
Electrical and Computer Engineering Faculty
Publications Electrical & Computer Engineering

1-2013

A P2P Computing System for Overlay Networks A P2P Computing System for Overlay Networks

Grzegorz Chmaj
University of Nevada, Las Vegas, chmajg@unlv.nevada.edu

Krzysztof Walkowiak
Wrocław University of Technology, krzysztof.walkowiak@pwr.wroc.pl

Follow this and additional works at: https://digitalscholarship.unlv.edu/ece_fac_articles

 Part of the Computer and Systems Architecture Commons, and the Electrical and Computer

Engineering Commons

Repository Citation Repository Citation
Chmaj, G., Walkowiak, K. (2013). A P2P Computing System for Overlay Networks. Future Generation
Computer Systems, 29(1), 242-249.
https://digitalscholarship.unlv.edu/ece_fac_articles/837

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Article has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an
authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece
https://digitalscholarship.unlv.edu/ece_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/ece_fac_articles/837
mailto:digitalscholarship@unlv.edu

Author's copy.

A P2P computing system for overlay networks

Grzegorz Chmaja, Krzysztof Walkowiakb

a Department of Systems and Computer Networks, Wroclaw University of Technology

Wybrzeze Wyspianskiego 27. 50-370 Wroclaw, Poland

b Department of Systems and Computer Networks, Wroclaw University of Technology

Wybrzeze Wyspianskiego 27. 50-370 Wroclaw, Poland

krzysztof.walkowiak@pwr.wroc.pl (corresponding author)

Abstract

A distributed computing system is able to perform data computation and distribution of results at the

same time. Computing systems consist of many machines, which jointly constitute a large computation power

that would not be available on a single machine. The input task is divided into blocks, which are then sent to

system participants, which offer their resources in order to perform calculations. The computing of a block

produces a partial result, which is sent back by the participant to the task manager (usually one central node)

where all partial results are combined into the final result. In the case when system participants want to get the

final result, the central node may become overloaded, especially if many nodes will request the result at the same

time. In this paper we propose a novel distributed computation system, which does not use the central node as

the source of the final result, but assumes that partial results are sent between system participants. This way we

avoid the overload of the central node, as well as the network congestion. There are two types of distributed

computing systems: grids and public computation systems (called also ‘Peer-to-Peer computing systems’). In

this work we focus on the latter case. Consequently, we assume that the computing system works on the top of

an overlay network. We present a complete description of the P2P computing system, considering both

computations and result distribution. To verify the proposed architecture we use our own simulator. The obtained

results show the system performance expressed by the operation cost for various types of network flows: unicast,

anycast and Peer-to-Peer. Moreover, the simulations prove that our computing system provides about 66% lower

cost comparing to a centralized computing system.

Keywords: computing systems, P2P, simulation, overlay networks

1. Introduction

Distributed computing systems play a very significant role in today’s academic and

business world. This kind of systems consists of many machines connected to one

computational grid, which is considered as one virtual machine with a large computation

power. Distributed computing systems are applied to compute tasks requiring huge

Author's copy.

computation power which is not available on a single machine (even on a super-computer).

They are mainly divided into two categories: grid computing systems and Peer-to-Peer

computing systems. Grid systems are constituted by organizations and institutions and contain

a small number (usually up to hundreds) of machines [1], [2] connected using network links

of high efficiency. Grids may share many kinds of resources: computing power, disk space,

data, sensors, etc [3]. Resources are centrally managed using systems such as RMS (Resource

Management System) and cover the following aspects: customizability, extensibility,

scalability, etc. [4]. Scheduling is an important element of the grid that has a large influence in

the system efficiency [2], [5], [6]. It should include such issues as: resource discovery,

information gathering and task execution, concurrently with authorization, application

management and monitoring [5]. Many papers assume simplifications of the scheduling

model, correspondingly in this paper we focus on one aspect of scheduling, i.e., assignment of

computational tasks to computing nodes.

Constituting the computing grid system is a sophisticated task regarding both technical

and financial aspect. Therefore, other distributed computing systems – called Peer-to-Peer

(P2P) computing systems – have emerged in recent years [7]. These systems are built using

many private machines, which are most often home PC or Macintosh computers or even

gaming consoles. The user installs computing software on her/his machine and registers into a

selected computing project. Then, she/he receives data chunks to compute and send the results

back to the central node, where partial results received from users are combined into the final

result. Network connections used in P2P computing systems are regular home access links:

such as DSL or cable. This approach is much simpler than grids, since the only requirement is

to provide suitable software and to manage tasks and results (in the case of grid systems, also

physical machines must be maintained). P2P computing allows for unreliability of

participants – they may freely join and leave the computational grid, which is not used in grid

systems. The most popular P2P computing project is SETI@home (started in 1999), which

aims at looking for an extra terrestrial intelligence [8]. It is based on a BOINC architecture

[7], [9]. Projects based on the BOINC aggregate almost 2 million users all over the world with

over 5 million hosts having 5 TeraFLOPS of power (April 2010). Seti@home is the largest

BOINC P2P computing project (over 1 million of users), other popular projects are:

Einstein@home (250 thousand users – search for pulsar stars) and Climate Prediction (224

thousand users – climate change prediction). There are also other Peer-to-Peer computing

frameworks, including systems dedicated to compute one project, e.g. [10], [11].

