4-22-2007

Nesting System with Quantization and Knowledge Base Applied

Leszek Koszalka
Wrocław University of Technology, leszek.koszalka@pwr.wroc.pl

Grzegorz Chmaj
University of Nevada, Las Vegas, chmajg@unlv.nevada.edu

Follow this and additional works at: http://digitalscholarship.unlv.edu/ece_fac_articles

Part of the Computer and Systems Architecture Commons, and the Electrical and Computer Engineering Commons

Citation Information
http://digitalscholarship.unlv.edu/ece_fac_articles/847

This Conference Proceeding is brought to you for free and open access by the Electrical & Computer Engineering at Digital Scholarship@UNLV. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Nesting System with Quantization and Knowledge Base Applied

Leszek Koszalka and Grzegorz Chmaj
Chair of Systems and Computer Networks, Wroclaw University of Technology,
Wroclaw, Poland
E-mail: leszek.koszalka@pwr.wroc.pl

Abstract

Nesting algorithms deal with placing two-dimensional shapes on the given canvas. In this paper a binary way of solving the nesting problem is proposed. Geometric shapes are quantized into binary form, which is used to operate on them. After finishing nesting they are converted back into original geometrical form. Investigations showed, that there is a big influence of quantization accuracy for the nesting effect. However, greater accuracy results with longer time of computation. The proposed knowledge base system is able to strongly reduce the computational time.

1. Introduction

Nesting is a geometrical problem of placing two-dimensional shapes on a surface without overlap and with minimizing the surface area used. The goals of nesting algorithms can differ among minimizing wasted surface area and maximizing the amount of shapes placed on or in a specified container. This kind of problems are everyday-questions in the commercial companies, especially factories and cutting manufacturers. Also, nesting problems appear in environmental architecture planning, transport, and many other places. Nesting problems can be divided into [2]: decision problems (having given region and set of shapes the algorithm states whether shapes will fit in the region), knapsack problem (given shapes have to be placed on a given region in a way minimizing used surface), bin packing (there are set of shapes and set of regions, the algorithm minimizes a number of used regions needed to place set of shapes) and strip packing problem (with given set of shapes and a width of rectangular region, the algorithm has to minimize length of region containing all shapes placed).

Some nesting problem implementations allow overlapping shapes in specific situations [2]. Different constraints can be considered. Usually, there is no constraint on shape – it can be rectangle, also can contain roundness. More often constraints are applied to the nested region – due to technological issues, the region is often a fixed width rectangle with unlimited length (e.g. roll of material in clothing industry). According to the problem conditions, appropriate nesting algorithm should be used. There were attempts to solve this problem by using many different ways: e.g. geometry theory, ant algorithms [1], heuristic methods [5], genetic algorithms [4] – but even for small sets of input data – nesting problem is hard to be solved in a reasonable time.

This paper describes a concept of applying quantization with knowledge base to slide the nesting algorithm. It is assumed, that there are no constraints on regions and on shapes. Each shape is converted into binary form, which is further used to pair shapes. As a pairing algorithm the Min-Rectangle (MR) [3] algorithm is used which is able to find a co-placement of two shapes giving smallest bounding rectangle. The proposed QKBMR (Quantization with Knowledge Base in Minimum Rectangle) system gives opportunities for simulations. Research done by the authors is focused on the influence of quantization and knowledge base implementation on the nesting process.

Section 2 states the problem of nesting. Section 3 contains definitions of basic terms and Section 4 presents the proposed QKBMR system. In Section 5 the results of investigations are discussed. Section 6 contains conclusions and perspectives of further research.

2. Problem statement

Nesting is a term that is used to describe several allocation problems of two- or three-dimensional cutting or placing the defined set of shapes. Implementations of the problem can vary with different
constraints. Constraints can be divided into the following categories:

- **shapes constraints** – overlapping conditions, known (or not) shapes queue, shapes queue sorting, etc.
- **region constraints** – shape of region, its infinity in specified dimensions, etc.
- **nesting process constraints** – time, usage area, etc.

No matter what implementation, the scheme of nesting is always as in Fig. 1.

![Figure 1. General nesting scheme.](image)

An example of the nesting – with finite rectangle as a region and known shape queue - is shown in Fig. 2.

![Figure 2. Example of nesting](image)

The considered nesting problem may be stated as follows:

- **given**: the set of shapes with known geometry and the region in which shapes can be placed,
- **to find**: shape placement within the region,
- **such that**: to minimize wasted surface and the time of completing nesting process.

