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ABSTRACT 
 

Investigation of Potential Pathways and Multi-cycle Bioregeneration of Ion-
Exchange Resin Laden with Perchlorate 

 
by 
 

Mohamadali Sharbatmaleki 
 

Dr. Jacimaria R. Batista, Examination Committee Chair 
Associate Professor of Civil and Environmental Engineering 

University of Nevada, Las Vegas 
 
 

Ion-exchange (IX) is possibly the most feasible technology for perchlorate removal 

and perchlorate-selective and non-selective IX resins are commercially available for this 

purpose.  The use of both resins has shortcomings. Selective resins are incinerated after 

one time use, and non-selective resins produce a regenerant waste stream that contains 

high concentration of perchlorate.  A process involving directly contacting of spent IX 

resin containing perchlorate with perchlorate-reducing bacteria (PRB) to bioregenerate 

the resin has been developed and proven recently.  In this process PRB biodegrade 

perchlorate ions which are attached to the functional groups of the resin.  

Although its feasibility has been proven, there are two issues related to resin 

bioregeneration technology that deserve attention and were addressed in this research.  

The first issue relates to the investigation of the mechanisms responsible for resin 

bioregeneration.  It was envisioned that the bioregeneration process involves four steps. 

First, resin-attached perchlorate (RAP) ions are desorbed from their original functional 

groups by chloride ion.  Second, perchlorate ions are diffused through the pores of the 

resin.  It was expected that this diffusion is affected by both resin bead size and structure.  
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Third, perchlorate ions are transferred through the liquid film surrounding the resin to the 

bulk liquid.  Forth, perchlorate ions are utilized by the PRB present in the bulk liquid.   

The results of the bioregeneration experiments suggested that chloride, the waste 

product of perchlorate biodegradation, is more likely the desorbing agent of RAP, and 

increasing the concentration of chloride enhances the bioregeneration process.  For 

commercially available resins, both film and pore diffusion were found to affect the rate 

of mass transfer.  In addition, macroporous resins were found to be more effective than 

gel-type resins in the bioregeneration process.  Bioregeneration rates were faster for 

resins of smaller bead diameter.  The outcome of this study implies that in resin 

bioregeneration, the use of macroporous resin with relatively smaller bead size in 

presence of chloride would be preferred.  Chloride concentration, however, should be 

kept below the inhibitory level for PRB microbial activities. 

The second issue of bioregeneration process is the possibility of multi-cycle 

bioregeneration of IX resin.  The results of the experiments revealed that capacity loss, 

which is the main concern in multi-cycle bioregeneration process, stabilized after a few 

cycles of bioregeneration indicating that the number of loading and bioregeneration 

cycles that can be performed is likely greater than the five cycles tested.  The results 

further indicated that as bioregeneration progresses, clogging of the resin pores results in 

the decrease in mass transfer flux from the inner portion of the resin to the bulk microbial 

culture contributing to stronger mass transfer limitation in the bioregeneration process.  

Perchlorate buildup, resulting from un-degraded perchlorate accumulation in the inner 

portion of the resin, after each bioregeneration cycle is a major drawback that limits the 

number of bioregeneration cycles that can be performed.   
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CHAPTER 1 

PROBLEM STATEMENT 

1.1. Introduction and Objectives  

Perchlorate contamination can occur both naturally in the environment and through 

manufacturing and use (Rao, et al., 2007; Dasgupta, et al., 2005; ITRC, 2007).  

Perchlorate mostly has been used as ammonium perchlorate (NH4ClO4) in the rocket 

manufacturing industry.  Toxicity of perchlorate contamination is well-known in the 

course of its interference with iodide uptake by thyroid gland (Kirk, 2006; Wolff, 2002, 

Stoker et al., 2006).  Iodide is the most necessary element in the production of thyroid 

hormones by thyroid gland.  Iodide shortage causes mental retardation in children and 

hypothyroidism in adults (Kirk, 2006; Wolff, 2002).   

Perchlorate contamination has been found and reported at approximately 400 surface 

water and groundwater supplies and soils in 35 states (Tikkanen, 2006), and in at least in 

44 states there are some release potentials (Lehman, et al., 2008).  Perchlorate 

contamination has become a serious concern in the southwestern region of the United 

States.  The National Academy of Science (NAS) has recommended the oral reference 

dose (RfD) of 0.0007 mg/kg/day (Tikkanen, 2006), which corresponds to the interim 

health advisory level of 15 µg/L in drinking water (Hristovski et al., 2008).   

The most promising technologies to treat water contaminated by perchlorate are 

bioremediation and ion-exchange (Logan et al., 2001; Batista et al., 2002; Okeke et al., 

2002; Velizarov et al., 2005; Lehman et al., 2008).  Bioremediation is only practical for 

water with high concentration of perchlorate, due to the relatively slow degradation 

kinetics of small perchlorate concentrations (Logan et al., 2001; Waller et al., 2004).  
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Perchlorate also can be removed from water by perchlorate-selective and perchlorate-

non-selective resins.  Both perchlorate-selective and non-selective resins can be either 

gel-type or macroporous-type.  Although ion-exchange is a well-known technology to 

water utilities, it has some deficiencies in perchlorate removal.  Firstly, it only separates 

perchlorate from water and it does not destroy the perchlorate ions.  Secondly, there are 

some issues regarding the regeneration process.  In the case of non-selective resins, the 

regenerant waste stream, contains high concentration of perchlorate, and should be dealt 

with.  In the case of selective resins, the resin cannot be effectively regenerated and they 

are incinerated after one-time use.  One-time use of ion-exchange resins constitutes a 

major cost and environmental challenge for water utilities.   

A new concept in ion-exchange technology has been developed and patented (Batista 

and Jensen, 2006). This concept is based on directly contacting perchlorate-containing 

ion-exchange resin with a perchlorate reducing microbial culture under anoxic/anaerobic 

conditions.  The process consists of a fermenter, which holds the bacterial culture, and a 

fluidized bed reactor (FBR), which holds the perchlorate-containing resin (Figure 1.1).  

In this process, first fresh resin is used to treat perchlorate contaminated water as it is 

shown in the left hand side of Figure 1.1.  After the capacity of the resin is exhausted, the 

resin is transferred to a FBR.  A perchlorate-reducing bacteria (PRB) culture is pumped 

from the fermenter to the FBR upward.  This process can potentially be used for 

perchlorate-selective and non-selective ion-exchange resins, leading to the conversion of 

perchlorate loads on the resin to innocuous chloride.  The process can also be used for 

resins contaminated with nitrate.  In this case, nitrate is converted to nitrogen gas.   
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The feasibility of direct bioregeneration of ion-exchange resins loaded with 

perchlorate was first reported in 2006 (Batista and Jensen, 2006).  The concept of 

bioregeneration was developed and tested on perchlorate and nitrate selective resins 

(Batista et al., 2007b; Venkatesan et al., 2010).  Bioregeneration of selective and non-

selective resins, in the presence of small concentrations of NaCl, has also been reported 

(Wang et al., 2008b; Wang et al., 2009).   