Author's copy.

Grid systems are mostly centrally managed, what means that there is one central node,

which takes care of task preparation, scheduling and managing of results. P2P computing

systems may also use this model, but as home users contribute with their resources, they may

also want to participate in the results. This entails the problem of distributing the complete

result to each of the participant. In the case when the result is combined at one central node,

huge number of participants interested in the results and requesting it from one central

machine may cause the server overload or even denial of service. For instance, the authors of

Electric Sheep project [12] propose a distributed computing system, which renders artificial

forms of life – and allows participants to get complete animation. The animation is rendered

by participants, but combined into the final result at central node. The authors underline that

their system struggles with the problem of downloading the final animation from the central

node and plan to use BitTorrent [13] protocol to solve this issue.

In this paper we propose a new idea of a distributed computing system. Our system is

able to perform computation and result distribution at the same time. The main novelty is that

the system is not centrally managed – partial results are not sent back to the central node, but

transferred between nodes directly. Similarly to the BitTorrent protocol [13], in our system we

use a special node called tracker. The objective of the tracker in the computing system is

twofold. First, the tracker performs the scheduling, i.e., the node assigns individual task to

computing nodes according to received requests. Second, the tracker maintains and offers the

current database including information on location of already calculated results.

Distributed computing systems are often modeled with a static approach, which

assumes the creation of a static optimization model (including decision variables, constraints

and objective function) [14], [15]. Other popular approach to research on distributed systems

is the simulation – which is based on dedicated software and aims to act as close to a real

(modeled) system as possible.

The considered P2P computing system works in an overlay mode and uses the Internet

as a transport layer. The overlay approach assumes that the network includes two layers:

upper application layer and lower transport layer [16], [17]. The transport layer provides

direct connectivity between overlay nodes. Moreover, some Quality of Service guarantees can

be assured by the transport layer. Each node (participant of the computing system) is

connected to the overlay network by an access link with specified download and upload

bandwidth expressed in bps.

The motivation for this paper is to propose a novel approach to distributed computing

systems, as today’s systems do not provide effective mechanisms to deliver results of

Author's copy.

computations to all participants. Main contributions of this paper are as follows. (1) A novel

architecture for a P2P computing system considering both computations and results

dissemination. (2) Decision strategies developed for computing nodes participating in the

system. (3) A simulator of the proposed distributed computing system implementing various

types of network flows (unicast, anycast and P2P). (4) Simulation results showing the

influence of network flow and proposed policies.

The remainder of the paper is as follows. In Section 2 we introduce the P2P computing

system in detail. Section 3 includes the description of the simulator developed to examine the

proposed system. In Section 4 we show results of the experiments. Section 5 includes the

related work. Finally, the last section concludes this work.

2. The proposed Peer-to-Peer computing system

In this section we present the architecture of a new P2P computing system. The main

objective of the system is to minimize the OPEX cost of the system compromising both:

computing and transfer costs. The former element refers to operating costs related to

computation (e.g. energy, maintenance). The latter cost is the delivery cost in the overlay

network usually defined for each pair of nodes (e.g. lease cost of the access links). We assume

that the system is collaborative and all participants want to get the whole result. However, our

architecture could be also easily used to model the situation when only some of participants

download the result.

The system consists of many machines connected into one logical structure. It takes

sophisticated computational task as the input, which is then computed by participants. Idea of

distributed computation is used like in many systems such as grids [1], [2] cloud computing

[18] and P2P computation systems [10], [7]. As delivery of all results to each participant

introduces significant network traffic, it is essential to provide effective distribution

algorithms. Like in most of distributed computation systems (e.g., Seti@Home and many

others based on BOINC [7] framework) the input data is divided into uniform blocks (we call

them source blocks), which are sent to system participants in order to be computed. BOINC

systems assume that the result of computation (result block) is sent back to the central node,

which collects all results for further processing and analysis. In contrary, our research

considers situation, when all system participants are interested in the final results and results

are not sent back to the central node, but they are disseminated over the network to all

requesting users. Examples of this problem include: distributed images rendering or 3d

movies distribution rendering, where all participating users want to see the result of rendering.

Author's copy.

In the case when the central node is used to combine partial results into the final result,

download performed by many users cause high load and congestion problems at the central

node. We investigate how to bypass the central node and use the advantages of various flows,

to optimize result distribution.

Let us now describe the details of our system architecture. It contains two types of

elements:

 nodes – regular machines that do computation and exchange results between each

other

 tracker – a central element, which assigns source blocks to nodes. It is also used as a

database about result locations, what is similar to the idea of tracker node in

BitTorrent protocol. Each node has its own locations base, which is periodically

updated with data obtained from the tracker.

Fig. 1. Operations in a simulations system

A node requests the source block from the tracker when it has free computation

resources available (operation 1 in Fig. 1). The tracker responds with the source block if

available (operation 2) or signals that no more source blocks are available for computation,

i.e., all blocks included in the current computing project have been assigned to nodes for

computation. When the node receives such information, it stops requesting new blocks from

Author's copy.

the tracker. The node has to compute at least one source block (operation 3), to become the

participant of the project. The tracker stores information about project participants and does

not provide information about results locations for nodes, which are not present on the

participants list. This way the system protects itself against unfairness – every node has to

contribute to the system in order to obtain final output results. A node that wants to get the

result, which was computed by other node, sends a location request to the tracker (operation

4). Then, the tracker responds with known locations (operation 5). The node selects one of

them according to the selection policy (decision strategy). To make the tracker locations’ list

complete, the node sends the update to the tracker every time it acquires a new block available

to send. This happens in two cases: the node has finished computing the source block or the

node has finished downloading the result block from the other node.