To widely describe the nesting problem issues the following nomenclature is introduced:

- **Shape** – a geometric closed form defined by geometric characteristic. Any shape can be described by set of points and arcs. Shape combined with n amount of e elements, where each e is a point P (described by position x,y) or an arc A (described by two P and radius) is denoted as

 $$G = \{e \in \mathbb{P} : (x,y) \in A : (x_1,y_1), (x_2,y_2), r_1\}.$$

- **Region** – an area of potential placement of shapes, here, a rectangular with infinite length and width. Region containing points $P(x,y)$ where x,y R is denoted as

 $$R = \{P(x,y) : -\infty < x < \infty, -\infty < y < \infty\}.$$

- **Quantum** – a discrete part of geometric area, it is characterized by size and logical binary state assigned.

Quantum size – denoted as a, describes the size of quantum, Quantum having a size of square side length in geometric interpretation and (x,y) discrete position in mesh M is denoted as $Q(a,f(x,y)) = \{0,1\}$.

- **Intersection function** – denoted as $\text{INT}(A,B)$ – returns logical true/false result: if area A and area B intersect, logical 1 is returned, otherwise it returns logical 0.

- **Bounding rectangle** $B_G(x,y)$ – minimum size rectangle of width x and height y, that G can fit inside without intersecting B_G boundaries. B_G assigned to G will satisfy the following formula:

 $$B_G = \{P(x,y) : x_b \leq x_b \in \mathbb{R}, -\infty \leq y_b \leq \infty\}.$$

- **Mesh** – R is divided (Fig. 3) into $Q(a)$ parts, that composes two dimensional mesh on nesting area. Mesh having quantum size of a is denoted as $M(a)$ and has infinite length and width:

 $$M(a) = \{Q(a,f(x,y)) : 1 \leq x \leq \infty, 1 \leq y \leq \infty\}.$$

![Figure 3. Region divided into $M(a)$ mesh.](image)

Quantization process (QP) – process of changing geometry of a shape into its binary representation. QP is performed using the quantization function:

$$QP(G) = (Q(a,f(x,y)), B_G, Q(a,f(x,y)), G).$$

- **Binary shape (S)** – denoted as $S(w,h)$ is quantized representation of geometric shape G. $S(w,h)$ having width=w and height=h (measured in $Q(a)$) width/height which means multiplying w and h by a, consist of $Q(a,f(x,y))$, B_G and is the result of $QP(G)$ function.

$$S(w,h) = \{Q(a,f(x,y)) : B_G, Q(a,f(x,y)), G, x < 0, w, y < 0, h\}.$$

Binary Shape Set (BSS) – a finite set of S containing $BSSC$ (BSS Capacity) elements. $BSSC$ can be variable during nesting process, which allows interactive adding of new shapes to $BSS = \{S_1, S_2, \ldots, S_{BSSC}\}$.

- **AND**, **OR**, **XOR**, **NEG** – binary logical operation on proper bit sequences.
In the paper, the following assumptions are taken:

Knowledge Base Element (KBE) – a data set with information about two S and their best combination C.

In the paper, the following assumptions are taken:
- R has no specified shape,
- the shape queue is known and the system is able to preprocess it before starting QP and nesting,
- all shapes are quantized using the same a in Q_{a,e},
- the shapes can be rotated by angle

\[
e = \frac{k}{2}, \quad k \in \{0,1,2,3\}.
\]

3. Nesting system

The QKBMR nesting system is composed of the following elements:

- GQ – G Queue – input queue of geometrical shapes G.
- GQPP – GQ Preprocessor – a module that is able to operate on input GQ before QP. GQPP uses GQPP algorithm set to choose the way of processing GQ.

QP – Quantization Process – converting GQ to BSS. Parameter a determines QP precision (Fig. 4)

BSS – Binary Shape Set – set of BSSC number of S elements. BSS is the result of QP.

SP - Shape pairing – module responsible for finding the best co-placement of S\textsubscript{a} and S\textsubscript{b}. There are available options: (i) with rotating, (ii) without rotating.

KB – Knowledge Base with a set of the KBC number of KBE-s, i.e. KB = \{KBE\textsubscript{i}, KBE\textsubscript{2}, ..., KBE\textsubscript{KBC}\}. KB expands self during nesting. Moreover, KB can use knowledge acquired from external sources.

NM - Nesting Module – the main part of the system that manages S elements and finally places them in R. M\textsubscript{a} parameter is used to describe mesh in R.

DeQP – De-Quantization Process – converting S elements into G elements. DeQP is an optional module.

