
Electrical and Computer Engineering Faculty
Publications Electrical & Computer Engineering

8-16-2011

Software Development Approach for Discrete Simulators Software Development Approach for Discrete Simulators

Grzegorz Chmaj
University of Nevada, Las Vegas, chmajg@unlv.nevada.edu

Dawid Maksymilian Zydek
University of Nevada, Las Vegas, zydekd@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/ece_fac_articles

 Part of the Computer and Systems Architecture Commons, and the Electrical and Computer

Engineering Commons

Repository Citation Repository Citation
Chmaj, G., Zydek, D. M. (2011). Software Development Approach for Discrete Simulators. 21st
International Conference on Systems Engineering (ICSEng), 2011 273-278. IEEE.
https://digitalscholarship.unlv.edu/ece_fac_articles/846

This Conference Proceeding is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Conference Proceeding in
any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Conference Proceeding has been accepted for inclusion in Electrical and Computer Engineering Faculty
Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece_fac_articles
https://digitalscholarship.unlv.edu/ece
https://digitalscholarship.unlv.edu/ece_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fece_fac_articles%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/ece_fac_articles/846
mailto:digitalscholarship@unlv.edu

Author's copy.

Software Development Approach For Discrete Simulators

Grzegorz Chmaj

Department of Systems and Computer Networks

Wroclaw University of Technology, Poland

grzegorz@chmaj.net

Dawid Zydek

Department of Electrical and Computer

Engineering

University of Nevada, Las Vegas, USA

dawid.zydek@unlv.edu

Abstract
Simulation is the most common approach to perform the

problem research. Among several types of simulation, the

most common way is the discrete simulation, which

assumes the division of the time scale into fixed length

time slots. Depending on investigated problem, simulation

packages may be used or it could be necessary to design

and create own simulation system. In this paper, we

propose the complete pre-study scheme and the most

commonly appearing implementation problems with

suggested solutions. We also describe how to implement

the exemplary simulator in C++.

Key Words: simulation, distributed computing,

programming.

1. Introduction

Simulation and static modeling are most commonly

used ways to research new ideas in computer systems.

They are often used in computational grids, mesh

structures, computer networks, etc. However, they operate

in different areas of scientific research [11], [12]. Static

modeling is based on building the optimization model,

having the criterion function, decision variables and

constraints. The aim of optimization may be either to

minimize or to maximize the value of criterion function.

To achieve the solution, each decision variable has to be

set to the value in valid range (often these are binary

variables), then the criterion function takes some certain

value. Static modeling is used to solve Mixed Integer

Problems (MIP) and enables to get the optimal solution,

however this is possible only for very small network sizes.

MIP problems are usually very complicated and for bigger

problems (i.e. more close to reality), other solution

approach has to be used. Heuristic algorithms may also

solve static model, however then we are still constrained

by the simplicity of static modeling.

The other way to research the scientific problem is to

use the discrete simulator. In this case, the simulation

model has to be build (static model may be used as the

base model) and results are produced as the output of

simulation, which is the process intended to act as close to

real working system as possible [13], [14]. On the

contrary to static modeling, where the result is ready after

solution lookup is done (which can take lots of time in

case of big problems), simulation allows observing partial

results as they appear in the simulation process [13]. As

the example, let us take the network containing many

nodes, which exchange files between each other. This

process takes time in real networks, so time progress has

also to be considered in static modeling and simulation. In

case of static modeling, time variable has to be used to

state, if file f is available at the node v at time slot t. Static

solver looks for the solution, and when it is ready, a

researcher may analyze results and verify, when file f

appears at the node v. Whole result for all researched time

span is available (i.e. decision variables). In case of

simulation, researcher may observe the exchange of files

across the time, and does not have to wait for the final

solution (end of investigated time span). In addition,

simulation is able to investigate much bigger problem size

than it is in case of static modeling. This example shows

us the advantages of simulation research approach.

Literature shows us also the third way to research this

kind of problems – the observation of real systems. This

approach is rarely used, as it requires to monitor all units

taking part in the process (in our example, we would like

to monitor all network traffic for all nodes), what is

usually not possible. In this paper, we will focus on

building the simulator, including the software

development aspect.

The rest of this paper is organized as follows: in

section 2 we present related work, focusing on software

implementation of discrete simulation, section 3 contains

the simulation characteristics and guide to choose the right

simulation approach. Chapter 4 presents the exemplary

distributed computing system, section 5 describes the

Author's copy.

software approach to simulation and chapter 6 concludes

and describes the future work.