All elements of the system (nodes and tracker) are connected through the overlay

network, which is the Internet in our case. This way we consider a network as one unified

structure, that provides a direct connection between every two elements connected to this

network. We do not consider how such connection (in our case: between two IP addresses) is

established, as this happens at the lower layer (routing). Thus, a full mesh of connections is

assumes – each peer can directly connect to any other peer.

Each node (denoted by index v = 1,2,…,V) is characterized by several parameters

describing its ability and effectiveness in joint cooperation. Power of CPUs of each node is

expressed by the processing power factor denoted as pv. This factor describes the ability of a

node for computing source blocks. Also other type of hardware components may be included

into pv, as this is often to use various type of hardware for P2P computations (e.g., graphical

processing units or whole Sony Playstation devices may be used for regular data

computation). Each node is connected to an overlay network through a link, it is often DSL,

cable or even wireless GSM/3G access type. Thus, we define upload speed uv and download

speed dv for each node participating in the P2P computing system. For the tracker we do not

define neither the computing power (as it does not compute blocks) nor the link speed. We

motivate this simplification by the fact that the tracker element in popular systems like

BitTorrent or the centralized element in BOINC system is usually a large machine with high

speed network link. Nodes operate simultaneously and autonomously. Each node may

perform many different actions at the same time: send a request to the tracker, send a request

to other node, compute source blocks, send and receive result blocks from other nodes.

Node’s resources – upload speed, download speed and processing power – are

managed using channels. In each type of the resource, there is one channel dedicated to the

Author's copy.

communication with the tracker. Since the overhead of processing and transmission of

signaling messages between the peer and the tracker is relatively small compared to other

operations of the node, only small amount of each resource (link speed and processing power)

is assigned to this task. The rest of each resource is divided proportionally into a fixed number

of channels (e.g., 4). The processing channel is used for computation of blocks. Consequently,

in a given moment of time, the peer can process a limited number of blocks. The upload and

download channels are used to send both data (blocks) and signaling messages to other peers.

Note, that the channel is occupied until the operation is finished. This way the node may

handle many independent tasks at the same time. The idea of channels follows from the

BitTorrent system, in which each node can have a limited number of active peers and the

default value of this parameter is 4 [13].

Nodes and the tracker may interact between each other by sending signaling messages.

We distinguish the following kinds of messages in the system:

 source block request – is sent to the tracker from a node, which wants to obtain a new

source block for computing;

 tracker update – is sent to the tracker from a node that starts to posses a new result

block available for download, this message updates the tracker’s location list

 block location request – is sent to the tracker from a node, which wants to receive a

current list of nodes that posses result blocks;

 download request – is sent from a node that misses a result block to another node,

which has the requested result block available for download. It must be confirmed by

the download acknowledgement message;

 download acknowledgement – this message is a positive reply to the download request

message;

 block location list – is sent from the tracker to a node, requesting the current list of

blocks’ location, this a reply to the block location request message.

Each node keeps two queues to process received messages. The former one is devoted

to download request message. Each incoming request is placed in the queue and processed

according to the selected decision strategy, which are described below. The latter queue

contains download acknowledgement messages and analogously is managed according to

selected strategy.

The P2P computing system we present in this paper is not centrally-managed, even

though the system contains the tracker. Each node uses the same decision policy (strategy).

Author's copy.

Decisions are taken by each participant individually according to its current knowledge

including the following information:

 list of missing result blocks;

 transfer costs to other peers;

 index of the rarest block in the system.

The first information is updated by the peer according to completed operations (both

processing and downloading of blocks). The other data is monitored and provided by the

tracker.

We specify three main decisions for which we define policies in our system:

 missing block selection – the node that misses some blocks selects one of them for

download. Here we propose two policies: First-Missing and Rarest-Missing. The

former one assumes that the first missing block will be attempted to download. This

works similarly to many P2P systems, where blocks are requested in order they

combine into the desired file. Using the Rarest-Missing policy, the node checks which

of its missing result blocks is the rarest result block in the system. Such block is

requested to download. This information on the rarest block is provided by the tracker.

However, the accuracy of the selection is limited to knowledge available at a node

while selection is made. The idea of the rarest block is widely discussed in the context

of P2P systems, e.g., in [19].

 source node selection – when a node needs to download the selected missing block,

then it has to determine where to send the download request. This choice is made

based on one of two following policies: First-on-the-List and Cheapest-Owner. The

first method assumes that the first node from the list of desired block owners is

selected. List of nodes having the desired block is obtained from the tracker and it is

not ordered. The second policy (Cheapest-Owner) allows the node to analyze all nodes

from owners list and select the node according to the settled criteria. This criterion

may be cost, link speed, number of hops, etc. This way we get a system, which works

with regard to optimizing one of many criterion factors.

 request selection – each node receives download requests from other nodes. As in

many Peer-to-Peer systems, such requests are queued for later processing. This

decision determines how such queue will be processed. Here we propose two policies:

First-Available and Cheapest-Available. The former policy is the implementation of a

FIFO queue, where the first received request is processed first. The Cheapest-

Available policy assumes that node having bandwidth and other resources available

Author's copy.

may select the request freely from all available in the queue. The criterion is the cost.