 

 

 

Figure 1.1. Schematic of the Resin Bioregeneration Technology (Left: Loading Cycle; 
Right: Bioregeneration Cycle Using PRB) 

 

 

The feasibility of the resin bioregeneration process has been proven.  However, there 

are issues that have not been investigated thus far: 
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Issue 1: Although the biodegradation of free perchlorate ions dissolved in water have 

been intensely investigated, there has been no research to explore the 

mechanism of biological degradation of perchlorate ions attached to ion–

exchange resins.  Thus, the first objective of this research is to understand the 

mechanisms of degradation of resin-attached perchlorate ions. 

Issue 2: In order to be economically and environmentally sustainable, bioregeneration 

should be repeatable in several cycles for the same resin.  Thus, the second 

objective of this research is to investigate the feasibility of bioregeneration of 

ion-exchange resin for several exhaustion-bioregeneration cycles. 

1.2. Research Issues 

Biodegradation of perchlorate ions dissolved in water has been well studied.  All the 

perchlorate reducing bacteria known to date are gram-negative bacteria (Waller et al., 

2004; Shrout et al., 2005).  It has been proven that the perchlorate-reduction pathway 

goes from perchlorate (ClO4
-) to chlorate (ClO3

-), then to chlorite (ClO2
-), and finally to 

chloride (Cl-) (Rikken et al., 1996; Logan, 1998).  More importantly, it has been shown 

that the perchlorate reducing bacteria use two distinct enzymes to reduce perchlorate to 

chloride (Rikken et al., 1996; Logan, 1998).  Conversion of perchlorate (ClO4
-) to 

chlorate (ClO3
-) and then to chlorite (ClO2

-) are two energy-yielding enzymatic reactions 

performed by perchlorate reductase (Rikken et al., 1996; Logan et al., 2001); then 

reduction of chlorite (ClO2
-) to chloride (Cl-) and oxygen (O2) is a non-energy yielding 

reaction performed by chlorite dismutase (van Ginkel et al., 1996; Rikken et al., 1996).   

Finally, the oxygen molecule (O2) produced from the dismutation of chlorite (ClO2
-) is 
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reduced to water (H2O) through oxidation of the electron donor which is an energy 

yielding reaction (Rikken et al., 1996; Logan et al., 2001). 

Studies have indicated that perchlorate reductase and chlorite dismutase are located in 

the periplasmic area of the cell (Kengen et al., 1999).  In the biodegradation of 

perchlorate, free perchlorate ions in water are transferred across the outer membrane of 

the cell to the periplasmic area, where perchlorate reductase and chlorite dismutase are 

located.  Although the outer membrane of gram-negative bacteria is a lipid bilayer, it is 

relatively permeable to small hydrophilic molecules, due to presence of proteins called 

porins that function as channels for the entrance and exit of these small molecules 

(Madigan and Martinko, 2005).  Transport of perchlorate and chloride ions across the 

outer membrane is most probably due to existence of porins.   

The mechanism of perchlorate degradation described above applies to free 

perchlorate ions that are dissolved in water.  In the case of ion-exchange resin, 

perchlorate ions are strongly attached to the functional groups of the resin beads (Lehman 

et al., 2008).   

Ion-exchange resins are porous media and can be categorized into gel-type and 

macroporous-type.  The average pore size and water retention in macroporous resins are 

considerably higher than those of gel-type resins (Sherman et al., 1986).  The average 

pore size of macroporous resins is 0.6 µm, while gel-type resins have an average pore 

size of about 0.0005 µm (Kun and Kunin, 1968; Dale et al., 2001).  Water retention of 

macroporous resins is approximately 11% higher than that of gel-type resins (Du et al., 

2010).  The use of macroporous resins compared to gel-type resins is expanding due to 
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their stability, resistance to oxidation, and less vulnerability to fouling (Weber, 1972; Li 

and SenGupta, 2000).   

From an economical point of view, resin bioregeneration is practical only if the 

process can be repeated for several consecutive exhaustion-bioregeneration cycles.  

Biological fouling and capacity loss of the resin are the main concerns when performing 

several consecutive exhaustion-bioregeneration cycles.  Venkatesan et al. (2010) studied 

the feasibility of bioregeneration process for a perchlorate-selective gel-type ion-

exchange resin.  The results of this study demonstrated the feasibility of bioregeneration 

for gel-type perchlorate-selective resin for 3 consecutive exhaustion-bioregeneration 

cycles (Venkatesan et al., 2010).   

1.3. Knowledge Gaps and Hypotheses 

Figure 1.2 shows a typical curve found for perchlorate degradation on a resin bead 

with time.  Initially, degradation is very fast but it slows down with time.  This 

degradation curve has been observed several times for both perchlorate and nitrate 

selective resins (Batista and Jensen, 2006; Batista et al., 2007a).  Although it has been 

demonstrated that perchlorate attached to the resin can be biodegraded, to the best of my 

knowledge, the mechanism for utilization of adsorbed perchlorate ions by bacteria has 

not been elucidated thus far.   

The pore size of ion-exchange resin beads does not allow the PRB, with average cell 

sizes ranging between 1.0 µm x 3.0 µm and 1.5 µm x 7.0 µm (Wolterink et al., 2002),  to 

penetrate into the pore matrix of the resin, which has a complex network of pores.  Thus, 

it is obvious that perchlorate ions, located on the functional groups inside the beads, 
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should travel through the fine pore network, and enter the bacterium cell suspended in 

liquid phase of the culture. 
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Figure 1.2. A Schematic Curve Resulting from the Bioregeneration of Resins 

Contaminated with Perchlorate 
 

 

The known involvement of c-type cytochrome(s) in the respiratory electron transfer 

chain (Coates et al., 1999; Bender et al., 2005) and the strong attachment of perchlorate 

ions to the active functional groups of the ion-exchange resin beads specify that somehow 

resin-attached perchlorate ions should be detach from the resin and reach the PRB in the 

outside of the cell.  It is hypothesized in this research that perchlorate ions attached to 

resin beads: a) desorb from their original functional group located inside the resin bead 

matrix, b) diffuse from the inside region of the resin bead to the resin surface through the 

pores, c) transfer through an imaginary liquid film, covering the surface of resin bead, to 

the outside of the bead, and d) transfer into the periplasmic region of the PRB to be 
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degraded.  Figure 1.3 depicts a conceptual diagram of bioregeneration process for a resin 

bead.  Based on this conceptual model, desorbed perchlorate ions should diffuse through 

the resin pore matrix and a liquid film surrounding the bead, to the outside of the resin 

bead where the PRB are located.   