2. Related work

Discrete simulators are widely used to research

complex problems, which cannot be investigated using the

real hardware infrastructure (or this approach is too

complicated or expensive). [1] describes the general

properties of discrete simulation, the simulator

components and the time scale issue. The authors of [3]

described the method of consistency checking in discrete

event simulators. They implement the mechanism to trace

the event during simulation run and check if it is correct

due to model constrains and requirements. This approach

allows detecting errors in discrete simulation models.

Software approach with the use of C++ was presented in

[8]. C++/CSIM17 toolkit was described as the base

architecture for creating further discrete simulation

systems. Authors presented the framework containing the

set of classes and processes. However the memory

pointers are used, which we do not recommend here in our

work. Web based simulation JBDS (Java Bean Discrete

Simulation) architecture was shown in [4]. It is built using

Java beans and was designed to implement the logic

simulation with decision taking beans. It contains nodes

(basic, controller and decision making nodes), events and

entities. The goal of JBDS is to simulate the ‘what if’

decision problems. The aspect of presenting the

simulation result data is shown in [10]. Authors focus on

techniques of creating 3D representations based on

simulation results, which are visualized as the graphics

structure showing all possible sequences of simulation

events. There is another approach to simulation – called

event-driven simulation [5], which is more rarely used

than discrete simulation. Event-driven simulation is

controlled by events – time in simulation advances only

when events occur (contrary to discrete simulation, where

time advances no matter if any events occur or not). There

are also hybrid solutions – in [6] authors proposed dual

approach for time scale, which introduces event-driven

mechanisms into discrete simulation.

3. Simulator characteristics

Discrete simulation offers many virtues, what is the

reason it is widely used in scientific research. There are

many simulation packages like OPNET [9] and NS-2 [7],

however often researched problem does not fit to be

simulated using them – for example NS-2 is designed to

simulate networks focusing on protocols, what makes it

not easy to simulate other category of phenomenon there.

Main merits of discrete simulation are:

a) the ability to compress or expand time scale – some

phenomenon in real system last certain number of time

slots ∆t. Because of that, using the third way of systems

research (i.e. monitoring of real system) may be inefficient

in case when operating time t is long enough to cause, that

researcher will have to wait lots of time for the result.

Using the simulation, ∆t may be compressed to new value

∆t’ without loosing the quality of simulation. The same

profit we get in case when t is very small and investigated

phenomenon is hard to observe in real system. Then the ∆t

may be expanded to ∆t’ to make researched issue easy to

observe in real time;

b) no measure errors – they do not exist in static

modeling, but when the experiment uses real system

monitoring, then the measure errors may appear and

influence the result;

c) ability to tamper the simulation – the researcher may

pause the experiment and set the unit property to certain

value (e.g. set some flags, put more tasks to the unit, etc)

or issue the event. This is the analogy to software

debugging process. It is possible to set the breakpoints or

to stop simulation manually;

d) ability to save and restore the simulation state – this

enables to research the phenomenon which occurs

somewhere in the simulation process and is not easy to be

simulated directly (i.e. by inputting specified set of input

data). In simulation, we can specify the breakpoint (which

will be characteristic for researched phenomenon), stop

the simulation after it occurs, save the simulation state for

future restorations;

e) possibility to simulate in deterministic and stochastic

way – simulation offers the deterministic mode – where

for certain input data set, the result will always be the

same. Stochastic mode allows using randomness – usually

this mode moves simulation closer to real system;

f) possibility to operate on different levels of detail – some

problems are hard to be modeled (also to be modeled in

simulation), in this case it may be hard to find the

appropriate level of abstraction. In simulation, researcher

may add constraints one by one and observe, if the

simulation results are satisfying.

To create the simulator, user has to go through several

steps – to find the simulation type most matching the

researched problem. This process is depicted on the

diagram in Fig.1. At first, the type of model must be

selected (decision 1). Stochastic model type allows using

randomness and for specified input data, simulation may

result with different output. In case of deterministic model

type, no randomness is allowed, so for specified input data

simulation will always return the same output. Chaotic

model is the deterministic model having non-predictable

elements). After model type is selected, time aspect is to

be considered (decision 2): in static model no time scale is

used, dynamic model changes across the time. In case of

dynamic model, the type of time scale has to be selected

Author's copy.

(decision 3). Discreet time scale divides time into slots

(i.e. smallest time unit possible), and each time moment is

characterized by integer number. Continuous time scale

does not implement division into slots and the moment in

time is characterized by continuous variable.