If we assume, that our objective is be amount of data sent by requesting node, then this

policy will resemble the tit-for-tat algorithm used in BitTorrent.

Decision strategies are described formally using in a pseudocode on Fig. 2.

Decision A: missing block selection

First-Missing:

Let Missing(v) return a set of blocks that

are missing on node v. Let MinId(A) return an

index of a block with a smallest value of the

identification number included in set A.

int First-Missing(int v)

{

 return MinId(Missing(v));

}

Rarest-Missing:

We assume that function RarestBlock(A) finds

the rarest block among blocks included in set

A. This information is provided by the

tracker, which has the global knowledge on

the blocks' availability on each node.

int Rarest-Missing(int v)

{

 return RarestBlock(Missing(v));

}

Decision B: source node selection

First-on-the-list:

Function GetOwners(b) returns the set of

nodes which own block b (thus may send this

block to other node). This information is

provided by tracker according to its

knowledge. This set is not sorted and nodes

are placed in order update messages arrive to

tracker. Let FirstFromSet(A) return the first

element from set A, and b denotes block which

is to be download by node v.

int First-on-the-list(int b)

{

 return FirstFromSet(GetOwners(b));

}

Cheapest-owner:

Let function MinCost(v, A) return the id of

node, from which transfer cost is smallest to

node v. Returned node id is selected among

node set A.

int Cheapest-Owner(int v, int b)

{

 return MinCost(v, GetOwners(b))

}

Decision C: request selection

First-available:

Let FirstRequest(v) return an index of a

request which was put into the queue at

earliest time among all request in the queue.

Queue is owned by node v.

int First-Available(int v)

{

 return FirstRequest(v)

}

Cheapest-available:

Let MinRequest(v) return the id of a request,

which was sent by a node having smallest

transfer cost to node v. Request is chosen

among requests present in the queue owned by

node v.

int Cheapest-Available(int v)

{

 return MinRequest(v);

}

Fig. 2. Decision strategies in a pseudocode

The objective of the system is to minimize the operation cost of the system. We

assume that the processing cost of each block includes the cost of the source block download.

Therefore, we do not consider the cost of block transfer between the tracker and the node.

3. Simulation system

In this section we describe our concept of a discrete simulation system named CDSim

(Computation-Distribution SIMulator). Unlike other network simulators (e.g., NS-2), our

Author's copy.

system is designed to simulate both computations and distribution of obtained results. The

architecture of P2P computing system presented in the previous section was implemented into

a real simulation system. The simulator includes all elements of the computing system: nodes,

tracker and decision policies. It also allows to use several types of network flows: unicast

(results may be downloaded only from the node which computed it), anycast (traffic is routed

through replica nodes) and pure Peer-to-Peer flow (results may be downloaded from any node

which has the desired result block available).

We use the concept of time slots to model the time scale – thus our system is a discrete

event system. The duration of each time slot is constant. One slot denotes the smallest

considerable time period, during which a node may perform action, which does not require a

reply from other elements. As described in the previous section, node resources are divided

into channels – this way we can easily model the usability of a given resource. Technically,

CDSim was written in C++ with use of STL and compiled using gcc (for Linux environment)

and Visual Studio 2003 (for MS Windows environment). Parameters of simulations are set by

a command line, detailed results of simulation are saved to a text file. Many levels of details

logging are possible to be set. Input data (network structure, computational task, etc) is given

as a text file with a standardized structure, what allows easy repetition of the simulation for

one network. This file we call network file and it contains the following elements:

 number of nodes;

 number of replicas (used for anycast flow);

 cost of block computation for each block;

 cost of block transfer between each pair (logically as triangular matrix);

 number of iterations;

 task (blocks);

 upload and download speeds for each node;

 computing power of each node;

 number of channels.

The example networks are generated randomly according to fixed ranges of parameter

values selected to model real network systems (e.g., access link capacity, processing power,

transfer cost).

Author's copy.

To illustrate the CDSim system we present a simple example using a Gantt graph (Fig.

3). The considered network consists of three nodes. Peer-to-Peer flows are used to deliver the

results of computations. Each node is connected to the tracker with a pair of channels: upload

(denoted as gT) and download (denoted as hT). Using the upload channel the node can send to

the tracker one of three messages: block location request (denoted on the graph as L) source

block request (denoted as C) and tracker update (denoted as U). In the opposite direction (on

the download channel from the tracker to the node) the block location list message (denoted

as L) can be transmitted as well as the source block (denoted as C). Moreover, each node has

3 processing channels (denoted as ji, i = 1, 2, 3), 3 upload channels (denoted as gi, i = 1, 2, 3)

and 3 download channels (denoted as hi, i = 1, 2, 3). Each channel is represented by one row

in the graph. The considered computational project is divided into 7 tasks (blocks). A colored

rectangle denote the operation on a particular channel (see the legend below the graph). The

number placed in the center of each rectangle identifies the block, while the number is

brackets shows the index of the corresponding node. White color denotes that the channel is

idle. The processing channel can be occupied with processing of blocks. Download and

upload channels can be used to exchange both signaling messages (download request and

download acknowledgement) and data (result blocks) with other nodes.