4. QKBMR algorithm

The core of the proposed nesting system is QKBMR regarded as a set of algorithms. In this section the detailed description of ideas of QKBMR are given.

Quantization Process. QP outputs with S having G object as an input. QP is performed for each G separately. The size of S and accuracy of QP depends on a parameter. The time needed to perform QP on G can be expressed by (1):

\[
T_{QP} = kWHla
\]

The QP algorithm for a given G works as follows:

1. Find \(B_{G}(x_{m},y_{m})\).
2. Divide \(B_{G}(x_{m},y_{m})\) into \(Q_{a}(x_{a},y_{b})\) elements. The result is a mesh of \(Q_{a}\) elements with w amount of \(Q_{a}\) in each row of mesh and h amount of \(Q_{a}\) elements in each column.
3. Assign state to all \(Q_{a}(x_{a},y_{b})\) elements:
\[
Q_{a}(x_{a},y_{b}) \rightarrow B_{G}. \quad Q_{a}(x_{a},y_{b}) = INT(Q_{a}(x_{a},y_{b}),G)\] \(c < 0, w), d < 0, h)\).

Figure 4. Shape G and its quantized representation S(3,2)=111101110011

Normalization Process. NP is a process of extending two S-es according to their properties. S\textsubscript{1} is always a base – after normalization is centered in its own mesh. S\textsubscript{2} is placed in left-top corner of its own mesh. NP adds columns and/or rows containing zeroes to both S, to equalize them by size. NP allows finding suitable coexistence by using SP process:

1. For two received objects: \(S_{1}(x_{1},y_{1})\) and \(S_{2}(x_{2},y_{2})\) compute:
 \[
 m_{x}=x_{1}+2\cdot x_{2}, \quad m_{y}=y_{1}+2\cdot y_{2}.
 \]
2. Normalize \(S_{1}\):
 2.1. Add \(c=m_{x}-x_{1}\) columns to \(S_{1}\),
 2.2. \(x_{1}=m_{x},\)
 2.3. Add \(r=m_{x}-x_{1}\) rows to \(S_{1}\) (contain only zeroes),
 2.4. \(y_{1}=m_{y}.
 2.5. \(t=c/2+r/2\cdot y_{2};\) Perform ROR with \(t\) positions.
3. Normalize S_2:
 3.1. Add \(c = m_x \times x_2 \) columns to S_2;
 3.2. \(x_2 = mx \)
 3.3. Add \(r = m_x \times x_2 \) rows to S_2
 3.4. \(y_2 = ny \)

Table 1 shows an example of using NP.

Denormalization Process. DP performs removing bordering rows and columns containing only zeroes. The rule states: $DP(NP(S)) = S$. $DP(S(x,y))$. It is performed in the following way:

1. \(C_1 = (2^{x+1} - 1) \times 2^{(x+1)p} \), if $\text{AND}(S, C_1) = 0$ - perform removing first $x+1$ bits from binary representation.
2. \(C_B = \text{NEG}(2^{(x+1)(y+1)} - 2^{x+1}) \), if $\text{AND}(S, C_B) = 0$ - perform removing last $x+1$ bits from binary representation.
3. \(C_L = C_{x+1} \), \(C_H = C_{x+1} + 2^x \), \(C_0 = 2^x \); if $\text{AND}(S, C_L) = 0$, perform removing bits from positions p, for whose \((p \mod (x+1)) = 1\) formula is satisfied.
4. \(C_R = \text{NEG}(\text{AND}(C_1, C_2, C_3 \ldots, C_{y+1}))\), where \(C_k = (2^{(k+1)x} - 2^{(k+1)x+y} + 2^{(k+1)x+y+1}) \cdot 2^{x+1} \).
 3.1. If \(\text{AND}(S, C_R) = 0 \), perform removing bits from positions p, for whose \((p \mod (x+1)) = 0\) formula is satisfied.