Fig. 1. Simulation type selection diagram

It is worth to consider other aspects of modeling:

choose the most important model characteristics (more

constraints may be added later), use the gradual model

creation (adding more and more constraints, each time

testing if model is valid/satisfactory). Output format is

also important: it should be clear and contain appropriate

information. Simulation output mechanism should be

flexible and offer presenting certain variable only in

specified range, or after specific event. This prevents the

output from having thousands of records with variable

having for example value of 0 from the beginning and for

most of simulation time. In this case, its value should be

recorded once at the beginning and then recording should

start when the value starts changing. This mechanism we

call result triggering (RT). After researcher went through

above path, he is ready to develop the simulation system.

4. Distributed Computation Peer-to-Peer

System (DCPS)

In this paper, we will use designed by us [2],

exemplary distributed computing system based on peer-to-

peer architecture. Distributed computing systems are well

known in the IT world, the most famous one, Seti@Home

is used to look for extra terrestrial intelligence and has few

million of participants, offering their computation power.

These kinds of systems are used for computation of tasks,

which are too big to be processed on one machine, even

on a super-computer. The task is divided at the managing

node into small fragments called blocks, which are then

sent to participants for computation. Receiving node

performs computation and sends the result block to the

managing node, where all partial results are combined into

the final result. In case of problems, where the result is

“binary” (i.e. thesis is confirmed or not, solution is found

or not, etc.) there is no problem with sending the result to

interesting nodes. However, for problems, where the result

is big in the mean of byte size, the process of its sending

to all interesting participants may overload server and

choke the network. As the example, let us take a look at

the ClimatePrediction project – its result is the weather

prediction and has size of several MegaBytes (MB). This

is why simple unicast network flow (server-client

architecture) is not efficient in this case. That is why peer-

to-peer flow is used – the result is disseminated among

interesting nodes without significant use of managing

node. Optimally, the managing node (which, at the

beginning is the only node that owns the result) sends his

copy only once. Summarizing, our distributing

computation system computes the problem in distributing

manner, and disseminates the complete result to all

participants, taking part in computation process. We can

describe our model the following way:

 system consist of two elements: node (v) – the

machine (usually PC, Mac or other personal device)

participating in computations and willing to receive

the final result; tracker – managing node, hosting the

knowledge base of data locations,

 slot (t) is the smallest time period considered in the

system, during the slot node may perform some

actions which do not require the response from other

nodes nor tracker,

 message – nodes participating in DCPS exchange

control messages between each other

 request – nodes send requests, when they want to

receive some information or data from other system

participants,

 channels – we propose to divide node resources into

channels. Each node has specific computation

power, upload and download speed. Thus we divide

these resources the following way: download link is

divided into C channels, each channel can transmit

data with speed D = dv / C, where dv is the download

bandwidth. Upload link is organized the same way.

Computation power is also expressed as channels:

available power is divided into P channels, each

channel can compute one block at the time. The

Stochastic

Deterministic

Chaotic

Static

Dynamic

Discreet

Continuous

Time aspect

Model type

1

2

3

Author's copy.

channel model makes easier to manage the resources

and in other form is used in many systems (e.g.

DirectConnect protocol).

 queues – each node v has two queues: queue of

incoming messages (QIMv) and queue of incoming

requests (QIRv). QIMv receives the messages sent by

other nodes to node v, QIRv receives the requests,

respectively.

 messages and requests – we define the following

types:

o source block request

o tracker update

o result block location request

o result block request

o upload acknowledgement

o block’s locations list

 decision at nodes in DCPS are taken based on:

o list of missing blocks

o costs of transfer

o knowledge about frequency of blocks

among nodes.

DCPS takes the following assumptions, strongly

related to simulation process:

 the process of sending the source block request takes

some time, measured in number of slots t;

 the number of time slots t required to transmit the

block between pair of nodes depends on the upload

speed of sending node and download speed of

receiving node;

 source block computation time at certain node

depends on its computation power, one block cannot

be computed using more than one slot, even if other

slots are not busy;

 all activities performed by the node are fully

independent;

 node may simultaneously perform the following

activities:

o send the request

o send the acknowledgement for block

downloading

o compute the source block

o download and upload result blocks.

DCPS uses the overlay network – this approach is very

often used in network modeling and in daily used systems.

The overlay network assumes, that top network layer

provides direct network connection between each pair of

machines connected to overlay network. They do not have

to wonder how this connection is established, as this

process happens at some lower layer. The examples of

overlay networks are: Internet – where machine A sends

data to machine B using its IP address, routing of packets

is not visible for A and B; traditional phone calls: person

A dials the number of person B without wondering how

phone centrals commute the connection. Each node has its

upload and download speed, defined as the speed to the

overlay network – this resembles the network providers

parameters, which limits user’s speeds to network

gateway, which for user acts as the entrance to the overlay

network. The scheme of our DCPS is presented in Fig. 2.