Author's copy.

j 1

j 2

j 3

h 1

h 2

h 3

g 1 2(2) 5(2) 6(3) 1(3) 5(3)

g 2 3(3) 4(3)

g 3 4(2) 7(3) 7(3)

h T C L C L C L C L L L L L L L L L U L U L U L L U L L L L L L L

g T C C L L L L L L L L L L L L L L L L L

j 1

j 2

j 3

h 1

h 2

h 3

g 1 2(1) 6(3) 4(1) 3(3) 7(1)

g 2 2(3)

g 3 5(1) 1(1) 7(1)

h T C L C L C L C L L L U L U L L L L L L L L L L L L L L U L L U

g T C C L L L L L L L L L L L L L L L

j 1

j 2

j 3

h 1

h 2

h 3 1(1) 7(1)

g 1 2(2) 5(2) 5(2) 5(2) 5(2) 5(2) 5(2) 6(2) 4(1)

g 2 3(1) 3(2)

g 3 1(1) 5(1) 7(1) 7(1) 7(1) 7(1) 7(1) 7(1)

h T C L CL C L C L L L L L U L U L L L L L L L U L L L L L U L L U

g T C C L L L L L L L L L L L L L L L L L

slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

L

C

U

h T node -> tracker

block location request

g T tracker -> node

block location list

source block request source block

tracker update

block download

block upload

4(2)

4(1)

2

5

2(1)

N
o
d

e
 v
 =
 3

3

6

N
o
d

e
 v
 =
2

N
o
d

e
 v
 =
 1

1

4

7

2(2)

5(2)

3(3)

download acknowledgement

idle

download request

3(1)

6(2)

3(2)

1(1)

block computation

2(2)

2(3)

5(1)

5(3)

1(3)

6(3)

3(3)

5(1)

Fig. 3. A Gantt graph of ax example simulation

Each node sends to the trakcer the source block request and the block location request

in slot t = 1 (denoted as C and L). The tracker replies with source blocks (denoted as C). The

computation of the block can take different number of time slots according to computation

power of each node. Until slot t = 7, nodes receive empty location list (block location list)

from the tracker, since no blocks are yet computed. Starting from slot t = 5 nodes do not send

source block requests, since all 7 source blocks are already assigned for computation. Block

b = 2 is available to nodes in slot t = 7, therefore in slot t = 8 nodes v = 1 and v = 3 send

download requests to node v = 2. Next, node v = 2 sends download acknowledgements back,

so requesting nodes start downloading in slot t = 10. Block b = 2 is sent to nodes v = 1 and

v = 3 with different speeds, according to the access link speeds of each pair of connected

nodes (the transmission speed of each block is selected as the maximum possible transmission

speed for the two communicating nodes). It is worth to notice, that even though node v = 2

uses decision 3 (request selection) to select requests from the queue, both requests are

Author's copy.

answered. In case when node v = 2 would have only one upload channel available in time slot

t = 9, only one request (selected according to the particular strategy) would be answered. This

kind of situation may be observed in slot t = 14, where nodes v = 1 and v = 2 send download

requests regarding block b = 6 to node v = 3. Node v = 3 selects only one request and sends

the download acknowledgement to node v = 2. The example of the source node selection

decision may be observed in time slot t = 15: node v = 3 wants to download block b = 5.

According to its knowledge, block b = 5 is available for download from nodes v = 1 and v = 2.

Using the given strategy, node v = 3 selects node v = 1 and sends there the download request

message. When all download channels are busy, a node does not send further download

requests – this situation may be observed in the case of node v = 1 during slots t = 11...13.

Also, a node may be unable to send download requests, when it is busy with sending blocks

to other nodes – see node v = 2 during slots t = 11...13.

4. Results

The simulator described in the previous section was applied to examine the proposed

architecture of the P2P computing system. The performance metric reported in the

experiments is the OPEX cost of the system including computing and transfer costs. We

created 10 systems defined by the number of nodes, blocks, iterations and other parameters

(Fig. 4). Other parameters (access link capacity, processing power, transfer cost and

processing cost) were generated at random according to parameters of real overlay systems.

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Network ID

N
u

m
b

e
r

o
f

e
le

m
e

n
ts

Nodes Iterations Blocks

Fig. 4. Parameters of tested networks

The first experiment was focused on the evaluation of decision policies proposed in

Section 2. Results show that the use of various policies has insignificant influence on the cost

for unicast flow, because unicast is not much flexible in a terms of the data transfer.

Author's copy.

Moreover, the Rarest-Missing policy in the case of the unicast flow and concurrent use of

Cheapest-Available, Cheapest-Owner, Rarest-Missing policies set in the case of the anycast

flow causes a starvation effect (some nodes were not able to get all result blocks in a given

time). The P2P flow was fully unaffected by the starvation effect. Moreover, in the case of the

P2P flow, the use of {First-Missing, Cheapest-Owner, Cheapest-Available} policies instead

of {Rarest-Missing, First-on-the-List, First-Available} significantly decreases the cost, so the

quality of delivered solution is much better (differences up to 60% for the P2P flow and up to

20% in the case of the anycast flow).

