhead in the 

third instar, but de-repressed and able to commit the cells to PCD in response to a 

prepupal pulse of 20E [4].  We are interested in how 20E causes distinct temporal 

changes in a specific tissue.  To answer this question we turn our attention to the 20E 

receptor, and hypothesize that differences in the composition of the ecdysone receptor 

may account for the difference in the temporal response in the salivary gland. 

 The ecdysone receptor considered to be responsible for the effects of 20E signaling 

throughout the whole animal is thought to be a heterodimer between EcR and USP.  EcR 

is the vertebrate homolog of the farnesoid receptor (FXR) and USP is the homolog of the 

retinoic X receptor (RXR).  Steroid hormone function in vertebrates has been thought to 

act via monomers, homodimers, or heterodimers of RXR and another nuclear receptor 

partner.  Because the events in the salivary gland of Drosophila require 20E signaling, it 

was assumed that the signal was regulated through a heterodimer of USP and another 

receptor.  Later, it was discovered that EcR is the receptor that directly binds 20E and 

thus the model of 20E activation was modified to include the now canonical ecdysone 

receptor heterodimer of EcR and USP [5].  Given the vertebrate literature at the time, this 

model was not unreasonable; however, recent evidence elucidates a functional 

heterodimeric nuclear receptor in vertebrates formed by RAR and thryroid hormone 

receptor (TR), which does not contain an RXR receptor [6].  The vertebrate model was 

reinforced by our lab in 2008 when we showed that surprisingly, a 20E response in the 
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salivary gland (glue synthesis) is EcR dependent but USP (RXR) independent [3].  The 

vertebrate literature and our finding support a possibility for another novel ecdysone 

receptor consisting of EcR and another nuclear receptor.  

 In Drosophila, exist 21 nuclear receptors, most of which are transcriptionally 

regulated by 20E, but many with no known function.  However, three receptors are able 

to bind known EcR/USP DNA binding sites: DHR38, DHR78, and DHR96.  Of these 

three, the Drosophila hormone receptor 96 (DHR96) recognizes the same hsp27 

ecdysone receptor response element (EcRE) as the EcR/USP complex as demonstrated in 

gel shift assays [7].  In addition,  DHR96 is thought to be 20E-inducible because it has a 

temporal expression profile correlating to times of 20E exposure [7].   

 The DHR96 gene encodes a 2.8 kb transcript that is expressed throughout the third 

instar larva and is homologous to the vertebrate vitamin D receptor [7].  It is thought that 

DHR96 acts as a metabolic sensor for xenobiotics, because it is expressed in tissues 

known to metabolize xenobiotics [8].   Any loss of DHR96 makes the fly more sensitive 

to phenobarbitol and DDT [8].  DHR96 may also bind cholesterol and regulate 

triacylglycerol in the midgut [9]. DHR96 mutants are sensitive to starvation and cannot 

survive on low cholesterol diets and accumulate cholesterol [9].   In these tissues, DHR96 

is involved in the pathway to metabolize xenobiotics and to sense and maintain 

cholesterol homeostasis.  However, the function of DHR96 in the salivary gland is not 

characterized. 

 I show that silencing DHR96 using RNAi only in the salivary gland results in the 

absence of glue synthesis.  This new model of 20E regulation can answer some questions 

regarding temporal and spatial specificity within the 20E-signaling pathway, as well as 
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define a role for DHR96 in the salivary gland.  Using an RNAi strategy we propose a 

model that includes DHR96 as a required receptor for 20E-initiated glue synthesis and a 

putative constituent of a novel ecdysone receptor.  Teasing apart the mechanisms behind 

20E glue synthesis serves as a model to uncover other tissue-specific responses to 20E 

that may include other novel types of ecdysone receptors. 

3.2: Materials and Methods. 

3.2.a: Fly Stocks 

 All flies were raised on a cornmeal-soyflour as described in 2.2.a. The RNAi fly lines 

used in the screen were obtained from the Vienna Drosophila RNAi Center [10] and 

VDRC stock numbers are listed in Table 3-1.  The tester stocks, glueRED, UAS-GFP.nls; 

sgGal4 (RG;sgGal4), are described by Costantino et al. 2008 [3]. 

 The hsp70DHR96 (heat shock inducible full length DHR96) was provided by the Carl 

Thummel lab at the University of Utah [8]; the BRC isoforms were described in 2.2.a 

[11]. 

3.2.b: Nuclear Receptor RNAi Screen 

 To generate the list of candidate receptors we performed a PSI-BLAST [12] using the 

EcR.A (FBpp0085349) as a seed sequence to search the non-redundant protein sequence 

database specific for Drosophila melanogaster.  We used the default parameters set for 

the PSI-BLAST algorithm with the inclusion factor set to 0.005.  Table 3-1 was created 

after iteration five of the PSI-BLAST.     

 Virgins from each of the VDRC fly lines were crossed to RG;sgGal4 and keep at 

25°C.  Late third instar larvae from each cross were analyzed for glueRED synthesis 
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under fluorescent microscopy using a Leika fluorescent stereo microscope containing 

filter cubes for GFP and DsRED. 

3.2.c: DHR96 Western Blot and Immunohistochemical Staining 

 Tissue stains and Western blots were done using a polyclonal antibody against 

DHR96 that was kindly provided by Carl Thummel.   For the tissue stains, the salivary 

glands were dissected in DPBS as described in Vaskova et al. 2000 [13] and transferred 

to tubes containing 600 µL of 4% paraformaldehyde (JT Baker S898-07) in PBS.  The 

tissue was fixed for 30 minutes and washed with PBS, 0.3% Triton X-100 (PT) four 

times for 10 minutes each.  The wash was replaced by PBS, 0.3% Triton X-100, 2% BSA 

fraction V (Sigma #A-2153) (PBT), then the tissue was incubated for 60 minutes, 

followed by PBS, 0.3% Triton X-100, 2% BSA fraction V, 3% normal goat serum (PBT-

S) for 60 minutes.  The PBT-S solution was replaced with primary DHR96 antibody 

diluted 1:100 in PBT-S, and the tissue was incubated over night at room temperature.  

Tissues were rinsed five times for 15 minutes in PT, 20 minutes in PBT, 30 minutes in 

PBT, and finally 30 minutes in PBT-S.  The PBT-S was replaced with goat anti-rabbit 

rhodamine-conjugated secondary antibody diluted 1:1000 in PBT-S and incubated at 

room temperature for 4 hours.  The tissue was then washed four times for 15 minutes in 

PT and mounted on slides in Gel/Mount from Biomedia. 

 Protein extracts for Western blot analysis were prepared by dissecting 30 glands from 

each group in DPBS.  For the hsDHR96 sample, the larvae were heat shocked twice (with 

a 1 hour rest at 25°C in between) in a water bath at 36°C in vials containing ~ 0.50 g of 

Drosophila media to prevent desiccation and then dissected as normal.  The samples were 

centrifuged at 10,000 rpm to pellet the glands and then resuspended in a lysis solution 
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containing a cocktail of protease inhibitors.  A 1:1 dilution of Laemmli buffer plus !-

mercaptoethanol (BME) were added to the samples and subsequently, homogenized and 

boiled for five minutes.  The samples were loaded into a 12% SDS-polyacrylamide gel 

and then transferred to Immobilon P membranes (Millipore).   Blots were incubated with 

rabbit anti-DHR96 primary diluted 1:500 and mouse anti-" tubulin primary (Sigma) 

diluted 1:15,000.  Secondary antibody incubation was with goat anti- mouse-HRP 

secondary (Jackson Immuno Research) diluted 1:40,000; and goat anti-rabbit-HRP 

secondary (Jackson Immuno Research) diluted 1:25,000.  Detection and quantification was 

performed using Protein levels were visualized and quantified using Chemi- luminescence 

ECL(+) Western-blotting detection system (GE Healthcare) and a Typhoon 8600 Variable 

Mode Phosphorimager (GE Healthcare). 

3.2.d: DHR96 qRT-PCR 

 RNA was extracted from 20 third instar larvae from each group using RNeasy Mini 

Kits (Qiagen, Valencia CA, USA Cat. #74104) and treated with Turbo DNA-free 

(Ambion Austin, TX USA Cat. #AM1907).  The cDNA was made using SuperScript 

First-Strand (Invitrogen Carlsbad, CA USA Cat. #11904).  qRT-PCR primers used for the 

reference gene, !-actin were: 5’-TCTACGAGGGTTATGCCCTT-3’ and 5’-

GCACAGCTTCTCCTTGATGT-3’.  For the target gene, DHR96, the primers used were: 

5’-GATGTGGAGCGTCTGAACAA-3’ and 5’-TCATCATTGGGCATCAACAT-3’ 

(corresponding to Exon 6 of the DHR96 mRNA transcript).  Each reaction was done in 

triplicate on a Bio-Rad iCycleriQ Real Time PCRSys system, and experimental Ct values 

were normalized to !-Tubulin using ##Ct statistical analysis.  Primer efficiency for both 

primer sets is 2.0. 
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3.2.e: Scoring Flies in GlueRED Synthesis and Secretion Experiments 

 In the experiments involving overexpression of either the EcR.B isoforms or the BRC 

isoforms, glueRED synthesis was determined by observation under fluorescent 

microscopy.  Larvae were marked as “no synthesis” if no glueRED detection was 

observed.  If detection of glueRED was observed in half or less of the cells in the larval 

salivary glands those larvae were categorized as “partial synthesis”.  “Complete 

synthesis” was noted when most or all cells of the salivary gland expressed glueRED.   

 To determine glue secretion in Figure 3-7, WPP were observed under fluorescent 

microscopy.  Figure 3A served as the criteria for counting either secretion (right) or no 

secretion (left).  It is important to note that some animals exhibited partial secretion in 

which the glueRED expectorated onto the body of the animal was not as robust as Figure 

3-7A right.  These, however, were still considered secretion positive in the study. 

3.2.f: Microscopy and Imaging 

 Low-resolution images of whole animals or dissected tissues were obtained on a 

Leika fluorescent stereo microscope containing filter cubes for GFP and DsRED.  Images 

were captured with the Spot Insight QE Model #4.2 digital camera (McBain Instruments, 

Chatsworth, California, United States) and prepared with Canvas (ACD Systems, Miami, 

Florida, United States) graphics software. 

 High-resolution images of dissected salivary glands were imaged on a LSM 510 

Axioplan confocal microscope (Carl Zeiss SMT, Peabody, Massachusetts, United States) 

equipped with LSM 510 image-analysis software.
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3.3: Results. 