 

 

 

Figure 1.3. Conceptual Model of Resin-attached Perchlorate Degradation Mechanism in 
the Bioregeneration Process  

 

 

Three hypotheses were developed to attempt to understand the mechanism of 

biodegradation of perchlorate ions attached to resin beads.  In the first hypothesis, it is 

envisioned that there is a desorption mechanism involved in the detachment of the resin-

attached perchlorate ions.  The second and third hypotheses envisioned that mass transfer 

of desorbed perchlorate ions, from the inner portion of the resin bead to the PRB, is the 

controlling step in the bioregeneration process rather than biodegradation kinetics of 
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desorbed perchlorate.  Mass transfer process of resin bioregeneration is affected by both 

resin bead size and the resin structure.   

It is well known and accepted that PRB reduce perchlorate to chloride ion.  

Stoichiometrically, one chloride is released for each perchlorate reduced (Rikken et al., 

1996).  The bioregeneration results shown in Figure 1.2 were generated in a system 

where the PRB were grown using perchlorate as the electron acceptor resulting in the 

accumulation of chloride ions in the microbial solution.  Additionally, the solution was 

continuously re-circulated through the fermenter-FBR set-up.  Therefore chloride ions 

accumulated in the system.  Several studies have been published on the negative effects 

of chloride (i.e. salinity) on perchlorate degradation (Logan et al. 2001; Gingras and 

Batista, 2002; Okeke et al., 2002).  These studies show that significant reduction in 

perchlorate degradation occurs at salinity levels greater than 5000 mg/L.  Therefore, in 

bioreactors used for resin bioregeneration, chloride levels should be kept below toxic 

levels to PRB. 

In this research, it is thought that chloride resulting from perchlorate biodegradation 

exchanges with the resin-attached perchlorate and release perchlorate.  Larger 

monovalent and more hydrophobic ions such as perchlorate have more potential to bind 

to the IX resin compared to smaller and less hydrophobic ions such as chloride 

(Diamond, 1963; Xiong et al., 2007; Lehman et al., 2008).   

The relative affinity of chloride and perchlorate ions to exchange with the resin’s 

functional group, which is commonly expressed as selectivity coefficient, is 1 to 150 for 

non-selective styrenic resins (Crittenden et al., 2005).  For common styrenic perchlorate-

selective resins it is 1 to 1300 (Tripp and Clifford, 2000).  Highly selective resins may 
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have selectivity coefficients of about 3500 (ResinTech, West Berlin, NJ).  Although 

perchlorate attaches very strongly to the functional groups of perchlorate-selective resins 

compared to chloride ion, in presence of chloride a small portion of resin-attached 

perchlorate ions may be exchanged by the chloride ions instantaneously (Lehman et al., 

2008).  However, a significant part of the exchanged perchlorate will re-exchange and re-

attach to the resin (Lehman et al., 2008), because perchlorate is a monovalent anion with 

high selectivity (Crittenden et al., 2005; Sodaye et al., 2007).  Thus, it is likely that the 

chloride generated from perchlorate degradation acts as a desorbing agent for the attached 

perchlorate ions.  My first hypothesis is that resin-attached perchlorate is exchanged by 

chloride, transferred to the PRB cells, and immediately consumed by the cells before re-

exchange occurs.   

Previous studies showed that the degradation rate of resin-attached perchlorate in IX 

resin is high in the first days, but it decreases with time (Figure 1.2) (Batista and Jensen, 

2006; Batista et al., 2007b; Venkatesan et al., 2010).  The reason for this observation may 

be diffusion or reaction rate control.  In a kinetics-controlled process, lower concentration 

of perchlorate remaining in the resin results in a lower biodegradation rate, because of the 

high value of the half saturation constant for perchlorate degradation.  In a diffusion-

controlled process, perchlorate located deep in the resin is degraded slower.  It is thought 

that transfer of desorbed perchlorate ions involves pore diffusion within the resin and 

film diffusion in the liquid layer surrounding the resin.  Film diffusion mostly depends on 

flow rate, turbulence, and viscosity (Helfferich, 1962; Weber, 1972; Lahav and Green, 

2000; Xiong et al., 2007).  Pore diffusion is influenced by viscosity, concentration 

gradient, resin bead size, degree of crosslinking in the structure of resin, and resin pore 
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size (Helfferich, 1962; Xiong et al., 2007).  In this research, it is hypothesized that resin 

bioregeneration is controlled by mass transfer of desorbed perchlorate ions from the inner 

portion of the resin bead to the PRB located in the bulk microbial liquid.  If the 

bioregeneration process is controlled by mass transfer, reducing the resin bead size would 

accelerate the diffusion process and consequently bioregeneration would be faster 

(Helfferich, 1962).   

As it was mentioned earlier, degree of crosslinking and resin pore size affect the pore 

diffusion in the resin bead.  The degree of crosslinking is different for gel-type and 

macroporous resins.  In average, gel-type resins have 8% divinylbenzene crosslinking, 

while, macroporous resins have about 20-25% percent divinylbenzene crosslinking 

(Crittenden et al., 2005).  Increasing the degree of crosslinking decreases diffusion 

(Weber, 1972).  Ion exchange resins have two types of pores; micropores or the pores 

within the gel structure of resin and macropores or the pores between the microspheres of 

macroporous resins (Crittenden et al., 2005).  Gel-type resins have only micropores, 

while macroporous resins have both micropores and macropores resulting in more water 

content in macroporous resins (Du et al., 2010).  Although the degree of crosslinking in 

macroporous resins is greater than in gel-type resins, it is expected that the overall mass 

transfer flux in macroporous resins is higher than that of gel-type resins. This is due to 

presence of macropores and higher water content in macroporous resins.  My third 

hypothesis is that bioregeneration of macroporous ion-exchange resins is faster than gel-

type resins due to higher water content and larger pore sizes which result in faster mass 

transfer process in macroporous resins compared to gel-type resins.   
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Venkatesan at al. (2010) showed that a gel-type selective resin could be loaded and 

bioregenerated for 3 cycles.  However, the resin capacity loss during the cycles was not 

studied.  Observation of the resin beads after 3 cycles of exhaustion-bioregeneration and 

fouling removal showed that biofouling of the resin after 3 cycles was not very 

significant.  The use of macroporous resins compared to gel-type resins is expanding due 

to their stability, resistance to oxidation, and less vulnerability to fouling (Weber, 1972; 

Li and SenGupta, 2000), hence, it is more preferable to use macroporous resins in the 

bioregeneration process.  In this research, the feasibility of bioregeneration and the resin 

capacity loss for several consecutive cycles is investigated using a perchlorate-selective 

macroporous resin.  My hypothesis is that the bioregeneration process can be performed 

on perchlorate-selective macroporous anion-exchange resins for several consecutive 

exhaustion-bioregeneration cycles, because the fouling would be less significant than that 

for gel type resins.  Therefore, there would not be a significant capacity loss in the resin. 
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CHAPTER 2 

STATE OF KNOWLEDGE 

2.1. Perchlorate in the Environment 

Perchlorates are the salts that are derived from perchloric acid.  Perchlorates can 

occur naturally in the environment (Rao, et al., 2007; Dasgupta, et al., 2005) and much 

contamination has occurred due to perchlorate manufacturing and use (Batista et al., 

2002; USEPA, 2005; ITRC, 2007).  In the United States (U.S.), extensive production of 

perchlorate started in the mid 1940’s.  Perchlorate mainly has been employed as 

ammonium perchlorate (NH4ClO4) in the rocket manufacturing industry.  Perchlorate 

usage expanded by employing this salt in the other industries such as manufacturing of 

fireworks, explosives, matches, batteries, air bags, lubricating oils, leather, paints, refined 

aluminum, electronic tubes, mordant for fabrics and dyes, and nuclear reactors (Wu, et 

al., 2008).   