0

1000000

2000000

3000000

4000000

5000000

0 1 2 3 4 5 6 7 8 9

Network id

C
o

s
t

unicast anycast P2P

Fig. 5. The OPEX cost as a function of various types of flows

For further experiments we selected the following decision policies: First-Missing,

Cheapest-Owner, Cheapest-Available. The next goal of simulations was to compare the

OPEX cost for the following three types of network flows applied for data distribution:

unicast, anycast and P2P. Fig. 5 reports the corresponding results for the same 10 systems. We

can easily notice that the computing system using the P2P approach significantly outperforms

the systems with unicast and anycast flows – the average reduction of the cost is 70% and

55%, respectively. Moreover, the unicast flow is the most sensitive to the growing number of

nodes (57% difference between the minimum and the maximum cost), blocks and other

parameters characterizing the size of the problem. This follows from the fact that the unicast

flow is less flexible than P2P and anycast flows. The Peer-to-Peer flow with no additional

restrictions for choice of sending nodes is the most resilient against problem growth and was

able to keep a small increase of the cost for all tested networks (46% of difference between

the minimum and the maximum cost). The P2P approach provides the best solution for all

experiments, while the unicast flow always yielded the worst solution in terms of the cost.

Author's copy.

Furthermore, we conducted experiments to evaluate our distributed system against

standard, centralized computing systems. In the simulator system we implemented a

computing system based on the BOINC architecture that uses one central server to collect the

results data and next send the data to all participating nodes. We considered two cases related

to the server location:

(i) the server location is not optimized, i.e. the distance to each node is the

average of all other distances (denoted as C1);

(ii) the server is placed in the best location of the network minimizing the

distance to other nodes (denoted as C2).

0

1000000

2000000

3000000

4000000

5000000

0 1 2 3 4 5 6 7 8 9

Network id

C
o

s
t

C1 C2 P2P

Fig. 6. The OPEX cost for distributed system with P2P flows (P2P), centralized system without optimization of

the server location (C1) and centralized system with optimization of the server location (C2)

The results presented in Fig. 6 show that the distributed system considerably reduces

the cost compared to centralized scenarios C1 and C2 – the average decrease is 70% and 66%,

respectively. This experiment proves that our distributed architecture compared with the

centralized approach can provide substantial gains in the terms of the OPEX cost.

The next research goal was to investigate the influence of joining new nodes into the

system, keeping the amount of processed data at constant level. In this case, the cost increases

for all network flows (the same policies set was used as in previous experiment). This relation

is satisfied both for computation costs and transfer costs (consequently also for the total cost).

Joining new nodes was repeated – and for each “new” network (previous network with a new

node added) the simulation was executed. As the amount of data was constant, for each

experiment we reached the point, where no feasible solution was yielded – because network

bandwidth was too small to disseminate all results to all nodes and not so much data was

available to satisfy fairness condition. The number of nodes at which the system stopped

Author's copy.

returning proper solution was different for each network flow – the Peer-to-Peer flow always

stopped at largest node number, unicast always quitted first, anycast was always in the

middle. Similar results were observed for another experiment, in which we increased the

amount of data in the network, keeping all other parameters constant (including processing

power, network bandwidth, etc). The P2P approach always reached highest number of blocks

processed. Thus, the P2P flow yielded the smallest cost and was resistant for undesirable

phenomena such as the node starvation. Moreover, the P2P approach provided the best

performance in the case of joining new nodes to the network and increasing the amount of

data present in the system.

5. Related work

Grid systems are most often considered through the aspect of scheduling, as a

significant issue for grid efficiency. The authors of [20] proposed the policy of assigning

resources to grid participants. The problem was formulated as a variant of a multichoice

multidimensional knapsack problem. Described policies were investigated and proven to be

efficient. Static modeling of grid systems was proposed in [5], which also describes grid

resource management in scope of authorization and monitoring. Other approach to grid

management was presented in [4] and considered resource monitoring, resource scheduling,

and usage of network links and storage resources. The authors of [10] introduced a distributed

computing system, which is dedicated to render images. In contrary to previous approaches –

which required presence of much amount of data on each participating node – the proposed

system uses a division of images into primitives, which are then replicated on many nodes.

Results of rendering are sent to the central node, where they are combined into final result

image. Hughes and Walkerdine [11] presented a distributed computing system designed to

process video files using Peer-to-Peer structure. This system also uses central node to produce

the final result video file.

Most of distributed computing systems assume that source blocks (created as result of

division of input task into blocks) are fully independent – what means that particular node

does not need to know about other blocks to compute block assigned to itself. GTapestry

model presented in [21] allows for using relations between blocks – they may be dependent

between each other. Nodes are classified into groups, which then compute groups of blocks

connected with relations. Nodes may communicate inside groups (intra-communication) or

between groups (inter-communication), what allows managing blocks’ dependencies to get

the final result.

Author's copy.

Concepts of distributed computing systems and Peer-to-Peer networks share many

common ideas. Both approaches consist of many elements performing the specified roles. The

concept of merging computation and Peer-to-Peer ideas was presented in [22] – authors

described differences, approaches and problems occurring in these two kinds of systems. Fox

et al. described the conjunction of grid and Peer-to-Peer systems, also introducing additional

communications layer using XML to describe data and messaging between elements of the

system.