3.3.a: DHR96 Knockdown Prevents Glue Synthesis 

 A strongly held model about 20E signaling is that it occurs through the ecdysone 

receptor, which is a heterodimer between EcR and USP.  The model assumes that only 

EcR and USP can form the ecdysone receptor required for a variety of temporal and 

spatial responses to 20E.  This model is supported by work done by Yao et al. (1992) 

showing that EcR and USP form a receptor complex on EcREs in cell nuclear extracts 

and later [14] showing that EcR and USP colocalize to 20E responsive sites on polytene 

salivary gland chromosomes [15, 14].  However, these data do not sufficiently address 

how the 20E-response can have temporal and spatial differences.  Our lab has shown that 

glue synthesis is a 20E induced event, but does not operate through the classically 

established EcR/USP ecdysone receptor [3].  A functional EcR protein is necessary, but 

USP is not required for glue synthesis.  These results were exciting because it suggested 

that a novel ecdysone receptor was functioning during the mid third instar of the salivary 

gland.    

 Consequently, to challenge the original model of the ecdysone receptor we first 

compiled a list of candidate receptors using a position specific iterative basic local 

alignment search tool (PSI-BLAST) algorithm.  The amino acid sequence of EcR-A was 

used in the initial run of the PSI-BLAST to build a protein profile of all proteins in 

Drosophila with multiple alignments that generated high scoring pairs to one another.   

After five iterations of the PSI-BLAST, 21 total (including EcR) putative nuclear 

hormone receptors (Table 3-1) were detected above the e-value threshold.  These results 
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confirmed previous data reported in a review of Drosophila nuclear receptors by King-

Jones and Thummel [16], with the addition of three putative receptors with significant 

sequence similarity: knirps like (Knrl) (FBgn0001323), knirps (Kni) (FBgn0001320), and 

eagle (eg) (FBgn0000560).   Because Knrl and Kni lack the ligand-binding domain, some 

do not consider these as true nuclear receptors [17].  This list was generated to create a 

database of putative nuclear receptors we could use to individually test for a role in glue 

synthesis.  My hypothesis was that because expression of EcRi blocks glue synthesis,  

expression of an RNAi that targets each member of this list would uncover the other 

receptor involved in 20E-mediated glue synthesis.  Assuming that glue synthesis is also 

controlled by a heterodimer, the approach was to find the other putative ecdysone 

receptor, partnering with EcR, by systematically screening this list for a block in glue 

synthesis using RNAi constructs available from the VDRC. 

 The VDRC has generated a collection of fly lines with RNAi constructs under UAS 

control that cover all 21 receptors (Table 3-1).  The screening strategy we developed 

involved crossing virgin females carrying a nuclear location signal tagged to a GFP 

sequence (GFP.nls), sgs-3 tagged with dsRED (glueRED) and a salivary gland specific 

driver (sgGal4) (abbreviated as RG; sgGal4 as reported in [3]) to males from each VDRC 

line.  If our glue synthesis model is correct, we would expect to see a block in glueRED 

synthesis in EcRi lines and also a block in synthesis in one of the other RNAi receptor 

lines.  Under fluorescent microscopy, we monitored for glueRED expression in third 

instar larvae from each group.  The screen confirmed that driving EcRi in the salivary 

gland does block glue synthesis and, additionally, that expressing an RNAi targeting 

DHR96 (DHR96i) also blocked glue synthesis (Table 3-1 and Fig. 3-1). 
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Figure 3-1: Using RNAi to silence DHR96 in the salivary gland blocks glue 

synthesis. 

 Confocal images of dissected salivary glands from larvae expressing either (A) no 

UAS responder, (B) USPi or (C) DHR96i.  Driving the expression of (B) USPi in 

salivary glands did not block glue synthesis as we expected from our reports in 

Costantino et al. 2008, but  (C) driving the expression of DHR96i in the glands did block 

glue synthesis.  
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     To be certain that DHR96i was indeed knocking down endogenous DHR96 we 

performed tests using three different techniques to analyze both protein and DHR96 

mRNA levels.  Initially, a Western blot was performed using a polyclonal antibody 

generously donated by the Thummel lab and described by King-Jones et al. 2005 [8].  

We made use of an available full length DHR96 cDNA construct under the control of a 

heat shock 70 promoter (hsDHR96) [8] to be a full-length reference for DHR96 

migration in our western blot.  Heat shocking the hsDHR96 larvae twice at 37°C for one 

hour, with an approximately one hour room temperature rest period, enriches full-length 

DHR96 amounts in the organism providing us with a reference band of DHR96 protein 

shown in lane 1 of Figure 3-3.  Third instar larvae salivary glands were dissected from 30 

individuals from either control (RG; sgGal4), or DHR96i (RG; sgGal4/UAS-DHR96i) 

and blotted [8].  The western blot indicates that DHR96 protein levels were >90% lower 

in salivary glands of DHR96i larvae (Fig. 3-3).  Next, we wanted to evaluate levels of 

DHR96 in an immunostain from larvae expressing DHR96i only in the salivary gland 

cells compared to the neighboring fat body tissue dissected from the same animals.  

Published reports of the DHR96 polyclonal antibody were validated in immunostains 

of different tissue types including the fat body and salivary gland [8].  Both the fat body 

and salivary glands were shown in these reports to be positive for DHR96 in the nuclei of 

these tissues. We repeated these experiments using salivary glands with attached fat body 

dissected from larvae that contained the sgGal4 salivary gland specific driver to express 

UAS-DHR96i only in the salivary glands or sgGal4 alone.  Because we are driving the 

expression of DHR96i only in the salivary glands the cell nuclei show an absence of 

protein compared to the neighboring fat body cell nuclei (Fig. 3-2).  This stain is a good 
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measure of the ability of DHR96i to silence DHR96 protein only in the salivary gland, 

because published reports describing DHR96 as a xenobiotic sensor in the fat body not 

only relied on this data, but also saw expression in the salivary gland and could not 

determine a salivary gland function for DHR96 [8].  Thus, we had an effective reagent 

that can silence DHR96 only in the salivary gland.  

Lastly, to measure the knockdown of DHR96 transcripts throughout the whole larvae 

we drove the expression of DHR96i using a whole body driver (Act5c-Gal4) and 

quantitatively compared the levels of transcript between DHR96i (Act5c-Gal; UAS-

DHR96i) and a control (Act5c-Gal4).  Flies can live without a functional DHR96 as 

demonstrated by the Thummel lab, so with this knowledge we could evaluate the 

effectiveness of the knockdown in the entire third instar larva without lethality as an 

obstacle.  RNA preparations from the control group and DHR96i group were made as a 

template for reverse transcription.   After quantification of the qRT-PCR we detected a 5-

fold decrease of DHR96 transcript in the DHR96i group compared to the control (Fig. 3-

4).  The qRT-PCR, western blot and tissue stain all convincingly validate the UAS-

DHR96i reagent from VDRC, thus supporting the hypothesis that DHR96 is required for 

20E induced glue synthesis in the larval salivary gland. 
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Figure 3-2: DHR96 immunohistochemical stain.  

Fixed salivary glands from (A) wildtype or (B) DHR96i larvae were stained with a 

DHR96 polyclonal antibody.  Nuclear staining was observed in the fatbody and salivary 

gland in wildtype tissue, but only in the fatbody in dissected tissue driving the expression 

of DHR96i only in the salivary gland.  The white dashed line outlines the salivary gland. 
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Figure 3-3: Western blot of DHR96i salivary glands.  

 A Western blot was performed on homogenates prepared from 30 salivary glands 

dissected from either heat shocked hsDHR96, parental (sgGal4/+), or DHR96i 

(sgGal4/UAS-DHR96i).  The hsDHR96 lane represents full length DHR96 and migrates 

at 98kD.  When quantified and normalized to the wild type, DHR96 protein is 

undetectable.
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Figure 3-4: DHR96 transcript levels are reduced in DHR96i lines.  

 A qRT-PCR of DHR96 cDNA generated from RNA preparations from either control 

(Actin5c-Gal4) or DHR96i (Actin5c-Gal4; UAS-DHR96i) larvae indicate ~75% reduction 

in DHR96 transcript levels in DHR96i. 
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3.3.b: DHR96i is Not Affecting EcR Levels 

 A potential caveat with the DHR96i reagent was that it could perturb the natural EcR 

function due to an off-target RNAi effect.  To address this, we made lines of flies that 

carried both a UAS-EcR isoform and UAS-DHR96i with the idea that if cross reactivity 

was not an issue then overexpressing EcR at the time DHR96 is silenced would not have 

an effect on the phenotype and we would still see a block in glue synthesis.  If the 

DHR96i reagent was affecting EcR function, then adding back EcR protein would 

recover the phenotype and we would see glueRED synthesized.   

 Our scheme was to monitor glueRED synthesis using three categories: no synthesis, 

partial synthesis (1-3 individual cells expressing glue) or complete synthesis.  This 

approach was validated in Costantino et al. 2008.  The EcR-B1 isoform is the receptor 

reported to be active in salivary glands, though both EcR-B isoforms can activate glue 

synthesis [3].  We drove the expression of the transgenes using the sgGa4 driver.  The 

results of overexpressing the EcR-B isoforms in DHR96i-expressing backgrounds show a 

block in glue synthesis similar to that observed in the larvae expressing DHR96i by itself 

(Table 3-2); indicating that DHR96 is necessary for glue synthesis to occur regardless of 

EcR rescue. 
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Table 3-2: Overexpressing EcR isoforms do not rescue the block in glue synthesis. 

Genotype 
No 

Synthesis 
Partial 

Synthesis 
Complete 
Synthesis Total 

RG; sgGal4/ + 0% 0% 100% 53 

RG; UAS-HR96i/ sgGal4 100% 0% 0% 120 

RG; UAS-EcRi/ sgGal4 100% 0% 0% 49 

RG; UAS-EcR-B1,  
UAS-EcRi/ sgGal4 0% 0% 100% 51 

RG; UAS-EcR-B1, 
UAS-HR96i/ sgGal4 68% 32% 0% 103 

RG; UAS-EcR-B2, 
UAS-HR96i/ sgGal4 93% 7% 0% 101 
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3.3.c: The Block in Glue Synthesis Caused by DHR96i is Rescued by Broad Complex 

Isoforms 

 The Broad Complex (BrC) is a complex transcription unit that gives rise to several 

complementation groups coding for four isoforms of zinc-finger transcription factors 

known as BRC-Z1, BRC-Z2, BRC-Z3 and BRC-Z4.  These transcription factors all play 

a role in the synthesis of glue proteins based on studies done on isoform-specific null or 

hypomorphic mutations [18-20].  For example, in mutants for the BrC complementation 

group npr1 (non-pupariating) the expression of the glue genes sgs-3, sgs-7, and sgs-8 is 

undetected [19].  Also, heterozygotic mutants of the rbd (reduced bristles on palpus) 

complementation group showed a severe reduction of sgs-3, sgs-4 and sgs-5 transcripts 

[19].   

 Genes of the BRC transcriptional unit are direct targets of 20E signaling, in the sense 

that the 20E activated receptor complex binds directly to regulatory elements upstream of 

BRC to induce the expression of the BRC isoforms [21].  These observations are 

convincing evidence that glue gene synthesis occurs as a secondary response to 20E 

signaling and the glue induction pathway involves 20E induction of the BRC isoforms [3, 

22].   