Perchlorate also can occur naturally in soils in arid and semi-arid climates where 

marine seabeds were and climates exposed to lightning storms (Sellers, et. al., 2007).  

Electrical discharge of chloride aerosol in the atmosphere potentially can produce 

perchlorate (Dasgupta, et al., 2005).  Also, exposing aqueous chloride to high 

concentrations of ozone can lead to perchlorate production; rain and snow then release it 

to the environment (Rao, et al., 2007; Dasgupta, et al., 2005).  The largest known natural 

source of perchlorate is located in the Atacama Desert.  This desert supplies Chilean 

nitrate fertilizer for the entire world for many years (Sellers, et. al., 2007).     

Toxicity of perchlorate is well-known through its interference with iodide uptake by 

thyroid gland through functioning of the sodium (Na+)/iodide (I-) symporter in the gland 
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(Kirk, 2006; Wolff, 2002, Stoker et al., 2006).  Iodide is the most essential element in the 

production of thyroid hormone.  Iodide shortage causes cretinism (mental retardation) in 

children and hypothyroidism in adults (Kirk, 2006; Wolff, 2002).   

Perchlorate’s effects on the thyroid gland have been studied since the 1950s, when 

perchlorate was used a medication to limit iodine uptake in the treatment of 

hyperthyroidism (Graves’ disease) (Strawson et al., 2004; Wolff, 1998; Charnley, 2008).  

Greer et al. (2002) reported that a perchlorate dosage of 0.16 mg/kg-day, which is 

equivalent to 11 mg/day for a 70-kg person, corresponds to 50% inhibition of iodide 

uptake in the thyroid gland. 

There are two forms of thyroid hormones; thyroxine (T4) and tri-iodothyronine (T3).  

They are vital to the regulation of protein synthesis, growth and development, brain and 

nerves functioning, and repair organs (Saatcioglu et al., 1994; Anderson, 2001; Cooper, 

2003; Kirk, 2006).  When perchlorate competes with iodine, thyroid hormone production 

reduces.  Deficiency of thyroid hormones especially in newborns has profound damages 

to the development process and metabolism control.  Surviving infants borne form 

mothers suffering hypothyroidism will more probably experience lower IQ even if the 

disease is controlled from birth (Kirk, 2006).   

2.2. Perchlorate Contamination in the U.S.  

Perchlorate contamination was first detected in groundwater wells in California in 

1985 (Tikkanen, 2006).  In 1997, due to the advancements in perchlorate measurement 

techniques, the U.S. Environmental Protection Agency (USEPA) and the California 

Department of Health Services (CDHS) started sampling and monitoring some drinking 

water sources.  Perchlorate has been found and reported at almost 400 surface water and 
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groundwater supplies and soils in 35 states (Tikkanen, 2006), and in at least in 44 states 

there are some release potentials (Lehman, et al., 2008).  Perchlorate contamination has 

become a concern in areas of southern California, Nevada, and Utah.  More than 50% of 

the known perchlorate contaminated sites (about 224 sites) are located in California and 

Texas and some of these sites have the highest reported concentrations (Wang et al., 

2008a).  In 2005, the U.S. Government Accounting Office (GAO) analyzed the available 

data through the country and reported that about 65% of the perchlorate contamination in 

waters in the U.S. is related to defense and aerospace activities (Tikkanen, 2006).  

Unregulated Contaminant Monitoring Rule (UCMR), which is set by USEPA, required 

3,900 public water systems to monitor perchlorate level between 2001 and 2003, and 

1.9% of the total 28,179 sample taken nationwide showed detectable perchlorate levels 

(i.e. concentrations higher than 4 µg/L) (USEPA, 2005).  The UCMR to monitor 

perchlorate has been renewed by USEPA for 4 years from 2007 to 2011 (USEPA, 2005).   

Risk assessment studies have been performed to establish the oral reference dose 

(RfD) for perchlorate.  The RfD is the daily perchlorate dose which is established to be 

protective of human health due to any type of exposure (USEPA, 2002).  In 2002, a RfD 

draft of 0.00003 mg/kg/day was released by USEPA (USEPA, 2002).  In 2005, the 

National Academy of Science (NAS) released the results of an independent research and 

recommended the RfD of 0.0007 mg/kg/day (Tikkanen, 2006).  According to this report, 

USEPA revised the RfD to 0.0007 mg/kg/day, which corresponds to the interim health 

advisory level of 15 µg/L in drinking water (Hristovski et al., 2008).   
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Although perchlorate does not have a Maximum Contaminant Level (MCL) regulated 

by USEPA, it has been regulated by some states.  Table 2.1 shows the advisory levels for 

perchlorate in 9 states (Tikkanen, 2006; Sellers et al., 2007).   

 

 

Table 2.1. Summary of State Drinking Water Advisory Levels for Perchlorate (Compiled 
from: Tikkanen, 2006; Sellers et al., 2007) 

State Limit Level, µg/L 
AZ Health-based guidance level 14 
CA Public health goal notification level 6 
MA Drinking water MCL 2 
MD Health-based guidance level 1 
NJ Health-based MCL 5 
NM Action level 1 
NV Public notice standard 18 
NY Drinking water planning level / notification level 5 / 18 
OR Action level 4 
TX Drinking water action level 4 

 

 

2.3. Perchlorate Removal Technologies 

Perchlorate is a highly soluble non-volatile salt with little sorption affinity for most 

natural materials except some oxides.  Because of its high solubility, perchlorate cannot 

be removed from aqueous environment by using conventional treatment methods such as 

coagulation, sedimentation, filtration, or adsorption by activated carbon (Batista et al., 

2002; Urbansky and Brown, 2003; Min et al., 2004).  Physiochemical methods such as 

ion exchange, reverse osmosis, nanofiltration, electrodialysis, enhanced activated carbon 

removal, and new adsorption technologies have been developed to apply for perchlorate 

removal  (Roquebert et al., 2000; Urbansky, 2000; Gu et al., 2001; Batista et al., 2002; 

Parette and Cannon, 2005; Velizarov et al., 2005).  In all of the above-mentioned 
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physiochemical methods used for perchlorate removal, perchlorate ion is not destroyed, 

but is physically separated from the contaminated water.  A few chemical reduction 

methods also have been investigated.  In the chemical reduction method, transition metals 

are used as either catalysts (e.g. Pt as hydrogenation catalyst) or direct electron donor 

(e.g. Ti3+ and Ru2+) (Urbansky, 1998; Urbansky and Schock, 1999; Mahmudov et al., 

2008).  In chemical reduction methods, perchlorate is destroyed and reduced to chloride.   