Fig. 2. DCPS network architecture

5. Software development approach

Starting the software development process for the

discrete simulator, the author has to choose the

programming environment. At first it is worth to discuss if

the standard simulation environment, such as OPNET [9]

may be used. If not, (the case we discuss in this paper) we

come to general purpose programming environment.

Among many of them, authors mostly focus on Java, C++,

C#, also script languages such as python become popular

recently. Sometimes the good idea is to relate the

simulation part with static optimization part, as common

parts of code may sometimes be used in both subsystems.

We will describe the architecture of our simulation system

using C++ with STL library. We formulate the following

programming suggestions:

 if using C++ it is suggested to use STL or other

library enabling not to use pointers and avoid

memory fault problems;

 build multi-platform program: this is ‘automatic’ in

case of Java technology, in case of C++, following

the standards enables building the programs that can

be compiled and run both under Linux and

Microsoft Windows (two most popular operating

systems);

tracker

node w

node v

node s

node r

node q

dr

ur

dq

uq

overlay network

uv

uw

us

dv

dw

ds

knowledge base

network link

QIMs

QIRs

QIMw

QIRw

QIMv

QIRv

QIMq

QIRq

QIMr

QIRr

Author's copy.

 use C++ preprocessor to cut out unnecessary parts of

code, what may be very important in complicated

simulations.

We propose to build the simulation system as fully

object oriented architecture, so we define the following

classes, also depicted in Fig. 3:

 grid: defines the base structure of system, and is the

skeleton for nodes and tracker;

 node: describes computational node properties and

functions. Implements channel architecture for

downloading, uploading and computation. Models

computation and transfer costs, QIM and QIR

queues and mechanisms determining which node’s

resources are busy at certain time;

 tracker: models the tracker element, implements

knowledge base, functions for receiving requests and

sending answers to nodes, and functions managing

source blocks;

 task: describes computational task, contains task

data as string;

 source block: describes source block object,

contains computational data as string, and

property determining to which node particular

source block is assigned;

 result block: models resource block, contains result

of computation as string;

 gpsim: class responsible for simulation system as the

general organization. Is the top form for all other

objects (they are created within gpsim object).

Defines system structures such as:

- Link (the network link between two

nodes)

- NodeRequest (request sent by node)

- NodeMessage (message sent by node)

Also defines helping functions, such as: sort,

statistical and data load functions. Defines all STL

vectors, creates all objects required for simulation

based on other classes, and defines functions

implementing simulation process, algorithms, etc.

 base: helper class, providing result logging and

some helper parameters;

 simulator: is the main class for simulation part

(important, if same system implements also other

types of research, such as MIP solving, heuristics,

etc.). Manages simulation cases (for example

various network flows) and runs appropriate

simulations;

 sys: manages all non-classifiable functions.

Retrieves and parses command-line parameters,

provides help for the user and manages time

measurement (used to measure how long the

simulation takes).

Additionally, two files are used:

 main: system part, retrieves input parameters and

initializes appropriate classes

 const.h: contains global constants for the system:

architecture global values, such as queue capacities,

request costs, labels for binary variables. Handles

preprocessor parameters.

Fig. 3. Classes structure for DPCS

computational task

split to source blocks

computation

source blocks

result blocks

merge back the result

result of computation

source block
class class

result block
class class

task
class class

task flow diagram:

tracker

node v

overlay

network

uv dv

knowledge base

QIMv

QIRv

grid
class class

node
class class

tracker
class class

system architecture:

base
class class

gpsim
class class

simulator
class class

sys
class class

main
class file

const.h
class file

additional classes and files::

Author's copy.

The development of discrete simulation system

requires to handle several problems, which main of them

are:

start and stop triggers – each simulation has to be started

by start trigger which should lead to perform the full

simulation. The approach in this case will be different for

deterministic and stochastic simulations. For deterministic

system, start trigger has to be strictly defined (e.g. sending

the message to certain node). For stochastic approach,

trigger may be selected randomly (e.g. random node

receiving the message). Stop trigger determines when and

how the simulation ends, so the simulation does not run

infinitely. Stop trigger may be the same for deterministic

and stochastic case.

the handling of node order processing – deterministic

approach should handle the node processing by itself, and

the processing order has to be strictly predictable. While

using stochastic, which is far more close to real systems

(because always we deal with more or less random things,

e.g. two signals coming to one node at the same time

causes situation, that it is not possible to state which of

them will be processed first) – this mechanism must be

implemented. Regarding our computation system, all

nodes operate simultaneously, so we have to implement

this phenomenon by random order of nodes processing.