 We have established that EcR fits into the glue synthesis pathway by performing 

experiments compromising EcR function [3].   The block in glue synthesis caused by a 

dominant negative version of EcR or RNAi targeting EcR can be rescued by 

overexpressing any one of the BRC isoforms in the salivary gland [3].  With this 

knowledge, if DHR96 is a component of a novel ecdysone receptor with EcR in the glue 

pathway, DHR96 would logically function upstream of the BRC pathway.  This would 
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imply that the same rescue experiment done for EcR would produce similar results when 

done with flies expressing DHR96i. 

 To test the hypothesis that BRC isoforms can rescue the block in glue synthesis 

caused by DHR96i expression, we constructed a set of fly lines that contained versions of 

the BRC isoforms under the control of UAS and the DHR96i transgene.  These flies were 

crossed to the RG; sgGal4 tester stock and salivary glands were scored using three 

categories (no synthesis, partial synthesis or complete synthesis).  As shown in Table 3-3, 

all BRC isoforms can rescue the DHR96i block in glue synthesis at varying levels.  BRC-

Z1 showed the highest rescue (59%) and BRC-Z4 showed the least (1.6%) (Table 3-3).  

These results are consistent with a similar analysis that we reported for EcR [3]. 
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Table 3-3: Broad Complex overexpression rescues the block in glue caused by 

DHR96i. 

Genotype No Synthesis Partial Synthesis Complete Synthesis Total 
sgGal4 

UAS-GFP.nls 
UAS-HR96i 

glueRED 
UAS-BRC-Z1 15% 26% 59% 73 

sgGal4 
UAS-GFP.nls 

UAS-HR96i 
glueRED 

UAS-BRC-Z2 48% 2% 50% 61 
sgGal4 

UAS-GFP.nls 
UAS-HR96i 

glueRED 
UAS-BRC-Z3 42% 0% 58% 88 

sgGal4 
UAS-GFP.nls 

UAS-HR96i 
glueRED 

UAS-BRC-Z4 86% 13% 1% 56 
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3.3.d: Overexpression of DHR96 Competes with USP in the Late Larval Salivary Gland 

Demonstrating that DHR96 can be a viable heterodimeric partner with EcR is the key 

determinant to qualify the protein as a component in a putative novel ecdysone receptor 

functioning to mediate glue synthesis.  We have shown that overexpressing USP prior to 

the mid-third instar pulse of 20E blocks the synthesis of glue [3]. We hypothesized that 

USP outcompetes the natural receptor required for glue synthesis for EcR binding.  If the 

block in glue synthesis shown in Costantino et al. [3] is due to competition with another 

receptor for EcR dimerization, then it is reasonable to suggest that the reciprocal 

experiment would have the same effect on USP dependent events in the salivary gland.  

By showing that DHR96 can outcompete USP when USP is required for a 20E response, 

we can further validate the hypothesis that EcR and DHR96 could form a functional 

ecdysone receptor required for glue synthesis.  

The EcR/USP heterodimer is required for glue secretion in response to a pre-

metamorphic titer of 20E occurring 16 to 18 hours prior to pupariation (late third instar).  

To elucidate the possibility of DHR96 acting as a heterodimeric partner with EcR, we 

used heat shock inducible transgenic flies (hsDHR96) to overexpress DHR96 just after 

the onset of glue synthesis in the mid-third instar, but before the premetamorphic pulse of 

20E.  We hypothesized that overexpression of DHR96 would compete with USP for EcR 

binding and block USP-dependent glue secretion. Larvae were divided into four 

categories: unheated control (glueRED), heat shock control (glueRED), unheated 

hsDHR96,  and heat shock hsDHR96.  Larvae from all groups contained the glueRED 

marker that we used as a stage determinant.  Glands not expressing the glueRED are <20 

hours into the third instar and prior to the mid-third instar pulse of 20E, glands half full 
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with glueRED are ~24 hours into the third instar and have been exposed to the mid third 

instar pulse of 20E, glands completely full of glueRED are over 32 hours into the third 

instar and just prior to the premetamorphic high titer late third instar pulse of 20E.   For 

this experiment, larvae from each group were monitored and selected at between 24 to 32 

hours after the final molt, just prior to the premetamorphic pulse of 20E in which USP is 

required for glue secretion.  Cohorts of larvae were either heat shocked twice for 1 hour 

at 36°C with a 2-hour break between (+heat shock) or not heat shocked and remained at 

25°C (-heat shock).  Secretion of glueRED was examined at the white prepupal (WPP) 

stage noting secretion as shown in Figure 3-7.  Analysis of glueRED secretion in the 

groups indicate a greater than 75% block in secretion in the hsDHR96 heat shocked 

treated groups (Fig. 3-7).  There was little to no effect of the actual heat shock treatment, 

and the full-length DHR96 produced by the hsHR96 transgene is functional as shown in 

gain-of-function studies [8].  This result is exciting because it provides evidence that 

DHR96 can outcompete USP for EcR binding and strengthens the earlier reciprocal 

experiments.  Additionally, this experiment provides a model that other nuclear receptors 

have the potential to temporally modulate the 20E signal by binding to EcR and forming 

an ecdysone receptor. 
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Figure 3-5: Overexpressing DHR96 in the late third instar blocks glue secretion. 

hsDHR96 was used to overxpress the full length DHR96 protein in late third instar 

larvae prior to the premetamorphic pulse of 20E.  All larvae carried a glueRED marker; 

those larvae from each group that partially expressed glueRED were not exposed to the 

premetamorphic pulse of ecdysone yet and selected for the experiment.  Wildtype and 

hsDHR96 groups were either given 2 heat shocks at 36°C with 1 hour recover in between 

or left at 25°C.  After the final heat shock treatment WPP were scored based on 

expulsion/secretion of glueRED (A left) or absence of secreted glueRED (A right).  (B) 

The scores are presented as percent secretion of glueRED and indicate absence of 

secretion greater than 75%  in heat shocked hsDHR96 flies.  
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3.4: Discussion. 

 The 20E-responsive genes and the physiological requirement of the 20E cascade have 

been well characterized.  However, the mechanism by which 20E spatially and 

temporally acts on specific tissues remains unclear.   Our model considers a new 

ecdysone receptor in mediating a specific temporal change in the 20E response; the mid-

third instar.  The canonical model of the ecdysone receptor has always been thought of as 

a heterodimer between EcR and USP, but we have shown that USP is not required to 

synthesize glue and can block glue synthesis when USP is overexpressed at the mid-third 

instar stage [3].  To further define our hypothesis, we considered the possibility that 

another of the 19 nuclear receptors acts as a partner with EcR to form a novel ecdysone 

receptor that is required for glue synthesis in the mid-third instar stage of larval 

development.  We show in Figure 3-1 that driving the expression of an RNAi to silence 

the DHR96 in the salivary gland was sufficient to block the synthesis of glue.  

 King-Jones et al. showed immunostaining of DHR96 in the nuclei of all metabolic 

tissues and the salivary gland [8].  Data from the Thummel lab indicate that DHR96 may 

act as a metabolic sensor capable of conferring xenobiotic resistance and cholesterol 

homeostasis.  However, a role for DHR96 in the salivary gland was not known.   Our 

data, suggests a new model of 20E regulation that involves a novel ecdysone receptor in-

which EcR and DHR96 are a primary composition.   We validated previous experiments 

showing that DHR96 is found in the nuclei of fat body and salivary gland cells (Fig. 3-2) 

and that DHR96 has a temporal expression pattern in the salivary gland at a time required 

for glue synthesis.  Furthermore, our data suggest that like EcR, DHR96 is upstream of 
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BRC activity that is required for glue synthesis, positioning DHR96 in the 20E mediated 

glue synthesis pathway (Table 3-3). 

 The screening strategy was comprehensive in that the VDRC has RNAi fly lines that 

target all putative Drosophila nuclear receptors (Table 3-1).  Our approach can be a 

useful tool in other tissues that have a temporal 20E response, but a yet undetermined 

mechanism.  For example, Bond found that the dissociation of fatbody tissue during 

metamorphosis is triggered by 20E, but it is USP independent (Bond dissertation 2009).  

Screening the fatbody using tissue specific drivers to drive the expression of the nuclear 

receptor RNAi lines could potentially reveal another novel 20E signaling mechanism.   

 Other nuclear receptors that may function as novel receptors for the 20E response in 

the third instar are DHR3, DHR38, DHR39 and DHR78.  However, DHR78 may be the 

most interesting of these for a number of reasons.  Much like DHR96, the temporal 

expression profile of DHR78 is closely related to that of the EcR [7, 17].  Both DHR78 

and DHR96 are directly inducible by 20E in cultured late third-instar larval tissue [7, 17].   

DHR78 is most similar to the TR2 orphan receptor and USP, with 74% amino acid 

identity to the TF2 receptor and 67% amino acid identity to USP.    

Although only DHR96 is able to bind to the imperfect hsp27EcRE half-site AGtgCA 

and gGtTCA, the EcR/USP complex can bind DR-3, DR-4, DR-5 and TREpal DNA 

binding sequences all containing two AGGTCA half-sites [7].  Electromobility shift 

assays using purified DHR78 bound oligos representing these sites show three different 

size classes that may suggest a multimeric function of DHR78.  As a result, like DHR96, 

DHR78 recognizes distinct binding sequences shared by the EcR/USP complex.  These 

points support the possibility that DHR78 can be part of a novel ecdysone receptor to 
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temporally and spatially regulate the 20E response in tissues with 20E-regulated 

expression of DHR78, but no definable USP hormone response.  Our screening strategy 

is perfectly suited to test this possibility in such tissues.   

 It was important to demonstrate the effectiveness of the VDRC UAS-DHR96i reagent.  

We have shown that the block in glue synthesis is indeed caused by the knockdown of 

DHR96i and not because of cross reactivity with EcR (Table 3-2).  The knockdown was 

confirmed in both tissue stains and a western blot (Fig. 3-3).  Yet there is a caveat, the 

Thummel lab has generated a mutant version of DHR96 that has been tested for glue 

synthesis.  Our lab did not observe a block in glues synthesis, however, there are several 

possibilities why this is so.  A limitation to consider in using the DHR96 mutant is the 

mutagenesis technique used in generating these fly lines; the “ends-in” site-directed 

mutagenesis technique [23].   