In addition to the physiochemical and chemical removal methods, biotechnological 

removal methods have been investigated for perchlorate remediation.  Biological 

reduction using perchlorate-degrading-bacteria (Logan et al., 2001; Batista et al., 2002; 

Gingras and Batista, 2002; Brown et al., 2003) and phytoremediation (Urbansky et al., 

2000; Susarla et al., 2000) have been investigated.  Similar to chemical reduction, 

biological reduction and phytoremediation also destroy perchlorate. Each method has 

some advantages and limitations.  High capital and operation/maintenance cost, 

regulatory issues, and waste management are the most common issues involving 

perchlorate removal technologies.  Advantages and limitations of the available 

technologies are listed in Table 2.2 (compiled from: Roquebert et al., 2000; Urbansky and 

Schock, 1999). 

It is commonly thought that bioreduction and ion exchange technologies are the most 

promising processes to remove perchlorate anion from contaminated aqueous 

environments (Batista et al., 2002; Logan and LaPoint, 2002; Min et al., 2004).  Although 

there are some limitations, ion exchange is a well-known, reliable method with 

reasonable cost; and biological reduction is a method that destroys perchlorate with very 

low operating cost.   
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Table 2.2. Advantages and Limitations of Different Perchlorate Removal Process 
(Compiled from: Roquebert et al., 2000; Urbansky and Schock, 1999) 

Technique Advantages Limitations 
Ion Exchange Reasonable cost 

Highly effective 
Fast reaction 
Easy implementation 

Brine disposal (increase of regenerable resins) 
Resin disposal (in case of non-regenerable 
resins) 
Competition with other ions (e.g. nitrate) 

Biological 
Reduction 

Low operating cost 
Fast reaction 
Possible to perform in existing 
biofilters 
Destruction of perchlorate as 
well as some other 
contaminations 

Low reduction rates at low perchlorate 
concentrations 
Regulatory and/or public acceptance 
Unknown byproducts 
Oxygen competition 

Electrochemical 
Reduction 

Low maintenance 
No toxic byproducts 

High capital and operation cost 
Not proven for drinking water 
Safety 

Enhanced 
Activated 
Carbon Removal 

Fast reaction 
 

High capital cost 
High O&M cost 
Maintenance 

Membrane 
Separation 

Available technology 
High effectiveness 
Fast 
Low cost 

Waste disposal 
Scale problem 
Not selective 
Maintenance 

 

 

2.4. Ion-Exchange Process for Perchlorate and Nitrate Removal 

Ion exchange materials are non-soluble solid materials that contain exchangeable 

anionic or cationic functional groups (Helfferich, 1962), which are covalently bonded to a 

main structure (Szlag and Wolf, 1999).  Basically, ion exchange technology is based on 

exchange of contaminant ion existing in aqueous phase with an innocuous ion attached to 

the ion exchange materials.  The ion, attached to the functional groups of the resin in its 

original form, is called counter-ion.  Figure 2.1 is a schematic ion exchange reactor that 

uses chloride counter-ion to treat perchlorate/nitrate contaminated water. 
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Figure 2.1. Schematic Ion-Exchange Reactor; Contaminated Water Enters from the Left 

Side and Treated Water is Produced through the IX Process 
 

 

Since ion exchange technology has been used in water utilities and homes for many 

years and water utilities are familiar with this technology, this is the strongest candidate 

to be used by water utilities to remove perchlorate from drinking water, compared to 

biological perchlorate degradation.    

2.4.1. Ion Exchange Materials 

Ion exchange process can occur naturally in soils, activated carbon, coal, humus, 

cellulose, wool, lignin, metallic oxides, and even living tissues of plants, animals, algae, 

and bacteria (Weber, 1972).  Historically, ion exchange using natural materials such as 

clay was employed to improve drinking water quality by the ancient Greeks (Weber, 

1972).   

In addition to some natural ion exchange materials, different synthetic ion exchange 

resins have been designed and produced.  First synthetic ion exchange resin was 

developed in 1935 by Adams and Homes (Girolamo and Marchionna, 2001).  Today, 

acrylic and styrenic polymers with divinylbenzene as a cross-linking group are the 

common synthetic ion exchange resins in the market. 

Treated water 

Ion exchange reactor 

Resin bead 
Chloride ion 

 
Perchlorate ion 

 
Nitrate ion 

Perchlorate/nitrate 
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Ion exchange resins can be classified according to the molecular structure and 

different ionic functional groups attached to the main matrix.  Ion exchange resins are 

either cationic or anionic based on the charge of the ion (i.e. counter ion) bonded to the 

functional group.  Therefore, cationic resins are the resins with positive charged counter-

ion, and anionic resins are the resins with negative charged counter-ion.  Synthetic resins 

are categorized as acrylic and styrenic.  Acrylic ion exchange resins are the resins that 

have an aliphatic (i.e. open carbon chain) matrix, and styrenic ion exchange resins are the 

resins that consist of aromatic polymers in their main structure (Szlag and Wolf, 1999).  

The styrenic resins are the most common synthetic resins in the market (Simon, 1991).  

Although the amount of employed divinylbenzene, as a cross-linking group between the 

main structural polymer chains, is small (i.e. usually less than 12% wt), divinylbenzene is 

essential for the three-dimensional structure of resins to keep the polymeric chains of the 

main structure in their specified position (Simon, 1991; Weber, 1972).   

Basically, the most important factor to characterize resins is the difference between 

functional groups.  Based on the functional group type, synthetic resins can be classified 

as strong-acid, weak-acid, strong-base, and weak-base.  This classification is based on 

dissociation constant (i.e. pK) of the functional groups bond to the polymer matrix.  

Resins with pK value higher than 13 are called strong-base resins, and resins with very 

low pK value (i.e. <0) are called strong-acid resins. The resins with moderate pK values 

are weak-base and weak-acid (Crittenden et al., 2005).    

However a very wide variety of functional groups can be attached to the synthetic 

structure of polymeric resins (Szlag and Wolf, 1999).  There are few functional groups 

used to design and produce ion exchange resins for water treatment industry (Crittenden 
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et al., 2005).  Table 2.3 summarizes the common types of resins focusing on the 

employed functional group structure of each type. A brief discussion of structure and 

functional groups attached to the main matrix of synthetic resins is presented in the next 

section. 