Network simulators most commonly use a similar form of internal architecture, based

on discrete simulation idea. This approach assumes the use of an internal clock, which divides

simulation time into a set of time slots. The length of the time slot determines the accuracy of

the modeling. Discrete event simulator contains the following elements: internal clock,

events, random value generator and monitoring modules [23]. Internal clock handles all issues

related to step-by-step modeling – either one or more events are possible to happen during one

time slot. Events model all real occurrences that are considered during simulation – they may

be distributed using simulator’s event generator and stored in event queue [23] or issued by

any other network element, such as servers, peers, etc. Some of simulation details are often

based on random generated values – as many things in real systems occur influenced by

random factors and real systems are never fully deterministic. Examples of such details are:

 packet latency,

 best peer selection,

 order of messages sent at the same time and arriving to same queue etc.

Thus, each discrete simulator contains a pseudo-random number generator, and its

randomness quality is very important in terms of the quality of the whole simulation. It is vital

to underline how the simulation ends, to avoid the system to run forever – and such condition

is most often required by simulation systems. The other approach to simulation is the event-

driven simulation, which is based on the idea, that the time of simulation advances only when

simulation events occur [24] (in the case of the discrete simulation, time slots advance no

matter events occur or not). This approach have not become very popular, as discrete event

simulation emerged to provide highly satisfying results. However, there are extensions of

discrete simulation proposed, such as RTNS [25] or a hybrid approach for timing [26], which

are introducing event-driven ideas to discrete simulation and are used to model wireless

sensor networks.

Many authors use popular simulation tools such as NS-2 [27] and OPNET [28]. These

systems focus on research in following fields: network topologies, network protocols, wired

Author's copy.

and wireless networks (including ad-hoc and sensor networks). NS-2 simulator is often

categorized as a ‘packet network simulator’, as it was designed to simulate this kind of

computer networks. NS-2 requires the user to implement his logic, which operates on NS-2

framework in the area of protocols, network types, network elements and traffic models [27].

Dedicated Otcl language is proposed to model the desired architecture. Many papers propose

and discuss the extensions for NS-2 simulator, such as single and multiprocessor embedded

systems, sensor function models (SensorSim [29], RTNS [25], TOSSIM [26]), multicast flow

[30], and many others. OPNET is a commercial product intended to model network flows,

applications, devices, protocols and many other network elements. It provides many protocols

in a shape of source code, object-oriented and hierarchical modeling and graphical modeling

tools. NS-2 and OPNET simulators are similar by idea and were compared by authors of [31].

Authors of [32] compare results of a realtime scheduler and a simulator of a non-realtime

scheduler. Results showed that pure discrete simulation approach may be successfully

extended to make simulated network less ideal and therefore also closer to the real networks.

6. Concluding remarks

The distributed computation is a very efficient and promising approach to process

large amounts of data without generating high costs. Private volunteers around the world are

willing to contribute with their resources that combined into one virtual structure constitute a

large processing power available for computing common task. Traditional grids assume

central management, what is not efficient in the case when all (or most) system’s participants

are willing to get the complete result. In this paper we have proposed a distributed computing

system that optimizes both computations and transfers.

The system can use three kinds of network flows for data distribution: unicast, Peer-

to-Peer and anycast. In this paper we have described the structure of the proposed system,

suggested policies and technical details of the developed realtime simulation system. The use

of discrete realtime simulation is a very valuable approach to network optimization. It often

overcomes disadvantages of the static optimization. Unlike other network simulators, our

simulating system CDSim introduces possibility not only to model the network traffic, but

also the process of distributed computing. In the current form, CDSim allows to investigate

three types of network flows (unicast, Peer-to-Peer and anycast). Many network parameters

are considered and possible to investigate, also helping tools (like network generator) provide

efficient way to perform network simulations. We have focused not only on simulator itself,

but also on surroundings – input and output data, and possibility to make whole system

Author's copy.

efficient and flexible. We have used the CDSim to make experimental research, which

showed that the use of the P2P flow allows getting much lower OPEX costs comparing to

unicast and anycast flows, proving that flow flexibility is very important in distributed

computation systems. Moreover, we have shown that our distributed system significantly

outperforms the centralized approach.

As the future work, we propose to extend the computation system with new

constraints – like varied number of nodes and replica statuses changed during the simulation.

Other future directions are new decision policies that can be evaluated by using the CDSim

simulator.

Acknowledgments

This work is supported by The Polish Ministry of Science and Higher Education under

the grant which is being realized in years 2010-2013.

References

[1] F. Travostino, J. Mambretti, G. Karmous Edwards, Grid Networks Enabling grids with

advanced communication technology, Wiley, 2006.

[2] R. Buyya, Economic-based Distributed Resource Management and Scheduling for Grid

Computing, Ph D Thesis, School of Computer Science and Software Engineering,

Monasch University, Melbourne, 2002.

[3] Ruay-Shiung Changa, Ming-Huang Guo, Hau-Chin Lin, A multiple parallel download

scheme with server throughput and client bandwidth considerations for data grids,

Elsevier Future Generation Computer Systems 24, Vol. 24, No. 8, 2008, pp. 798–805

[4] K. Krauter, R. Buyya, and M. Maheswaran, Taxonomy and Survey of Grid Resource

Management Systems for Distributed Computing, International Journal of Software:

Practice and Experience (SPE), Vol. 32, No. 2, 2002, pp. 135–164

[5] J. Nabrzyski, J. Schopf, J. Węglarz (eds), Grid resource management: state of the art

and future trends, Kluwer Academic Publishers, Boston, 2004.