 “Ends-in” site-directed mutagensis is a method used to target a gene of interest using 

homologous recombination using three components: A transgene expressing a FLP 

recombinase that recognizes an FRT site, a transgene expressing a site-specific 

endonuclease, and a transgenic donor sequence that has the FRT site and endonuclease 

site and a sequence from the gene to be targeted.  In the case of the DHR96 mutant, the 

donor DNA contained two deletions; a deletion in the translation start codon and a 

deletion in exon 4 that codes for the ligand binding domain.  Southern blot analysis on 

the mutant revealed a deletion of the fourth exon.  Whether this is enough to cause a 

genetic null is still debatable.  We have analyzed the mutant in PCR fragment studies and 

can confirm that the fourth exon is absent, however, this does not enough evidence to 

confirm a null mutation.  Western blots on DHR96 mutant flies indicate multiple banding 
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in lower molecular weight migration patterns suggesting truncated forms of the protein 

(Supplementary material of [8]).  A truncated form of DHR96 may harbor a function that 

could be enough to influence EcR conformational change resulting in transactivation of 

target genes. 

Evidence for a functional heterodimeric nuclear hormone receptor without an RXR 

protein has been supported in vertebrate literature showing RAR/TR heterodimers can 

bind to relevant regulatory sites on DNA and activate target genes distinct from either 

RXR/RAR or RXR/TR receptors [6].  In Drosophila, using available molecular genetic 

tools we have shown that the vertebrate RAR homolog, EcR can function as a 

heterodimer with another receptor that is not an RXR protein, but is the vitamin D 

receptor homolog DHR96.  The implication of the potential for nuclear receptors to form 

a diversity of heterodimers is profound in that it explains and profiles cell specific 

responses to systemic hormone exposure. 

 Finally, to demonstrate that DHR96 is acting as a heterodimer partner it will be 

necessary to perform a variety of biochemical assays.  It would be important to show a 

protein-protein interaction between EcR and DHR96 that is biologically viable to 

transduce the 20E signal.  Additionally, an electromobility shift assay performed with 

EcR and DHR96 proteins on EcRE sequences would prove valuable in placing the 

EcR/DHR96 heterodimer in a biological context.
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CHAPTER 4 

THE REQUIREMENT FOR BOTH THE CALCIUM BINDING PROTEIN E63-1 AND  

CALMODULIN IN GLUE SECRETION 

4.1: Introduction. 

Steroids belong to a class of lipophilic hormones synthesized from cholesterol 

precursors.  The known steroid hormones include the sex hormones (estrogen, androgen), 

progestins, glucocorticoids, mineralocorticoids, vitamin D and the insect molting 

hormone 20-hydroxyecdysone (hereafter referred to as 20E) (reviewed in [1]).  In 

Drosophila melanogaster, 20E mediates important developmental transitions such as 

molting at the end of each larval instar and metamorphosis (reviewed in [2]).  The initial 

stages of these events involve receptor activation and the direct modulation of gene 

expression in target tissues ([3-5]).  What is poorly understood is the molecular 

mechanisms underlying these changes in gene expression leading to tissue-specific 

physiological responses.  Using the larval salivary gland as a model tissue we examine 

one such tissue-specific steroid response, glue secretion, triggered by the major pulse of 

20E that occurs at the end of the last larval instar (the premetamorphic pulse). 

 In the salivary gland, the premetamorphic pulse of 20E initiates a complex hierarchy 

of gene activity involving the activation of the early and late genes, which were originally 

named because they form temporally specific puffs on the giant polytene chromosomes 

(reviewed in [6, 7]).  Coincident with this period of gene activity is a robust exocytosis of 

glue glycoproteins that are secreted into the lumen of the gland.  Previous studies have 

demonstrated glue secretion is induced in salivary glands ex vivo only if exogenous 

ecdysone is provided.  Furthermore, exposure to 20E for at least two hours is required for 
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secretion to occur, and when cycloheximide (an inhibitor of protein translation) is added, 

secretion is completely blocked [8-10].  These observations suggest that glue secretion is 

a secondary response to the hormone, presumably because one or more early-gene 

proteins is required for the process. 

Most of the early and early-late (primary-response) puff genes that have been 

identified encode DNA-binding proteins [11-16], and their link to the secretion processes, 

if it exists, has not been established [17].  In contrast, E63–1 (the product of the 63F early 

puff), is an EF-hand containing Ca2+-binding protein [18], which can mediate salivary 

gland glue secretion in the presence of elevated Ca2+ levels [17].  E63–1 displays the 

highest degree of overall similarity to calmodulin (Cam) from many different species [18] 

and has a 58% positive amino acid identity to the Drosophila melanogaster Cam. 

However, in addition to its ability to activate target enzymes, Cam can also function as a 

regulatory light chain (RLC) for many unconventional myosin proteins [19-21].  

 Because E63–1 has the highest protein sequence similarity to Cam, we hypothesized 

that E63–1 may also have a similar functional role as a myosin RLC and act as the RLC 

component of an unconventional myosin complex required for 20E induced glue 

secretion in the salivary gland.  Although ectopic expression of E63–1 can drive secretion 

in the presence of elevated Ca2+ levels, null mutations do not have drastic effects on the 

process.  This may not be surprising due to the abundance of other EF hand proteins like 

Cam that are present in the salivary gland at the time of secretion.  Thus E63–1 may 

function as a myosin light chain to secrete glue granules, but its function is probably 

redundant with other EF-hand proteins present in the tissue at the time of cargo delivery. 
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 Here we present evidence that salivary glands compromised for E63–1 and Cam are 

secretion defective, suggesting that both proteins are involved in the process.  

Furthermore, because co-immunoprecipitation experiments demonstrated that E63–1 and 

Cam could associate in a complex with Myosin VI [22] we assayed glue secretion in 

glands compromised for Myosin VI.  Our results are consistent with a model in which 

20E stimulates secretion through a mechanism that involves at least two Calcium-binding 

proteins and at least two myosin motors. 

4.2: Materials and Methods. 

4.2.a: Drosophila Culture  

 The following fly stocks were obtained from the Bloomington Stock Center:  

UAS-GFPi (FBst0009331), glueGal4 (FBst0006870), and UAS-n-Syb.GFP 

(FBst0006922).   

 Strains containing inverted repeats for RNAi against E63-1 (UAS-E63i = #102809), 

Cam (UAS-Cami =#102004), and individual myosin motor proteins (Table 4-1) were 

obtained from the Vienna Drosophila RNAi Center (VDRC).  Stocks containing 

Calmodulin alleles trapped with GFP coding information (CamGFP-ZCL2488 and CamGFP-

G00389) were located in FlyTrap (http://flytrap.med.yale.edu/) and obtained from Lynn 

Cooley.  Myosin VI-compromised lines (AM8-2 [containing an antisense orientation of 

Myosin VI heavy chain (Mhc95F) under UAS control]; a null allele of Mhc95F (jag322), 

and a chromosomal deletion uncovering Mhc95F [Df(3R)S87-5]) were obtained from 

Kathryn Miller.  E63-1 null mutants [e63-1dc449 = e63-1)] are as described [23].  GFP- 

and dsRed-tagged versions of Sgs3 are as described in [17, 24].  Animals were raised on 

standard cornmeal-molasses medium as previously described ([25, 26])
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Table 4-1:  RNAi lines directed against Drosophila myosin genes collected and tested 

in this work. 

 
Myosin Gene 

Targeted 

VDRC 
Stock 

Number 

Location 
of  

Insert 
(Chromosome) 

 
Stock 

Condition 

Myosin II 7164 III Homozygous 

Myosin II 7819 II Homozygous 

Myosin VII 9265 III Homozygous 

Myosin 29D 12555 III Homozygous 

Myosin 29D 12556 III Tm3 

Myosin IA 12558 III Homozygous 

Myosin III 27359 X Homozygous 

Myosin III 27360 III Homozygous 

Myosin XV 33486 III Homozygous 

Myosin 95E 33775 III Homozygous 

Myosin 95E 33776 III Tm3 

Myosin XV 37530 III Homozygous 

Myosin VIIB 37531 II Homozygous 

Myosin VIIB 37532 III Homozygous 

Myosin IB 49345 III Homozygous 

Myosin 95E 51207 III Tm3 

Myosin VIIA 100010 II Homozygous 

Myosin VIIB 101016 II Homozygous 

Myosin I0A 101729 II Homozygous 

Myosin 29D 102550 II Homozygous 

Myosin 31DF 104089 II Homozygous 

Myosin II 105355 II Homozygous 
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4.2.b: Protein Detection 

 For Western blots, salivary glands were dissected and processed from larvae before 

and after the in vivo ecdysone pulse, or were dissected from naïve animals and treated in 

vitro with ecdysone as described above.  Blots were prepared as described previously 

([23]).  Antibodies were used at the following dilutions:  1:50,000 for R4694 (anti-E63–1 

rabbit polyclonal); 1:100 for 3C7 [anti-Myosin VI mouse monoclonal (gift from K. 

Miller)]; 1:5000 for anti-!-tubulin (Sigma), 1:7500 for horseradish-peroxidase 

conjugated antibodies (Jackson ImmunoResearch Laboratories), 1:5000 for anti-GFP 

(Sigma).    

 For microscopic analyses, unfixed tissues were mounted in Schneider's medium 

(Sigma) and epifluorescent and confocal images were captured as described previously 

([17]). 

4.2.c: Secretion Assay 

 Larvae for secretion analyses were produced by crossing stocks containing multiple 

mutant alleles, deficiencies, and transgenes.  Table 4-2 lists the genotypes analyzed in the 

secretion assays. 

4.2.d: Microscopy 

 High-resolution images of dissected salivary glands were imaged on a LSM 510 

Axioplan confocal microscope (Carl Zeiss SMT, Peabody, MA) equipped with LSM 510 

image-analysis software.
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Table 4-2:  Genotypes of flies compromised for Cam and E63-1 proteins. 

 Endo Endo Driver Responder Assay 
Shorthand Cam  E63-1 Trans- Trans- Trans- 

Name Alleles Alleles gene genes gene 

            
Late Driver Experiment 

  Cam+ E63-1+ 
CamGFP+;  

E63-1+ CamGFP-ZCL2488 e63-1dc449 
      glueGal4   glueRED 
  CamGFP-ZCL2488 E63-1+ 

CamGFPi;  
E63-1+ CamGFP-G00398 e63-1dc449 

      glueGal4 UAS-GFPi glueRED 
  Cam+ e63-1dc449 

CamGFP+;  
e63-1 CamGFP-ZCL2488 e63-1dc449 

      glueGal4   glueRED 
  CamGFP-ZCL2488 e63-1dc449 

CamGFPi;  e63-
1 CamGFP-G00398 e63-1dc449 
      glueGal4 UAS-GFPi glueRED 
      
            

Early Driver Experiment 
  Cam+ E63+ 

Cam+;  E63+ Cam+ E63+ 
      sgGal4   glueRED 
  Cam+ E63+ 

Cami;  E63+ Cam+ E63+ 
      sgGal4 UAS-Cami glueRED 
  Cam+ E63+ 

GCami; E63+ CamGFP-G00398 E63+ 
      sgGal4 UAS-Cami glueRED 
  Cam+ E63+ 

Cam+;  E63i Cam+ E63+ 
      sgGal4 UAS-E63i glueRED 
  Cam+ E63+ UAS-Cami; 

GCami;  E63i CamGFP-G00398 E63+ UAS-E63i 
      sgGal4   glueRED 
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4.3:  Results. 
 