 

 

Table 2.3. Common Types of Ion-Exchange Resins and the Resin Structure  
Type of resin Functional group Resin structure 

Strong-base anionic type I  Trimethyl-amine −+ ClNCHR ])([ 33  

Strong-base anionic type II Dimethylethanol-amine −+ ClNOHCHCHCHR ])()([ 2323  

Weak-base anionic Tertiary amine  HOHNCHR ])([ 23  

Strong-acid cationic Sulfonate +− HRSO ][ 3  

Weak-acid cationic Carboxylate +− HRCOO ][  

 

 

2.4.1.1. Strong-Base Resins 

Strong-base ion exchange resins are categorized as type I and type II.  The term 

“strong” is not related to the strength of the resin matrix.  Fundamentally, the complete 

dissociation of the functional groups at any practical pH, based on Arrhenius theory of 

dissociation, is the reason to define the strength level of this type of resin.  The functional 

group in strong base resins is positive-charged quaternary amine which is attached to the 

main polymeric matrix (Crittenden et al., 2005).  The hydroxide counter ion is connected 

to functional group and will be exchanged with available anions in water.  For type I, the 

exchange reaction can be written as (Crittenden et al., 2005) 

−−+−−+ +↔+ nOHANCHRnAOHNCHRn nn ])([])([ 3333                                         (2.1) 
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The over-bar in the above exchange chemical reaction indicates the immobile part of 

the resin structure.   

Type II exchange reaction is slightly different from type I, because of the structure of 

the functional group as written below (Crittenden et al., 2005) 

−−+−−+ +↔+ nOHANOHCHCHCHRnAOHNOHCHCHCHRn nn ])()([])()([ 23232323   

(2.2) 

The main difference between type I and type II is presence of an ethanol group in 

type II quaternary amine.  Ethanol group is added to type II because it reduces the resin’s 

affinity for hydroxide ion.  Type I strong base ion exchange resin has higher chemical 

stability than the type II does.  Having stronger matrix, type I strong base resin does not 

react with the chemicals in its environment and it does not dissolve in water.  In contrast, 

type II has higher capacity and regeneration efficiency than type I (Crittenden et al., 

2005).   

OH- as the counter-ion has typically larger hydrated radius than other anions in water.   

Hydrated radius is the true radius (i.e. effective size of an ion plus its associated water 

molecules in solution) of the ion in solution.  Therefore, the resin shrinks after the 

exchange process with the ions with larger hydrated radius (Crittenden et al., 2005).  The 

use of strong base ion exchange resins is increasing to remove nitrate, arsenic, and 

perchlorate (Baciocchi et al., 2005).  In these cases, the resin is used in chloride form.   

2.4.1.2. Weak-Base Resin 

A tertiary amine group, which does not have a permanent positive charge, is the 

functional group in weak base ion exchange resins.  Tertiary amine functional groups that 

are available in freebase form have a water molecule (HOH) which can be dissociated 
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and then absorb anions without exchanging any negative ions with the solution 

(Helfferich, 1962).  The exchange reactions to uptake an anion for weak base ion 

exchange resin can be written as (Crittenden et al., 2005) 

HOHHANCHRAHHOHNCHR +↔++ −+ ])([])([ 323                                            (2.3) 

Weak base resins also can adsorb free mineral acids (e.g. HCl and H2SO4) using their 

tertiary amine functional groups.  Thus, sometimes weak base synthetic ion exchange 

resins are called acid adsorbers (Crittenden et al., 2005).  In this case HOH molecule is 

released to the solution as a result of exchange process (Crittenden et al., 2005): 

HOHHANCHRHAHOHNCHR +↔+ ])([])([ 323                                                     (2.4) 

Weak base resins work properly in the solutions with the pH between 6.7 and 8.3 at 

25°C (Crittenden et al., 2005).  NaOH, NH4OH, or Na2CO3 can be used to regenerate 

these resins.  The regeneration efficiency for weak base resins is much higher than that of 

either type I or type II of strong base resins.   

2.4.1.3. Strong-Acid Resin      

The functional group in strong acid synthetic ion exchange resins is a charged 

sulfonate group.  Sulfonate functional group normally is dissociated completely at any 

pH of the solution (Crittenden et al., 2005).  The chemical equation of exchange reaction 

for strong acid resin is as below (Crittenden et al., 2005). 

++−++−
+↔+ nHMRSOnMHRSOn nn ][][ 33                                                               (2.5) 

Since the hydrated radius of H+ is much larger that other cations, strong acid resin shrinks 

after the exchange process (Crittenden et al., 2005).  The shrinkage is about 7% for gel 

type resin and 3 to 5% for macroreticular type resin (Crittenden et al., 2005).  
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2.4.1.4. Weak-Acid Resin 

In weak acid ion exchange resins, the functional group is normally a carboxylate 

group.  This type of resins has a high affinity to hydrogen ion and does not exchange it 

easily at a pH less than 6.  The exchange reaction in weak acid ion exchange resin is 

described below (Crittenden et al., 2005). 

++−++− +↔+ nHMRCOOnMHRCOOn nn ][][                                                          (2.6) 

Weak acid ion exchange resin has higher affinity for proton ion compared to strong 

acid resin.  Thus, regeneration of weak acid resin requires less acid (i.e. HCl or H2SO4) 

compared to strong acid resin.   

In practice, weak acid ion exchange resin usually is used to treat the cations in waters 

containing low dissolved carbon dioxide and high alkaline species (e.g. CO3
2-, OH-, and 

HCO3
-) (Szlag and Wolf, 1999).  Combinations of strong acid and weak acid resins can 

be used to reduce the volume of regenerant, and the product water has the same quality as 

just using strong acid resin alone in the process.  

2.4.2. Physical Properties of Synthetic Ion-Exchange Resin 

Physical properties (e.g. hydration and swelling, density, resistance to osmotic shock, 

diffusion, and pore size) of synthetic ion exchange resins are the properties related to 

structural matrix of the polymer (Simon, 1991).  The amount of employed divinylbenzene 

in the polymerization process is the most important factor determining the physical 

properties of ion exchange resins (Szlag and Wolf, 1999). 

The density of ion exchange resin is one of the important physical properties related 

to degree of cross-linking.  In practice, the amount of cross-linking can vary between 2% 

and 16%, and as a result, density will increase from 90 g/L to 500 g/L for resins in the 
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hydrogen form, respectively (Simon, 1991).  The resin may be damaged during the 

treatment operation when the amount of cross-linking is low.  In contrast, high degree of 

cross-linkage results in higher resin manufacturing costs (Simon, 1991).  

Swelling of synthetic resins depends on the amount of divinylbenzene cross-linkage, 

nature of functional groups and the hydrated radius of the contaminant ion which is 

exchanged with the original counter ion.  Higher degree of divinylbenzene cross-linkage 

will decrease the amount of water in the resin bead, and as a result, the percentage of 

swelling will be lower.  

Osmotic shock in synthetic ion exchange resin is due to submission of the resin media 

to different concentration of solutes, due to normal cycles of exhaustion/regeneration.  

During the regeneration cycle, high concentrations of solute in the solution will attract 

water inside the beads and make the resin to shrink.  In contract, during the operation, the 

resin will swell due to reverse concentration gradient. The resin structure should have 

enough structural support to be able to tolerate several cycles of swelling and shrinking 

without developing structural fractures (Simon, 1991). 