Table 1. Example of normalization

<table>
<thead>
<tr>
<th>Before NP</th>
<th>After NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>S_2</td>
</tr>
<tr>
<td>1111</td>
<td>11</td>
</tr>
<tr>
<td>0111</td>
<td>01</td>
</tr>
<tr>
<td>0011</td>
<td>01110000</td>
</tr>
<tr>
<td>0001</td>
<td>00011100</td>
</tr>
</tbody>
</table>

Shape Pairing. SP tries to find the best coexistent S_2 for a given S_1, where S_1 is always the first shape from BSS. SP compares S_1 with every unpaired S from BSS and records the actual best pair. The efficiency of a given pair is determined by the EFF (2) coefficient:

$$EFF = 1/h((S_{in}+1) \times (S_{h+1}+1))$$ \hspace{1cm} (2)

The EFF uses w and h from S_1 because after NP both S_1 and S_2 have the same w and h. The S that is the best pair for S_1 according to the EFF coefficient is marked as “paired”. SP works using the following procedure:

1. S_1 is a base for pairing and “stationary” object (will remain unmoved in normalized mesh).
2. S_2 is a moving object.
3. $GLEFF = 0$

3. For every unpaired S from BSS do:
 3.1. Normalize $S_1(x_1, y_1)$ with $S_2(x_2, y_2)$
 3.2. S_2 = $ROR(S_2)$
 3.3. If $S_2[1] = 0$, $S_2[1] = 1$, go to 4.
 3.4. If $\text{AND}(S_2, C_1) = 0$ and $\text{AND}(S_2, C) = 0$, where $C = C_{i, j} = C_{i, j}^* + C_0$, $C_0 = 2^x$, perform $\text{ROR}(S_2, x+1)$, else perform $\text{ROR}(S_2, 1)$.
 3.5. $M = \text{XOR}(\text{OR}(S_1, S_2), S_2)$
 3.6. If $M = 0$, go to 3.2
 3.7. Compute $EFF(\text{OR}(S_1, S_2))$
 3.8. If $GLEFF < EFF$, then $GLEFF = EFF$ and $BF = \text{OR}(S_1, S_2)$
4. BF contains best found co-placement of S_1 and S_2 but $GLEFF$ contains EFF for this pair.

After performing the SP algorithm, the $QKBMR$ receives information from the SP module about (i) the best fit found for a given S_1 i.e. the number of S_2 that made the best fit with S_1, and (ii) the value of EFF coefficient for this fit.

Acquiring and Utilizing Knowledge. Every S is described by some bits and \((x, y)\) coefficients. Depending on the a factor, the QP process differs in accuracy. This means, that many shapes can be quantized into the same bit representation, and a coefficient has large influence on how many shapes from a given set will go into equal binary appearance. SP can use KB to optimize the process of searching for the best fit. Before using the internal pairing algorithm, SP can request KB for a specified pair S_1 and S_2. If KB has such a record, it will reply to SP with the best fit. This best fit can be placed in KB by the same SP module, or can originate from another module. Many different Nesting systems can share one KB. If KB does not have such a record, according to S and S_2, it replies to SP with “no result” message. In that case, SP performs an internal pairing algorithm for S_1 and S_2, and results with the best fit for these two considered shapes. Then, SP sends the S_1, S_2 and result to KB, which saves it for the future usage. When using KB, the SP works in the following way:

1. S_1 is a base for pairing and “stationary” object (will remain unmoved in normalized mesh).
2. $GLEFF = 0$
3. For every unpaired S from BSS do:
 3.1. Ask KB for S_1 and S_2. If KB replied with best fit answer, place answer to BF, count EFF and put in into $GLEFF$, go to 5.
 3.2. Normalize $S_1(x_1, y_1)$ with $S_2(x_2, y_2)$
 3.3. S_2 = $ROR(S_2)$
Rotating Mechanism. The nesting problem, stated in this paper, allows G objects to be rotated. This means, that also S objects can be rotated. QKBMR algorithm uses RM (Rotating Mechanism) to rotate binary representations of G, to afford better fit of two shapes. Rotating is performed when searching for the best fit, the rotated figure is also used while nesting. The BSS always contains non-rotated objects – also objects that are nested in rotated form, remain in original non-rotated figure. Rotating binary shapes is not easy when rotating angle is other than $\pi k / 2$, $k \in \{0,1,2,3\}$, so QKBMR algorithm uses only these four values while rotating S objects. Rotating can increase the time needed for finding the best fit, but in many cases it is able to find much better fit. When using KB, performing RM is suggested. RM gives better results of pairing, these results will be added to KB, so it is good to add better fits because pairs recorded in KB will not be paired anymore. SP with RM (and also KB) works using the following procedure:

1. S_1 is base of pairing and “stationary” object (will remain unmoved in normalized mesh). S_2 is moving object.
2. $G_{EFF}=0$; $k=1$
3. For every unpaired S from BSS do:
 3.1. Ask KB for S_1 and S_2. If KB replied with best fit answer, place answer to BF, count EFF and put in into GLEFF, go to 5.
 3.2. $k=k+1$. Rotate S_2 using $=k / 2$ angle
 3.3. Normalize $S_2(x_2, y_2)$ with $S_2(x_2, y_2)$
 3.4. $S_2=\text{ROR}(S_2)$
 3.5. If $S_1[1]=0$ and $S_2[1]=1$, go to 3.11.
 3.6. If AND(S_1, C_0) = 0, where $C_0=2^{11}, C_0=2^{11}, \text{perform } \text{ROR}(S_2, x_2+1)$, else perform $\text{ROR}(S_2, x_2)$.
 3.7. $M=\text{XOR}(\text{AND}(S_1, S_2))$
 3.8. If $M=0$, go to 3.4.
 3.9. Compute EFF ($\text{AND}(S_2, C)$)
 3.10. If GLEFF < EFF, GLEFF = EFF and $BF=\text{OR}(S_1, S_2)$
 3.11. If $k<3$ go to 3.2.

4. Send S_1, S_2, and BF to KB.
5. BF contains best found co-placement of S_1 and S_2, GLEFF contains EFF for this pair.

Nesting Module. NM is the main module of QKBMR system. NM sends requests to SP. After performing SP, resulting pair (S_1 and S_2) is merged and recorded as S_1, S_2 is marked as “paired” – so it will not be taken into consideration during the next pairing processes. NM has a block, that is able to decide whether to finalize nesting of S_1 and S_2 (place them on M_{a0}) or to send a request to SP once more, but with special conditions. This can be useful, when the algorithm used in SP does not work well enough – then NM can detect that kind of pair and request to find the pair for S_1 again, without using S_2, previously rated as the best fit. NM is the only module of QKBMR, that is able to operate on BSS during nesting process – so it is easy to implement some exclusions for pairing algorithms. Also, according to some rules, NM can pre-nest some shapes, before starting to request SP. These additional functions will be considered in the future work.

Two additional mechanisms. GQPP and DeQP are operating on shapes. For some G sets and SP pairing algorithms, nesting process may be speed up. GQPP performs sorting or other methods for changing order of G-es within G. DeQP is a module that performs de-quantization: converts binary representation (S) into geometrical figure (G). Due to DeQP, QKBMR is able to restore original form of shapes after the nesting process, so binary conversion is transparent for the user. Because QKBMR records original geometric form of shape, so there is no loss of information. DeQP also uses recorded relations of quantized form and original form – so regardless of a, after QP and DeQP, shape will be placed in the same place on the canvas.

5. Investigations

QKBMR algorithm had been implemented in the experimentation system to research the efficiency of the proposed mechanisms. The relationship between a and QP, found on the basis of results of simulations is shown in Fig. 5.

Figure 5. Influence of a coefficient on time of QP.
A small a coefficient gives (more accurate) mapping of G to S, but requires more time. When performing the nesting process using algorithms that use quantized shapes, it is possible to quantize them once and store in that form, so no quantization would be needed during next nesting processes. For every nesting case, an appropriate a coefficient should be taken. When G is transformed into a larger set of bits, SP module has more data to process. This is an exponential relation (Fig. 6).

![Figure 6](image-url) Influence of a coefficient to the completion time of nesting.

As is visible on the graph, there exists an a value, for which time decreases much, and for larger a values, its influence to time is smaller. If results of nesting for this edge value are satisfactory, this value should be used for processing shape sets. The time and a impact can differ according to the algorithm used by SP module. Investigations showed, that in the standard averaged case taking information about pairs from KB is approx 2% of the time-consumed for computing their best fit (which strongly depends on the a coefficient).

![Figure 7](image-url) Knowledge base and time of nesting.

The implementation of RM may result with a better EFF coefficient, but requires more computations, because of the fact that every S is processed 4 times (0, 90, 180 and 270 rotating angle). Investigations showed, that depending on type of S (its geometrical shape), RM can highly increase the EFF coefficient.

6. Conclusions

Nesting process is very time-consuming, thus it is worth to make attempt for shortening the time by recording already computed best-fits for shapes.

The proposed $QKBMR$ algorithm seems to be promising for sets of shapes with many objects of the same categories, as in the most industrial nesting processes. Thus, the proposed approach can strongly decrease the time of nesting.

The further work in the area of nesting systems will be concentrated on (i) finding more effective shape pairing algorithms as it is the most time consuming module (ii) developing system by implementing module with data base designed along with ideas given in [8] and [9], and (iii) investigating system efficiency in relation to shape and size of nesting region as well as the distinct categories of shapes to be located.

7. References