4.3.a:  Compromising both Cam and E63-1 Perturbs 20E-Regulated Secretion 
 
 We have developed a convenient bioassay for monitoring salivary gland glue 

secretion in vivo and in vitro using a reagent in which the open reading frame of a glue 

gene (Sgs3), under the control of its own regulatory sequences, is fused in frame with 

either GFP (to produce a glueGRN stock) or DsRed (to produce a glueRED stock).  Using 

these assays we have shown that E63-1 null mutants (e63-1) look wildtype relative to 

glue secretion.  However, e63-1 mutants that are also compromised for Cam functions 

(using pharmacological inhibitors or Cam hypomorphic alleles) display partial secretion 

defects that are not observed when Cam functions alone are compromised.  Presumably 

this occurs because E63-1 shares a functionally redundant role with Cam during glue 

secretion.  However, neither of these experiments allowed us to monitor secretion 

functions under conditions in which Cam is completely compromised. Drosophila 

contains only one gene for CaM [27, 28], and Cam null mutants have been generated that 

die early in development as first-instar larvae [29, 30].  However, several hypomorphic 

alleles have been generated [30, 31] that survive to later stages. Thus, we employed a 

transgenic approach in which RNAi reagents specific to Cam were expressed only in 

larval salivary glands.  These experiments were performed in backgrounds heterozygous 

or homozygous for e63-1 null mutations.  

 We began this RNAi approach using Cam alleles containing an open-reading frame 

fused to GFP.  These “trapped” Cam alleles (CamGFP-ZCL2488 and CamGFP-G00389) are 

controlled by their own regulatory sequences, but they behave as hypomorphs because 

homozygotes or a hetero-allelic combination die during the pupal period of development.  
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However because they contain GFP sequences, they should be targets for RNA 

interference in the salivary gland when a transgene containing an inverted repeat of GFP 

(UAS-GFPi) is expressed in that tissue.  As a proof of principal, we expressed two 

separate GFP-tagged genes (glueGRN, and UAS-n-Syb.GFP) with and without GFPi 

using the salivary gland specific drivers, sgGal4 and glueGal4.  As shown in Figures 4-

1C-D, glueGRN is silenced when the late salivary gland driver is present.  A Western blot 

of n-SyB-GFP and Sgs3-GFP was performed on protein samples from salivary glands 

with an early or late driver.  There is a greater than >90% reduction in the amount of both 

proteins when GFPi is driven by either driver (Fig. 4-1E). 
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Figure 4-1:  Genes tagged with GFP can be silenced with an RNAi construct against 

GFP. 

(A) An illustration of the transgenic tool used to assay GFP-tagged genes in the larval 

salivary gland.  Regulatory and coding information necessary for tissue and stage 

specificity were fused to the coding information of Gal4 and dsRED.  These transgenes 

were recombined on the second chromosome with an inverted repeat of GFP that would 

make a hairpin molecule for RNAi.  A line was created that carried all three transgenes 

on the second chromosome (3T-2). 

(B) Our approach was to silence GFP-tagged molecules in the salivary gland an assay 

secretion of the glueRED marker.  Glands with normal secretion appear bloated and 

expanded.  Conversely, glands with secretion blocked remain unchanged. 

(C) Low resolution images of third instar larvae expressing glueGRN or (D) 

glueGRN and GFPi were taken to as proof of principle that GFPi can silence GFP 

activity.  There is no detectable glueGRN in larvae that are driving GFPi (D). 

(E) The degree of GFP silencing of two different GFP-tagged genes was documented 

in a Western blot.  Protein samples were prepared from larvae that expressed GFPi or the 

driver alone and run on a 12% SDS gel.  A blot was made and incubated with antibodies 

against GFP.  GFP-tagged protein levels are dramatically reduced in lanes with the driver 

and GFPi.  
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 For the secretion analysis of the CamGFP alleles silenced with RNAi, we assayed four 

genotypes in which Cam, E63-1 or both were compromised in the late larval salivary 

gland.  The first group (CamGFP+; E63-1+) contained at least one wildtype allele for both 

Cam and E63-1.  The second group (CamGFPi; E63-1+) was compromised for Cam using 

RNAi against the GFP tags, but it still contained a wildtype allele for E63-1.  The third 

group (CamGFP+; e63-1) contained null mutations for E63-1, but had at least one 

wildtype allele for Cam.  Finally the last group (CamGFPi; e63-1) was compromised for 

both Cam (using RNAi) and E63-1 (using null mutations) [See Table 4-2 (late driver) for 

a complete description of the genotypes]. 

 In each group, animals were scored at the white prepupal (WPP) stage using a simple 

assay that reported the location of the tagged glueRED.  If all the glue was located 

outside the animal on the surface of the prepupa it was scored as completely secreted.  If 

the glue was still entirely retained within the salivary glands, the WPP was scored as 

completely blocked.  Animals with some glue outside and some retained were scored as 

partials.  Figure 4-2 shows representative examples of the assay and the results of an 

analysis of each genotype that was scored. 
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Figure 4-2:  Glue secretion is partially blocked when Cam and E63-1 are 

compromised in late-larval salivary glands.  

 The larvae assayed for secretion were the F1 offspring of the same parental lines: 

CamGFP/ CyO; e63-1 and CamGFP, GFPi/ CyO; e63-1. Each group was selected at an 

early third instar stage and counted at the white prepupal stage.  Low-resolution images 

representing the secretion criteria are above each result.  Note that animals also fluoresce 

green because of the presence of at least one GFP-tagged Cam allele in each group (see 

Table 4-2 for details of genotype).
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From the results presented in Figure 4-2, it is apparent that compromising both Cam 

and E63-1 affect the ability of the larvae to secrete glue.  However, it is interesting to 

note that animals mutant for E63-1 seem to be affected more severely than those in which 

only Cam is silenced with RNAi.  One potential caveat of this experiment is the 

possibility that the late driver, glueGal4, is not able to completely knock down wildtype 

levels of Cam.  Thus, in order to test the possibility that glands completely deficient in 

Cam can still secrete, we obtained UAS-E63i and UAS-Cami stocks from the VDRC and 

expressed them throughout larval development in the salivary gland with the sgGal4 

driver previously described [24]. 

 To test the silencing ability of the sgGal4 driver and the UAS-E63i responder, we 

performed a Western blot on the dissected salivary glands of animals at the WPP stage.  

As shown in Figure 4-3, no E63-1 protein can be detected in the glands of e63-1 null 

animals.  Furthermore, the levels of E63-1 are reduced to less than 7% of wildtype when 

the UAS-E63i transgene is driven with sgGal4. 
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Figure 4-3: E63i efficiently silences the endogenous E63-1 gene.  

(A) Protein extracts were prepared from salivary glands of four different groups of 

larvae at the white prepupal stage. Cami and E63i  were expressed using the sgGal4 

driver.  The parental line (sgGal4) and Cami larvae were used as positive controls and 

e63-1 as a negative control. The samples were run on an SDS gel and blotted with 

antibodies against E63-1 or !-tubulin (loading/blotting control). The E63i lane shows a 

reduction in E63-1 protein compared to the parental amount.  

(B) The quantification of a Western blot done on E63-1 shows that E63-1 is reduced 

in lanes expressing the E63-1i transgene.  There is a reduction of ~93% of E63-1 in E63i 

compared to the control lanes. 
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 Although we had no antibody to test the levels of Cam in the salivary gland when 

UAS-Cami is driven with sgGal4, we assume a similar level of gene silencing for Cam as 

for E63-1 for three reasons.  First, both E63i and Cami were targeted to the same region 

of the genome using phiC31 integrase system [32], and both are reported to reside at the 

same location on chromosome 2.  Second, when we crossed UAS-Cami to the ubiquitous 

Actin5C-Gal4 driver, no progeny were recovered.  This result is consistent with the 

observation that Cami is silencing the endogenous Cam gene needed for viability.  Third, 

when UAS-Cami is driven in the salivary glands with glueGal4, very little fluorescence is 

detected in that tissue in animals also containing a CamGFP-G00398 allele. 

 With the RNAi reagents in hand, the genotypes used for this analysis are as described 

in Table 4-2 (early drivers).  This time five groups were assayed.  The first group (Cam+, 

E63+) contains neither RNAi construct.  The second group (Cami; E63+) contain the 

RNAi construct against Cam, but not E63-1.  The third group (GCami; E63+) is similar 

to the second group except that Cam is heterozygous for the CamGFP-G00398 allele.  The 

fourth group (Cam+; E63i) contains the RNAi construct against E63-1, but not Cam.  

The final group (GCami; E63i) is heterozygous for Cam and contains RNAi constructs 

against both Cam and E63-1.  In addition, four secretion phenotypes were described:  no 

secretion (0), a small amount of secretion (+), a large but not fully complete amount of 

secretion (++), and complete secretion (+++).  These categories allowed us to more 

accurately evaluate the assay.   

 The raw data are presented in Figure 4-4A.  To graph these data, we combined the (0) 

and (+) groups as “secretion blocked,” and we combined the (++) and (+++) groups as 
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“secretion normal.”  The percent of secretion normal for each group was then plotted 

(Fig. 4-4B) and statistically analyzed using a generalized linear model. 

 As shown in Figure 4-4B, there is a highly significant difference (p<0.001) between 

the Cami; E63i double knockdown and the parental controls.  This result is consistent to 

those reported when Cam is compromised with pharmacological inhibitors, reduced in 

hypomorphic mutant backgrounds, and silenced with RNAi driven in late-larval salivary 

glands.  In all cases, the impact on secretion is enhanced when Cam treatments/reagents 

are placed in an E63-1 mutant background.  However, in no case is secretion completely 

blocked, which suggests that perhaps yet a third Ca2+-binding protein is needed for the 

full response (see Section 4.4). 
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Figure 4-4:  Secretion is inhibited when both Cam and E63-1 are silenced in the 

salivary gland during the entire larval period. 

(A) The percentage of WPP displaying each secretion phenotype is listed below a 

low-resolution representative.  Categories included WPP that did not secrete glue (0), 

secreted < 50% of glue (+), secreted >50% of glue (++), and completely secreted glue 

(+++).  Each group carried a glueRED marker and the salivary gland early driver sgGal4 

to drive the expression of Cami, E63i or both. 