In order to be exchange with the original counter ion of a functional group located 

inside the bead, an ion should diffuse through the liquid boundary layer and the solid 

resin phase to reach to the target functional group.  In addition, the exchanged ion should 

diffuse in the opposite direction to reach the liquid phase of the system.  Both resin bead 

size and cross-linking degree are important physical properties to determine the speed of 

exchange process (Simon, 1991).  Increasing the divinylbenzene cross-linking will 

decrease the diffusivity and the mass transfer rate (Simon, 1991), and as a result more 

time is needed in order to exchange specified amount of the ions in solution.  The effect 
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of these physical properties in the kinetics of exchange has been discussed in detail in the 

“kinetics of ion exchange process” section.   

2.4.2.1. Gel-type and Macroporous-type Resins 

Synthetic resins can be categorized according to their polymeric matrix to gel 

(microreticular) resins and macroporous (macroreticular) resins (Crittenden et al., 2005).  

Conventional synthetic resins are homogeneous gel-type resins in which the pore is the 

distance between polymeric chains (Kun and Kunin, 1964; Kun and Kunin, 1968).  In 

contrast, macroporous resins in addition to gel-type porosity have considerable non-gel 

porosity.  The channel network between the tiny sphere-shaped particles that constitute 

macroporous resin is called the non-gel porosity (Kun and Kunin, 1964) 

Initially, the reason to develop macroporous resins was irreversible fouling problem 

in the gel type resins (Simon, 1991).  Normal ions in the ion exchange process are 

relatively small (i.e. < 10 Å or 0.001 µm).  Removal of large natural organic acids with 

the molecular size of 100 Å (0.01 µm) and larger, which exchange with counter ion of 

basic synthetic resins, is very difficult (Simon, 1991).  This exchange is often 

irreversible.  To be able to accommodate the operation in presence of organic acid 

molecules, macroporous resins have been developed (Simon, 1991).  

The cross-linking degree is different between gel-type and macroporous resins. In 

average, gel-type resins have 8% divinylbenzene, ranging from 4-10%, while 

macroporous resins have about 20-25% percent divinylbenzene cross linking (Crittenden 

et al., 2005). High water content and significant amount of shrinking/swelling are the 

characteristics of the gel-type resins.  In contrast, macroporous resins do not shrink or 

swell similar to gel-type, due to the ion exchange process.  Gel type resin looses its 
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porous structure, after shrinking when it is exposed to a drying situation (Crittenden et 

al., 2005). The measured surface area for each gram of gel-type resin has been reported 

about 2 m2, while, the surface area for each gram of macroporous resin has been 

measured about 7 to 600 m2 (Crittenden et al., 2005).   

Pore size of gel-type and macroporous resins have been measured and reported in the 

literature.  Pietrzyk (1969) measured the pore size of three different gel-type resins, and 

the average pore size for all three was reported 5 to 50 Å (0.0005 to 0.005 µm).  In the 

same article, the average pore size of three different macroporous resins was measured 

and reported as 290, 205, and 90 Å (0.029, 0.0205, and 0.009 µm) (Pietrzyk, 1969).  

While using macroporous resins to treat the waste effluent Kunin (1976) has measured 

the pore size of five macroporous ion exchange resins, and in all resin samples the pore 

size has been reported to be smaller than 250 Å (0.025 µm) (Kunin, 1976).  Pore diameter 

changes during the styrene-divinylbenzene polymerization step throughout the 

macroporous resin manufacturing process (Kun and Kunin, 1964).  

There are two common methods for the preparation of macroporous synthetic ion 

exchange resins (Simon, 1991).  In the first method, a monomer with a known molecular 

weight is added to styrene-divinylbenzene during the polymerization stage.  After the 

polymerization stage, the foreign polymer is converted to a soluble organic electrolyte.  

This soluble organic electrolyte is washed from the main structure during the extraction 

stage and leaves the macro-pores (Simon, 1991).  The second method, which is the most 

common method, is known as phase separation.  In this method, first a solvent is added to 

the styrene-divinylbenzene mixture.  The solvent should have special characteristic in 

order to be soluble in the monomers.  The solvent should precipitate during the 
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polymerization stage.  After the polymerization stage, the solvent is removed from the 

pores of the main matrix using extraction technique (Simon, 1991).  During the second 

method of macroporous resin manufacturing, the average pore size of the resin media 

first decreases, next increases, and then decreases (Kun and Kunin, 1964).  The final 

average pore size has been reported as 600 Å (0.06 µm), and sizes range from 130 Å to 

10,000 Å (0.013 to 1 µm) (Kun and Kunin, 1964).  However, production of macroporous 

resins with larger pore size is possible.  Poinescu and Vlad (1996) have performed twenty 

experiments on macroporous resin production and reported average pore size of 15 to 198 

nm (150 to 1980 Å) for macroporous resins.  It seems that the average pore size of 

macroporous ion exchange resin is mostly in ångstrom (Å) level, and even in 

macroporous resins with large pore size, it is in nanometer level.   

2.4.3. Fouling; A Common Issue in Ion-Exchange Process 

Fouling is a problem to all surfaces exposed to aqueous environments that contain 

inorganic substances, organic substances, or microorganisms.  In the water industry, 

fouling is a common problem in ion exchange beds, electrodialysis systems, and 

membrane units (Park et al., 2003; Park et al., 2005; Lee et al., 2009).  In cation exchange 

resin systems, hydrous oxides of iron, copper, magnesium, manganese, aluminum, 

calcium sulfate, grease, oil, and suspended matter are the most common foulants (Pelosi 

and McCarthy, 1982).  The foulants that most often plague anion exchange resins are 

high molecular weight organics and colloidal silica (Baker et al., 1979; Pelosi and 

McCarthy, 1982; Lee et al., 2009).  High molecular weight organics could be natural 

organic matter (NOM) molecules or soluble microbial products (SMP).  Fouled resin is 
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usually darker in color compared to the fresh resin.  Low pH and high conductivity of the 

treated water are the indicators of organic fouling (Pelosi and McCarthy, 1982).   

The most common fouling in strong base anion exchange resins is organic fouling, 

which is due to high-molecular-weight NOM and/or SMP molecules (Pelosi and 

McCarthy, 1982; Humbert et al., 2007; Kabsch-Korbutowicz et al., 2008; Nkambule et 

al., 2009a).  NOM molecules are the molecules resulting from the break down of plants 

and animals in the environment (Jarvis et al., 2008; Nkambule et al., 2009b), while SMP 

molecules are the organic molecules released during bacterial cell lysis or lost during 

synthesis (Rittmann and McCarty, 2001).  In general, NOM can be divided into two main 

categories of organic molecules: identified bio-polymers and humic substances (Humbert 

et al., 2007; Kabsch-Korbutowicz et al., 2008; Nkambule et al., 2009b).  Identified bio-

polymers consist of polysaccharides, proteins, and amino sugars that are introduced to 

water due to degradation of animal and plant tissues (Kabsch-Korbutowicz et al., 2008; 

Nkambule et al., 2009b).  Humic substances are the organic molecules that are originated 

from a complex chemical process called humification.  The nature of humic substances 

has not been well defined (Humbert et al., 2007).  Humic-like substances have higher 

molecular weight and are more easily degraded under aerobic conditions, while identified 

bio-polymers have lower molecular weight and are more readily degradable under 

anaerobic conditions (Park et al., 2005).  High-molecular-weight organics cause problems 

in ion exchange systems because of both their large molecular size and the presence of 

many functional groups (i.e. phenol, hydroxyl, carbonyl, and carboxyl) in their molecular 

matrix (Pelosi and McCarthy, 1982; Boyer and Singer, 2008; Kabsch-Korbutowicz et al., 
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2008).  Since each of these molecules has several functional groups, it can occupy several 

functional group sites of the ion exchange resin.   