Each node can perform some actions, which may take

some resources – so the order will influence on the result.

the handling of queues – as in real systems, nodes have

queues with limited capacity. The way of taking elements

from queue is determined by node algorithms, but looking

from architecture point of view – the best way is to create

STL vectors with position indicators. Queues could be

implemented as one broker system – then one broker

object handles all of them and internally tracks which

queue belongs to which node. We propose to implement

queues as the part of node class. If certain queue has

different length among all nodes, then we also have to

manage this parameter.

6. Conclusions

Simulation systems are very good way to investigate

scientific ideas. When standard simulation packages are

suitable to be used, then the researcher may focus only at

implementing the right simulation parameters. Otherwise,

simulation system written from scratch requires the

programmer to deal with several difficulties. In this paper

we presented the whole process of creating the simulation,

including pre-study and analysis, implementation and

handling the result output. We present our computational

system and show how to create the simulation for such

case. We also describe the mostly appearing problems and

suggested solutions, so this paper can act as the guide for

researcher planning to build the simulation system. As the

future work we plan to work in areas of output

management, to create best practices of creating output

file according to researcher’s needs.

7. References

[1] M. Bumble, L. Coraor, “Architecture for a non-deterministic

simulation machine”, Proceedings of the 1998 Winter

Simulation Conference, 1998, pp. 1599–1606.

[2] G. Chmaj, K. Walkowiak, “A P2P computing system for

overlay networks”, Future Generation Computer Systems, 2011

[3] J.W.G. Fleurkens, C.A.J. van Eijk, J.A.G. Jess, “Run-time

Consistency Checking in Discrete Simulation Models”, EDTC

'95 Proceedings of the 1995 European conference on Design

and Test, 1995, pp. 223-227

[4] M. Fukunari, “JavaBean-Based Simulation With a Decision

Making Bean”, Proceedings of the 1998 Winter Simulation

Conference, 1998, pp. 1699-1702

[5] I. Jawhar, “A Flexible Object-Oriented Design of an Event-

Driven Wireless Network Simulator”, Wireless

Telecommunications Symposium, 2009, pp. 80–86.

[6] A. Lalomia, G. Lo Re, M. Ortolani, “A Hybrid Framework

for Soft Real-Time WSN Simulation”, 13th IEEE/ACM

International Symposium on Distributed Simulation and Real

Time Applications, 2009, pp. 201–207

[7] M. Rahimi, S. Parveen, M. Morshed, M. Khan, P. Sarker,

”Development of the Smart QoS Monitors to Enhance the

Performance of the NS2 Network Simulator”, Proceedings of

13th International Conference on Computer and Information

Technology ICCIT, 2010, pp. 137-141.

[8] H. Schwetman, “Object-oriented Simulation Modeling with

C++/CSIM17”, Proceedings of the 1995 Winter Simulation

Conference, 1995, pp. 529-533

[9] Webpage of OPNET project: http://www.opnet.com

[10] Y. Zhong, B. Shirinzadeh, “Analysis, Conversion and

Visualization of Discrete Simulation Results”, Proceedings of

the Eight International Conference on Information

Visualization, 2004, pp. 118-123

[11] D. Zydek, H. Selvaraj, “Processor Allocation Problem for

NoC-based Chip Multiprocessors,” Proceedings of 6th

International Conference on Information Technology: New

Generations (ITNG 2009), IEEE Computer Society Press, 2009,

pp. 96-101.

[12] D. Zydek, H. Selvaraj, “Hardware Implementation of

Processor Allocation Schemes for Mesh-Based Chip

Multiprocessors,” Journal of Microprocessors and

Microsystems, vol. 34, no. 1, 2010, pp. 39-48.

[13] D. Zydek, H. Selvaraj, “Fast and Efficient Processor

Allocation Algorithm for Torus-Based Chip Multiprocessors,”

Journal of Computers & Electrical Engineering, vol. 37, no. 1,

2011, pp. 91-105.

[14] D. Zydek, H. Selvaraj, L. Koszalka, I. Pozniak-Koszalka,

“Evaluation Scheme for NoC-based CMP with Integrated

Processor Management System,” International Journal of

Electronics and Telecommunications, vol. 56, no. 2, 2010, pp.

157-168.

http://www.opnet.com/

	Software Development Approach for Discrete Simulators
	Repository Citation

	Software Development Approach For Discrete Simulators