(B) The percent of animals that expel glue (++ and +++) were statistically analyzed 

using a binomial test for proportions and compared to wildtype (WT). All groups differ 

significantly in the percent of animals that expel glue in comparison to WT. Significance 

levels are ***p<0.001 and **p<0.01. Note that the proportion of secreting E63i and Cami 

were also compared, and were not significantly different.
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4.3.b:  Driving Antisense Myosin VI Blocks Secretion, but Myosin VI Mutants have 

Little or No Effect 

Because it was previously demonstrated that E63-1 and Cam can co-

immunoprecipitate with Myosin VI [22], I was interested in testing whether Myosin VI is 

required for ecdysone-stimulated glue secretion in the salivary gland. 

To test the requirement for Myosin VI, we used a method to compromise expression 

of the endogenous Mhc95F gene in late-larval salivary glands.  Our strategy was to drive 

a UAS-antisense-Mhc95F construct (AM8-2) only in salivary glands using tissue- and 

temporal-specific drivers [33].   AM8-2 has been shown to be very efficient at reducing 

myosin VI protein levels (perhaps as much as 90%) when it is expressed in whole 

animals or in specific tissues [34, 35].  Thus, we expressed large amounts of AM8-2 only 

in third-instar salivary glands using the glueGal4 driver.  

All of the larvae expressing AM8-2 showed a block in glue secretion (Fig. 4-5A).  

However, when we prepared a Western blot of salivary gland extracts using the Myosin 

VI specific antibody, 3C7, protein levels in parental and AM8-2 knockdowns were similar 

(Fig. 4-5B,C).  Thus, we performed an additional analysis using the Mhc95F null mutant 

(jar322). 
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Figure 4-5: Driving AM8-2 in larval salivary glands blocks glue secretion. 

(A) Glue secretion was assayed from two groups of white prepupae: a parental line 

carrying glueGRN and the late salivary gland driver (glueGal4), and AM8-2 (UAS-

Mhc95Fas). The percentage of WPP displaying each secretion phenotype is listed below 

a low-resolution representative.   

(B) The level of myosin VI silencing was assessed in a Western blot performed on 

protein extracts from five groups of WPP.   The samples were run on a 7.5% SDS gel and 

blotted on PVDF membrane.  The blot was probed with myosin VI antibody and !-

tubulin antibody (loading/blotting control).  

(C) The Western blot was quantified using ImageQuant software (GE healthcare). 

The !-tubulin control was used to normalize the myosin VI bands and the relative pixel 

intensity was graphed.  
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 jar322 -homozygous animals die during the second-instar larval stage due to a partial 

deletion in a the neighboring gene, CG5706.  To overcome this lethal phenotype, we used 

a deficiency [Df(3R)S87-5] that spans only the Mhc95F gene region.  Thus, animals of 

the genotype jar322/Df(3R)S87-5 are male sterile, but viable for third-instar secretion 

assays.  To facilitate the secretion assay, we crossed the glueRED transgene onto the 

deficiency chromosome.  When animals of this genotype [jar322/Df(3R), glueRED] were 

assayed for secretion, no impairments were observed, even though a Western analysis 

confirmed that Myosin VI protein was absent from these glands (Fig. 4-5B,C) 

One explanation for the block in secretion when AM8-2 is expressed in the salivary 

gland, is that this antisense reagent is non-specific or it cross reacts with other myosin 

genes.  To test this hypothesis, we screened 13 Drosophila myosins using the UAS driven 

RNAi lines available from the VDRC (Table 4-1).  The analysis involved crossing each 

UAS-RNAi line to an assay stock containing sgGal4, glueRED.  Secretion was then 

monitored using the criteria described in Figure 4-4.  However, the results of this analysis 

were disappointing, because we failed to identify a myosin line that by itself blocked 

secretion when it was silenced in the salivary gland during the larval period. 
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4.4:  Discussion. 

4.4a: E63–1 and CaM are Needed for Glue Secretion in the Salivary Gland 

In both experiments that tested a loss of function in both E63-1 and Cam, glue 

secretion was not inhibited completely.  Another possibility is that a third myosin 

regulatory light chain is needed to completely secrete glue.  To address this possibility we 

would ideally like to perform a screen of other possible regulatory light chains in 

Drosophila.  As a starting point, we completed a pBLAST search of the Drosophila 

genome looking for sequence identities to E63-1. 

The two protein sequences that displayed the highest overall sequence similarity in a 

pBLAST of E63-1 are calmodulin (CaM) and Androcam (Acam).  An alignment of the 

three sequences was performed in clustalW and pairwise alignments were calculated (Fig. 

4-6).  CaM and Acam share a 67% overall sequence similarity, CaM and E63-1 34% 

similarity, and Acam and E63-1 32% similarity.  From amino acids D127- L193 in the 

E63-1 C-terminus, there is a sequence identity of 45% between CaM and E63-1 and 42% 

between Acam and E63-1.  To complete this analysis we would like to compromise all 

three proteins in a single fly.  Currently the VDRC carries two line of UAS-Acami that 

will be used in future experiments. 
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Figure 4-6: Sequence comparison of E63-1, calmodulin and Androcam.   

 The complete amino acid sequences of E63-1, calmodulin and Androcam were 

analyzed using clustalW.  Amino acid residues are colored accordingly: yellow represents 

proline, orange represents glycine, red represent basic residues, purple represent acidic 

residues, blue represent small hydrophobic residues, green represent basic residues with 

hydroxyl and amine groups.  The quality of the sequence identity is shown.  Highly 

conserved sequences are ranked higher and less conserved sequences are ranked lower. 

Below in black is the consensus match. 
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I have shown using different methods that salivary glands compromised for CaM and 

E63–1 are secretion defective.  To support the in vitro tissue culture data published in 

[22], I employed an in vivo method of silencing the function of both E63-1 and CaM.  By 

expressing CaMi and E63-1i together, secretion was significantly inhibited (Fig. 4-4).  

Furthermore, the knockdown of Cam.GFP using GFPi in an e63-1 null background 

showed a similar block in secretion (Fig. 4-2). The severity of secretion inhibition when 

both proteins are removed or reduced was statistically significant compared to just one of 

the proteins compromised.  

The inhibitory effect that E63-1i and CaMi had on glue secretion was notable, 

however, it was not complete.  Similar calcium sensing proteins or myosin light chains 

may be involved in the complete glue secretion pathway.  In a pBLAST, Acam was 

identified as a close match with E63-2 and CaM.  Future studies will be performed to 

assess the potential role Acam may have on secretion. 

 Myosin VI was an interesting target for CaM and E63-1 because it co-

immunopercepitated with the two proteins [22], and larvae expressing AM8-2 in the 

salivary gland failed to secrete glue (Fig. 4-5).  However, as we have shown,  myosin VI 

null mutants secreted glue normally.  We offer an explanation for these findings.  First, 

that the AM8-2 reagent is not behaving as expected in the salivary glands and is cross-

reacting with another myosin that is required for glue secretion.  However, we performed 

a simple screening experiment in which each known Drosophila myosin heavy chain 

gene was silenced to investigate the possibility of another myosin heavy chain as the 

regulator of glue secretion, but our results did not validate our hypothesis.   



 

 158 

4.4.b: Other Putative Models for Secretion in Larval Salivary Glands 

We know from Northern- [18] and Western-blot analyses [22] that E63–1 is 

ecdysone-inducible in larval salivary glands.  However, CaM is expressed before and 

after the premetamorphic ecdysone pulse, and protein levels do not seem to be 

dramatically affected by the hormone titer [22].  Thus, one possibility is that a myosin 

heavy chain is regulated by distinct light chains at different times during development 

and CaM may act as the sole light chain prior to the premetamorphic pulse of ecdysone, 

perhaps to aid in the budding of glue granules from the trans golgi network.  However, 

immediately prior to the premetamorphic pulse of ecdysone, most glue granules have 

been synthesized and matured [9, 36, 37].  Thus, when E63–1 and perhaps another Ca2+-

binding protein are induced in response to 20E, they may compete with CaM for binding 

to the myosin heavy chain at a light chain binding domain, the conserved IQ motif.  In 

this scenario, both E63–1 and CaM would act to regulate myosin function through the 

same IQ motif, but each protein would play a distinct regulatory role.  This model, 

however, does not fit with our observed data and instead prompts a more cooperative 

model of secretion potentially involving multiple binding sites on a myosin heavy chain.  

A cooperative model of binding can be imagined in which CaM may bind to the 

conserved IQ motif while E63–1 binds to another region of a myosin protein.  In this 

case, both CaM and E63–1 would cooperatively bind to myosin only when ecdysone 

signaling initiates the expression of E63-1 as needed for secretion.  The fact that E63–1 

has a 27 amino acid long N-terminal extension prior to the first EF hand (Fig. 4-6) and a 

longer linker region than CaM may contribute to regulatory function or binding dynamic 

unique to E63–1.  
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However, we cannot rule out two other possible explanations for the observed genetic 

interaction between E63–1 and CaM.  First, the interaction may be due to the disruption 

of CaM function in mediating the activity of multiple myosin motors.  This would 

include the role CaM plays as a light chain for unconventional myosins as well as its role 

in regulating conventional myosins via the activation of the regulatory light chains [38].  

Alternatively, E63–1 and CaM may have overlapping functions that are not associated 

with myosin regulation.  To address the mechanism further, experiments would need to 

be done to determine whether myosin heavy chains are involved in the secretion process 

and if and where E63-1 and CaM bind to candidate myosin molecules.  Fully 

understanding the process of secretion will guide other research into disease pathways 

associated with secretion defects. 
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CHAPTER 5 

THE SALIVARY GLAND CAN BE USED TO STUDY INTRACELLULAR 

TRAFFICKING 

5.1:  Introduction. 

 In the previous chapter, I presented data on a cooperative mechanism involving Ca2+ 

binding proteins and myosin motors that must be required for glue secretion by salivary 

glands.  Presumably this mechanism is part of a trafficking network designed to transport 

newly synthesized glue to the site of secretion on the cytosolic side of the plasma 

membrane. Most of our knowledge about intracellular trafficking comes from yeast 

mutant studies or in vitro studies using purified mammalian components.  My salivary 

gland assay, and the genetic tools available to manipulate Drosophila genomes, allows us 

to use fluorescently-tagged cargo markers in live cells before, during, and after glue 

secretion to characterize secretion defects at the subcellular level.  To this end, I collected 

31 stocks that contained compartmental markers tagged with GFP, dsRED, or YFP 

(Yellow Fluorescent Protein) (Table 5-1).  I used these markers to characterize normal 

trafficking events before, during, and after the 20E-regulated secretion of glue (Fig. 5-

1A-F).  

By determining the localization of the compartments we should be able to evaluate 

secretion-defective phenotypes caused by any genetic disruption to the normal state of the 

cell.  As proof of principle I analyzed a secretion defect caused by the overproduction of 

GDI (Guanine diphosphate Dissociator Inhibitor), a necessary component for recycling 

Rab GTPases from subcellular membranes [1]. When a UAS-GDI transgene is 
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overproduced in the larval salivary gland with the glueGal4 driver, abnormally shaped 

glue granules form that are not secreted (Fig. 5-2). 