[6] N. Fujimoto, K. Hagihara, A Comparison among Grid Scheduling Algorithms for

Independent Coarse-Grained Tasks, Proceedings of the 2004 International Symposium

on Applications and the Internet Workshops (SAINTW’04), 2004, pp. 674–680.

[7] D. Anderson, BOINC: A System for Public-Resource Computing and Storage,

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, 2004,

pp. 4–10.

Author's copy.

[8] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer, SETI@home: An

Experiment in Public-Resource Computing, Communications of the ACM, Vol. 45, No.

11, 2002, pp. 55–61.

[9] Statistics of projects based on BOINC framework: http://boincstats.com .

[10] R. Samanta, T. Funkhouser, K. Li, Parallel Rendering with K-Way Replication, In

Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data Visualization

and Graphics, 2001, pp. 75–84

[11] D. Hughes, J. Walkerdine, Distributed Video Encoding over a Peer-to-Peer network, In

the proceedings of PREP 2005, Vol. 1, 2005.

[12] S. Draves, The Interpretation of Dreams, An Explanation of the Electric Sheep

Distributed Screen-Saver, http://electricsheep.org/.

[13] A. Legout, G. Urvoy-Keller, P. Michiardi, Understanding BitTorrent: An Experimental

Perspective. Technical Report, INRIA-00000156, 2005.

[14] R. Ahuja, J. Magnanti, J. Orlin, Network Flows: Theory, Algorithms, and Applications,

Prentice Hall, Englewoof Cliffs NJ, 1993.

[15] M. Pióro, D. Medhi, Routing, Flow, and Capacity Design in Communication

and Computer Networks, Morgan Kaufman Publishers 2004.

[16] R. Steinmetz, K. Wehrle (eds.), Peer-to-Peer Systems and Applications, Lecture Notes

in Computer Science, Vol. 3485, 2005.

[17] J. Han, D. Watson, F. Jahanian, Enhancing end-to-end availability and performance via

topology-aware overlay networks, Computer Networks Vol. 52, No. 16, 2008,

pp. 3029–3046

[18] D. C. Vanderster, N. J. Dimopoulos, R. Parra-Hernandez, R. J. Sobie, Resource

allocation on computational grids using a utility model and the knapsack problem,

Future Generation Computer Systems, 25, 2009, pp. 35–50.

[19] S. Zhang, S. Zhang, X. Chen, X. Huo, Cloud Computing Research and Development

Trend, Second International Conference on Future Networks, 2010, pp. 93–97.

[20] F. Mathieu, J. Reynier, Missing Piece Issue and Upload Strategies in Flashcrowds and

P2P-assisted Filesharing, Advanced International Conference on Telecommunications

and International Conference on Internet and Web Applications and Services, 2006, pp.

112–118.

[21] Hai Jin, Fei Luo, Qin Zhang, Xiaofei Liao, Hao Zhang, GTapestry:

A Locality-Aware Overlay Network for High Performance Computing, Proceedings of

11th IEEE Symposium on Computers and Communications, 2006, p. 76–81.

http://electricsheep.org/

Author's copy.

[22] R. Subramanian, B. Goodman, Peer to Peer Computing: The Evolution

Of A Disruptive Technology, Idea Group Publishing, 2005.

[23] M. Bumble, L. Coraor, Architecture for a non-deterministic simulation machine,

Proceedings of the 1998 Winter Simulation Conference, 1998, pp. 1599–1606.

[24] I. Jawhar, A Flexible Object-Oriented Design of an Event-Driven Wireless Network

Simulator, Wireless Telecommunications Symposium, 2009, pp. 80–86.

[25] P. Pagano, M. Chitnis, G. Lipari, RTNS: an NS-2 extension to Simulate Wireless Real-

Time Distributed Systems for Structured Topologies, Proceedings of the 3rd

international conference on Wireless internet, 2007.

[26] A. Lalomia, G. Lo Re, M. Ortolani, A Hybrid Framework for Soft Real-Time WSN

Simulation, 13th IEEE/ACM International Symposium on Distributed Simulation and

Real Time Applications, 2009, pp. 201–207.

[27] E. Altman, T. Jiminez, NS Simulator for beginners, NS-2 documentation, 2003.

[28] Webpage of OPNET project: http://www.opnet.com .

[29] S. Park, A. Savvides, M. B. Srivastava, SensorSim: A Simulation Framework for Sensor

Networks, International Workshop on Modeling Analysis and Simulation of Wireless

and Mobile Systems, 2000, pp. 104–111.

[30] S. Penz, Wireless Multicast Support for the NS-2 Emulation Environment, Proceedings

of the Fifteenth IEEE International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunications Systems, 2007, pp. 267–273.

[31] M.B. Jemaa, N. Baccour, H. Kaaniche, A comparative Study of two Ad Hoc Network

Simulators, Septie`mes journées scientifiques des jeunes chercheurs en génie électrique

et informatique (GEI 2007), Monastir, Tunisia, 2007.

[32] Ju-Young Shin, Jong-Wook Jang, Jin-Man Kim, Result based on NS2, Simulation and

Emulation Verification, International Conference on New Trends in Information and

Service Science, 2009, pp. 807–811.

	A P2P Computing System for Overlay Networks
	Repository Citation

	A P2P computing system for overlay networks