 The normal function of GDI is to recycle GDP-bound Rab proteins from the acceptor 

membrane and return them to the donor membrane.  The GDI bound Rab is separated by 

a GDI Displacement Factor allowing the Rab to interact with a GDP-GTP Exchange 

Factor, which in turn allows GDP to be replaced with GTP.  This process is carefully 

regulated to insure proper trafficking of secretory or organelle cargoes.   

 The parental lines presented in Figure 5-1 were used to develop a profile of the 

compartmental markers.  We then overexpressed GDI and compared the results to the 

parental lines.  Several interesting effects were noted:  expansion of the ER and a failure 

to acidify granules (Fig. 5-4 and Fig. 5-5).  This is not a surprising conclusion because 

GDI is a non-specific effector of Rab proteins and overexpression of GDI probably 

disrupts multiple Rab proteins that are constituents of different compartments in the 

trafficking network. 



 

 165 

5.2:  Materials and Methods. 

5.2.a: Drosophila Culture  

 Animals were raised on standard cornmeal-molasses medium as previously described 

([2, 3]).  The UAS-GDI transgenic line was generated in a transposon-mobilization screen 

designed to place UAS elements next to important genes that, when over- or mis-

expressed, caused lethality (John Merriam, personal communication).  The UAS-GDI-

tetra stock was obtained from Clarrisa Cheney.  It contains four tags (tetra) fused in 

frame to the C-terminus of GDI.  These were placed there for biochemical analyses of 

purified GDI protein.  Two GDI RNAi lines were acquired: UAS-GDIi-i108694; UAS-

GDIi-H68A4 (i108694 and H68A4).  All other stocks used for this analysis are listed in 

Table 5-1.  

 For the subcellular characterization, all marker stocks (UAS-regulated or exon 

trapped from Table 5-1) were crossed to the sgGal4 driver that is expressed only in 

salivary glands during the larval stages as previously described in [4]. 

 For the GDI analysis, an assay stock (glue::GDI) was constructed using two 

transgenes (P[glueGal4], P[UAS-GDI]).  Because these inserts were on the second 

chromosome they were recombined to produce a homozygous glue::GDI stock.
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Table 5-1: Fluorescently labeled markers used in identifying cellular structures. 

Stock 
Flybase or Flytrap 

ID UAS or Flytrap Reported Compartment 
UAS-GFP.nls, 
glueRED FBst0004775 UAS Nucleus; Glue 
UAS-RedStinger FBst0008545 UAS Nucleus 
UAS-YFP-Rab26 FBstoo23244 UAS Unreported 
UAS-GFP.T10 FBst0001522 UAS Nuclear 

CaMG00389.GFP 
G00389 
(unavailable) Flytrap Calmodulin 

b-tub56D CC02069 Flytrap Tubulin 
UAS-GFP.aTub84D FBst000737 UAS Tubulin 
UAS-GFP.Actin5C FBst0009257 UAS Actin 
UAS-Syt.GFP FBst0006925 UAS Vesicle Membrane 
UAS-gap.GFP FBst0004522 UAS Plasma Membrane  
UAS-n-Syb.GFP FBst0006922 UAS Vesicle Membrane 

UAS-n-Syb.GFP-pH Gift from R. Davis UAS 
Vesicle Membrane (pH 
sensative) 

UAS-YFP-Rab6 FBst0023251 UAS Golgi 
UAS-Rab11-GFP FBst0008506 UAS Late Endosome 
UAS-GFP.Clc FBst0017428 UAS Clatherin (Vesicles) 
UAS-mito.GFP FBst0008443 UAS Mitochondria 
UAS-GFP.KDEL FBst0009898 UAS Endoplasmic Reticulum 
Sec61!ZCL0488.GFP FBst0307768 Flytrap Endoplasmic Reticulum 
PdiG00198.GFP FBst0006839 Flytrap Endoplasmic Reticulum 

Sqh-YFP-ER FBst0007195 
Expressed 
Transgene Endoplasmic Reticulum 

Sqh-YFP-Golgi FBst0007193 
Expressed 
Transgene Golgi 

UAS-Lamp1.GFP 
Gift from J. 
Eissenberg UAS Golgi 

UAS-spin-Myc.GFP 
Gift from S. 
Sweeney UAS 

Late Endosome/ 
Lysosome 

UAS-Rab4-RFP FBst0008505 UAS Endosome 
UAS-YFP-Rab7 FBst0023270 UAS Late Endosome 
UAS-YFP-Rab5 FBst0024616 UAS Early Endosome 
UAS-YFP-Rab1 FBst0024104 UAS Endoplasmic Reticulum 
UAS-YFP-Rab10 FBst0009789 UAS Unreported 
UAS-YFP-Rab19 FBst0024150 UAS Unreported 

UAS-GGA-YFP 
Gift from J. 
Eissenberg UAS Trans-Golgi 
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5.2.b:  Microscopy and Imaging 

 Salivary glands were dissected in DPBS as previously described (see 2.2.e). High-

resolution images of dissected salivary glands were imaged on a LSM 510 Axioplan 

confocal microscope (Carl Zeiss SMT, Peabody, MA) equipped with LSM 510 image-

analysis software. 

5.2.c: Western Blot and Quantification 

 Salivary glands were dissected and processed from larvae before and after the in vivo 

ecdysone pulse.  Blots were prepared as described previously (chapter 4).  Antibodies 

were used at the following dilutions:  1:1000 for anti-GDI mouse polyclonal (gift from 

Clarrisa Cheney); 1:5000 for anti-!-tubulin (Sigma), 1:10000 for horseradish-peroxidase 

conjugated goat anti-mouse antibodies (Jackson ImmunoResearch Laboratories).  

Quantification was done using ImageQuant software for Typhoon PhosphorImager 

(Molecular Dynamics). 

5.3: Results. 

5.3.a: Fluorescently Tagged Markers Can be Used to Analyze a Secretion Phenotype. 

 We acquired a collection of 31 compartmental markers to use in a descriptive analysis 

of the cellular compartments in the salivary gland cells.  The salivary glands were 

dissected from staged larvae that represented a time in the third instar before 20E 

exposure, after 20E exposure but before secretion, and after secretion (Fig. 5-1).  After 

surveying the images, several markers were notable and used to assay the effects of GDI 

overexpression on intracellular trafficking. 
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 Figure 5-1: Confocal images of the molecular markers used to study secretion. 

Salivary glands expressing the markers listed in Table 5-1 were staged and imaged on 

a confocal microscope.  Each panel represents a different stage in the third instar that is 

relevant to glue secretion.  The panels are chronologic and refer to either a time before 

20E exposure (left), after 20E exposure but before glue secretion (middle), or after glue 

secretion (right). All images were taken at the same magnification, and the bar (indicated 

in A, first row) represents 50 !m.  Markers used for the analysis are listed to the left of 

each row.  YFP-tagged markers were colorized to distinguish between those labeled with 

GFP.
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A      Early     Mid     Late 
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B        Early     Mid     Late 
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C        Early     Mid     Late 
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D        Early     Mid     Late 
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E        Early     Mid     Late 
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F        Early     Mid     Late 
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 5.3.b: GDI Overexpression Inhibits Glue Secretion 

With this catalog of cargo markers on hand we next attempted to characterize the 

secretion-defective phenotype produced when GDI is expressed in the salivary gland with 

glueGal4.  The typical shape of the glue granules in the salivary gland is spherical with a 

diameter ranging from 3-8 !m (Fig. 5-2A).  When UAS-GDI is expressed, not only is the 

granule shape distorted (Fig. 5-2B), but the misshapen cargoes never secrete.  Thus we 

first wanted to investigate whether endogenous GDI was 20E regulated, and how much 

more GDI was produced under the conditions in which UAS-GDI is expressed by salivary 

gland drivers.  We also wanted to evaluate the efficacy of another tagged-GDI line (UAS-

GDI-tetra) and two RNAi lines containing inverted repeats of GDI (UAS-GDIi-108694 

and UAS-GDIi-H68A4). 

The Western analysis shows that GDI does not appear to be 20E regulated because 

endogenous levels of protein do not change relative to the 20E-regulated secretion status 

of the gland (Fig. 5-3, lanes 1-4).  In addition, GDI is overexpressed at least two-fold 

when UAS-GDI or UAS-GDI-tetra are driven with glueGal4 (Fig 5-3, lanes 5 and 6 

respectively).  Interesting, overexpressing GDI-tetra did not cause a secretion-defective 

phenotype, perhaps because the tetra tag in the C-terminus of the molecule compromises 

some of its normal functions.  Finally, the two RNAi lines (GDIi-108694 and GDIi-

H68A4) show a significant reduction in GDI protein (Fig. 5-3, lanes 7 and 8 respectively) 

indicating that they should be useful reagents for future loss-of-function analysis.  As 

further proof of their silencing ability, when either UAS-GDIi line is expressed at the 

same time as UAS-GDI (the overexpression line), the secretion defect associated with that 

ectopic expression is rescued. 
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Figure 5-2: Overexpression of GDI causes misshapen granules that fail to secrete. 

(A) Confocal image of salivary glands dissected from a gland in which the glueGRN 

transgene is expressed. (B) A similary-staged gland in which UAS-GDI and glueGRN are 

expressed.  In the wildtype cell (A), mature granules are spherical and uniformly shaped.  

When GDI is overexpressed (B), the granules are irregular shaped and inconstant in size. 
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Figure 5-3: Western analysis of genetic reagents that affect GDI levels. 

Protein from salivary glands dissected out of wildtype larvae before and after each of 

the two 20E pulses that occur during the last half of the third instar (E1-E2, the time and 

magnitude of each 20E pulse is indicated by the red arrows); GDI overexpressing larvae 

(UAS-GDI; UAS-GDI-tetra); and GDI RNAi (UAS-GDI-i108694; UAS-GDIi-H68A4) 

larvae were run on a 12% SDS gel and blotted.  The blot was incubated with GDI 

antibody.  Endogenous GDI is uniformly expressed throughout the third instar and does 

not appear to be affected by 20E pulses. GDI is enriched in the two overexpressing lanes, 

and the RNAi lanes show a reduction of GDI protein. !-Tubulin (bottom) was used as a 

control for loading and blotting.
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I crossed several cargo lines to an assay stock in which GDI is being overexpressed 

(glue::GDI) to compare the effects on various compartments.  Of particular interest are 

the ER markers GFP.KDEL (Fig. 5-1D, 2nd row), Sec61!ZCL0488.GFP (Fig. 5-1D, 3rd row), 

Pdi-GFP (Fig. 5-1D, 4th row), and Sqh-ER-YFP (Fig. 5-1D, 5th row).  Confocal images of 

the parental lines showed strong peri-nuclear staining in which the ER was clearly 

labeled. When GDI was overexpressed in these lines, we saw a distinct expansion of the 

ER compared to parental lines (Fig. 5-4).   

The pH sensitive vesicle marker, n-Syb-pH (Fig. 5-1C, 2nd row), is a version of the 

secretory vesicle integral membrane protein, synaptobrevin, with a pH sensitive GFP tag.  

The GFP tag is located at the C-terminus, thereby allowing it to be internalized in the 

formation of the vesicle.  The GFP is engineered to remain quenched in acidic 

environments.  This characteristic was valuable to determine the status of the internal 

environment of the glue granules.  Fluorescence inside of the granules changed when 

GDI was overexpressed in n-Syb-pH cells (Fig. 5-5, white arrows) compared to the 

quenched signal in the parental line.  This change indicates a neutral pH environment 

inside the granules of GDI (Fig. 5-5), presumably caused by a failure of the granules to 

acidify. 

 



 

 181 

Figure 5-4: Overexpression of GDI causes expansion of the ER. 

 The compartment of the endoplasmic reticulum is visualized using four different 

types of fluorescent markers.  The images are taken at a time just before secretion would 

occur.  The top row is an example of the markers in a wildtype background.  Strong 

perinuclear staining is seen as an indication of the ER.  Below each image is an example 

of the effect of GDI overexpression on the localization of the ER. In these panels, the ER 

is shown to be expanding deeper into the cytoplasm.
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Figure 5-5:  Granules fail to acidify when GDI is overexpressed. 

Two versions of GFP tagged synaptobrevin were used to describe the glue granules: 

n-SyB and n-Syb-pH.  n-SyB outlines the granules in both the parental line and GDI 

overexpressing lines (left panels).  The size and shape of the granules differed.  On the 

right, n-Syb-pH was used to investigate any difference in the pH inside of GDI 

overexpressing cells.  The C-terminal pH sensitive GFP tag of n-SyB-pH is placed inside 

the vesicle, allowing for reactivity with the internal environment.  In acidic conditions 

(top right), the GFP signal is quenched.  GDI overexpression causes a change in 

fluorescence in n-Syb-pH and the GFP signal is seen in the granule structures (white 

arrows). 
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5.4: Discussion. 

 Intracellular trafficking can be studied using available fluorescently tagged cellular 

compartment markers.  To validate this, I studied a secretion phenotype caused by GDI 

overexpression in cells expressing these markers. Using this approach, I showed that GDI 

overexpression has multiple effects on granule trafficking, but is primarily relegated to 

the ER.  This was verified in Figures 5-4 and 5-5, where we observed ER expansion and 

a failure of granules to acidify compared to the parental lines.   

The ER expansion observed in GDI overexpression could be due to a defect in Rab 

recycling at the ER membrane.  One explanation is that vesicles containing glue peptides 

may not be able to be delivered to the next location for processing and instead be “stuck” 

at the ER.  Alternatively, ER membrane may not be recycled properly and cause 

deformations in the glue granules and the ER itself. 

 Also observed in cells overepressing GDI, is a failure of glue granules to acidify (Fig. 

5-5).  n-SyB-pH is a reagent that fluoresces green in neutral pH and was originally used 

to determine if the misshapen granules were lysozomes.  Initially we thought that a 

perturbation in Rab trafficking caused glue granules to default into lysozomes.  However, 

this was not the case when we examined lysozome markers (data not shown), but the n-

SyB-pH reagent proved useful in showing that the pH environment of the glue granules is 

naturally acidic.  When GDI was overexpressed, n-SyB-pH fluoresced inside the granules 

indicating a failure of the granules to acidify.   

This study provides a powerful example of how the salivary gland can be used in a 

descriptive analysis of cellular trafficking.  In the future, we would like to employ the 

same strategy to clarify the data in chapter 4 and to screen other reagents that cause a 
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defect in secretion. Also, there are 33 Rab proteins identified in the Drosophila genome, 

but many are as yet uncharacterized.  Many of these Rabs have overlapping or redundant 

functions in the cell or have no function reported.  By testing them for rescue in the GDI 

phenotype we may be able to ascribe more functions to each of them.  We hope to 

continue developing a profile of compartment markers to use as a valuable reference and 

feel that this is an ideal system to investigate cell trafficking.   
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CHAPTER 6 

GENERAL DISCUSSION 

6.1: Introduction. 

In discussion, I summarize the data presented in previous chapters and reiterate the 

major conclusions.  I also detail the significance of these results as it relates to the value 

of the larval salivary gland as an ideal model tissue to study a nuclear hormone response 

and cell biology pathways. 

6.2: Summary of the Glue Synthesis Model. 

The model of 20-hydroxyecdysone regulation in Drosophila is constantly evolving. 

The initial 20E model proposed that 20E is the molecule responsible for hierarchical gene 

activation represented as early and late chromosomal puffs on polytenized chromosomes.  

This model was modified to include the ecdysone receptor as the signal mitigation 

component in the 20E response pathway.  The ecdysone receptor was known at that time 

to be a heterodimer of the RXR homolog, USP, and the FXR homolog EcR.  This was 

supported in vertebrate studies as well, since all nuclear receptor heterodimers in 

vertebrates were known to be between RXR and any number of different nuclear 

receptors (e.g. TR or ERR).   

We can further modify the 20E model to include a functional ecdysone receptor 

without an RXR component.  The data presented in chapter 2 describe a 20E response 

that operates through a novel nuclear receptor heterodimer, and show convincingly that 

glue synthesis in the mid-third instar salivary gland is regulated by 20E.  Driving the 

expression of USPi does not perturb glue synthesis (Fig. 2-6) and overexpressing USP 

blocks synthesis (Fig. 2-8).   Taken together, this is strong evidence that USP is not 
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required in the 20E regulated glue synthesis response and that USP can outcompete the 

receptor required for glue synthesis.  

The next logical step in the glue synthesis story was to identify the receptor that is 

required for glue synthesis.  After an RNAi screen of all possible nuclear receptors, I 

identified DHR96 as a necessary nuclear receptor required for the USP independent 20E 

responsive glue synthesis described in chapter 2.  DHR96 is the vertebrate homolog of 

the vitamin D receptor (VDR) and thus the screen seems to indicate that the steroid 

hormone 20E cannot function to synthesize glue without DHR96.  Further modifying the 

20E glue synthesis model to establish a novel ecdysone receptor required for glue 

synthesis.   

This bold hypothesis demanded the efficacy of the UAS-DHR96i reagent be 

scrutinized and evaluated.  I validated the knockdown of DHR96 protein levels using 

western blot and immunohisto chemistry (Figures 3-2 and 3-3) and also examined 

DHR96 transcript levels in qRT-PCR (Fig. 3-4).  Also, I show that DHR96i is specific to 

DHR96 and not EcR because, as shown in Table 3-2, glue synthesis was not rescued by 

overexpressing the EcR-B isoforms.  Finally, members of the broad complex 

transcription factors that are 20E regulated and are necessary for glue induction did 

rescue the DHR96i phenotype.  These experiments demonstrate that DHR96i specifically 

knocks down DHR96 protein and, like EcR, DHR96 is in the same pathway as BR-C for 

the induction of glue genes. 

I show that overexpression of DHR96 can inhibit USP function by inhibiting glue 

secretion (Fig. 3-7).   This is a reciprocal experiment from Chapter 2 (Fig. 2-8) in-which 

USP overexpression during the mid-third instar blocks glue synthesis.  Presumably, the 
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ectopic overexpression of these receptors competes with EcR binding that would be 

required for a temporal 20E response in the salivary gland, supporting the hypothesis that 

temporal regulation of the 20E response occurs through EcR and DHR96 in the mid-third 

instar salivary gland, but in the late third instar it occurs through EcR and USP.   

6.3: Summary of Glue Secretion Model. 

Following the same historical lines as the glue model, glue secretion was shown to 

respond to 20E in cultured salivary glands in the 1970s [1].  A number of 20E responsive 

genes were cloned and characterized during this time, much of them being transcription 

factors.  While it was shown that mutations in EcR and USP would affect the regulation 

of some of these genes and in turn block glue secretion, it was never demonstrated how 

these changes in gene regulation were related to glue secretion.  Chapter 4 of this 

dissertation is designed to address this missing information and present a model for 20E 

regulated glue secretion. 

Biyasheva et al. show that E63-1 is induced by 20E and that ectopic expression of the 

protein at a time before 20E exposure causes precocious secretion of glue granules [2].  

However, E63-1 mutants fail to block secretion.  Using a combination of RNAi and 

pharmacological inhibitors, it was shown that E63-1 and calmodulin (CaM) may have a 

redundant function and are required for 20E regulated secretion in ex vivo tissue cultures 

[3].  Additionally, both proteins can co-immunpercipatate with myosin VI [3].  I used 

transgenic reagents to perturb the functions of CaM and E63-1 in  living larvae. 

Silencing the functions of both CaM and E63-1 in the salivary gland showed a 

dramatic reduction in glue secretion. This result was expected, because of the sequence 

similarity shared by both proteins and the past research done using pharmacological 
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reagents.  However, the inhibition of secretion was not complete.  It is possible that a 

third calcium binding protein may be acting as a myosin light chain in concert with CaM 

and E63-1 to drive complete secretion.  Further study of myosin heavy chains involved in 

secretion would be necessary to make definitive conclusions.  

It was thought that myosin VI played in a role in secretion, because an antisense 

version of myosin VI inhibits glue secretion.  However, analysis of a null mutant forced 

us to reject that hypothesis.  Alternatively, an RNAi screen of all other myosin heavy 

chains was performed.  This screen proved fruitless, but this is not an ultimate scenario.  

To comprehensively investigate myosins it would be beneficial to describe the status of 

the compartments involved in trafficking and compare them to myosin mutants. 

6.4: The Salivary Gland as a Model Tissue to Study Intercellular Trafficking. 

Classically, cell trafficking has been studied using mutants in yeast systems or 

purified mammalian proteins.  Yet, we have demonstrated the use of the salivary gland in 

studying a hormone signal that initiates the mass secretion of cellular cargo.  The 

pathway was teased apart using transgenic lines, fluorescent markers and other molecular 

tools available for the salivary gland.  This positions us to study the trafficking involved 

in glue secretion using the same genetic principles employed in the hormone study.  

In chapter 5, I imaged a collection of fluorescently tagged cell compartment markers 

to create a profile of compartment localization.  This profile can be compared against 

defects in glue secretion or trafficking to make hypotheses about the nature of the defect.  

This descriptive study was validated in a proof of principle analysis of a secretion 

defective phenotype introduced by the overexpression of GDI.  By comparing the parent 
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lines to the secretion defective lines we saw a clear difference in ER morphology and cell 

cargo pH.  

In future studies we can examine secretion defects caused by myosin molecules, 

myosin light chains, or other proteins in the salivary gland by evaluating the effect on the 

compartmental markers.  This is a strong example of how the larval salivary gland of 

Drosophila melanogaster can be used to answer important biological questions.  
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