There are two main mechanisms responsible for the adsorption of organic molecules 

from water by strong base ion exchange resins: ion exchange adsorption and van der 

Waals’ type forces (Baker et al., 1979).  On the one hand, organic material is normally 

negatively charged.  This negative charge results in anionic exchange phenomenon.  On 

the other hand, relatively hydrophobic and rougher surfaces have higher selectivity for 

organics compared to hydrophilic and smoother surfaces (Park et al., 2005).  Strong base 

anionic resins are mostly made of polystyrene which is a hydrophobic polymer (Baker et 

al., 1979).  Hydrophobicity of polystyrene anion exchange resins makes them more 

selective for some anions (e.g. perchlorate) (Yoon et. al., 2009).  Van der Waals’ type 

forces that result in adsorption to the anion exchange resin are due to the hydrophobicity 

of the structure of the resin and the dissolved hydrophobic organic material presented in 

the environment (Baker et al., 1979).   

Fouling leads to weakening of resin bed performance.  Capacity loss is the most 

important problem in ion exchange systems.  In general, foulants can coat the resin beads 

and/or occupy the functional groups on and within the bead, preventing the proper flow 

and ion exchange phenomenon (Pelosi and McCarthy, 1982; Park et al., 2003).  The 

diffusion of exchanging ions through the pores of the resin is hindered by the slow-

diffusing large organic molecules (Kabsch-Korbutowicz et al., 2008).  Precipitation 

and/or adsorption of these large organic molecules within the resin matrix confine the 

free-flow area of the resin pores (Lindstrand et al., 2000b).  Precipitation is affected by 

solubility of the substance, and adsorption is governed by electrostatic and hydrophobic 
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interactions between the substance and the resin surface (Lindstrand et al., 2000a).  

Hence, the resin bed will not service to its theoretical capacity.   

Leakage of some foulants that are slowly eluted from the bed after regeneration steps 

is another problem that may occur due to resin fouling (Park et al., 2003).  For instance, 

high-molecular-weight organic acids, colloidal silica, magnesium hydroxide, calcium 

carbonate, and calcium sulfate are the foulants that may have continuous leakage during 

the service cycles.  In severe cases, channeling due to accumulation of adsorbed foulants 

to the resin beads may occur.   

The most common reagent to remove organic fouling from anion exchange resin is 

brine solution (DOW, 2009; Keller, 2009).  Increasing the pH of brine using a caustic 

solution (e.g. NaOH) promotes the efficiency of brine solutions to remove the foulants 

from the resin (Keller, 2009).  Studies have shown that monovalent species such as NaCl 

and NaOH have better efficiency for fouling removal of organic matter than polyvalent 

oxygenated ions (e.g. CaCl2 or Ca(OH)2) (Wilson, 1959).  Moreover, the chloride ion has 

more efficiency than the hydroxyl ion for organic removal (Wilson, 1959; Tilsley, 1975; 

Keller, 2009).  The benefit of using sodium chloride and sodium hydroxide solutions for 

organic fouling removal is that these reagents do not degrade the resin backbone (Dow, 

2002; Dow, 2009).  Studies have shown that increasing the concentration and contact 

time of fouling removal reagents increases the efficiency of the fouling removal process 

(Wilson, 1959; Dow, 2009).  Increasing the temperature of the reagent also helps to 

increase the efficiency of the fouling removal process.  However, the temperature should 

be no more than 95 to 100ºF (35 to 38ºC) to avoid resin damage (Wilson, 1959; Purolite, 

1999).  Several methods using sodium chloride and sodium hydroxide solutions for 
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organic fouling removal in different concentrations, contact times, bed volumes, and 

temperatures have been developed (Purolite, 1999; Dow, 2002; Dow, 2009; Envirotech, 

2009).   

There are some alternatives for organic fouling removal form ion exchange resin.  A 

common substitute for using NaCl is sodium hypochlorite (NaOCl) (Dow, 2009).  Using 

sodium hypochlorite has another benefit: it also disinfects the resin bed and prevents 

microbial growth.  It has been shown that sodium hypochlorite solution is slightly more 

effective than sodium chloride solution to remove humic acid fouling (Keller, 2009).  The 

concentration of sodium hypochlorite should be monitored to control the amount of 

disinfection by-product production and to reduce the risk of resin oxidation that results in 

reduction of resin capacity (Keller, 2009; Kemper et al., 2009; Lee, 2009).  Sodium 

hypochlorite solutions of 0.01% to 3% with contact time of 20 to 30 min have been used 

for organic fouling removal purposes (Wilson, 1959; Dow, 2002).  The Dow Chemical 

Company has a detailed protocol for organic fouling removal from anion exchange 

resins.  In this procedure concentration of 0.1-0.25% at the pH of 9.0 with the average 

contact time of 25 min has been suggested as the appropriate concentration at ambient 

temperature (Dow, 2009). 

Other organic fouling removal reagents such as peracetic acid (PA) and hydrogen 

peroxide also have been employed for organic fouling removal purposes (Purilite, 1999; 

Dow, 2002; Park, 2002; Envirotech, 2009; Dow, 2009).  Peracetic acid (PA) and 

hydrogen peroxide have shown an effective treatment on both cationinc and anionic 

exchange resins.  Peracetic acid solutions at concentrations of >1000 (mg/L) have been 

applied and showed significant bactericides effects at ambient temperature have been 
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shown (Envirotech, 2009).  The contact time of one hour has been suggested for peracetic 

acid (Purilite, 1999).  The spent solutions resulted from cleaning and/or disinfection 

process are biodegradable (Envirotech, 2009).  The Dow Chemical Company has 

developed a detailed procedure of fouling removal from ion exchange resin systems that 

uses hydrogen peroxide to treat biological foulants.  In this procedure the suggested 

concentration of hydrogen peroxide is 2% with the contact time of 20-30 min (Dow, 

2009).  Hydrogen peroxide also has been used in concentrations of 0.05% with the 

contact time of 2 hours and 0.05% with the contact time of 24 hours (Dow, 2002).   

2.4.4. Selectivity of Ion-Exchange Resin 

The affinity of resin for a certain ion in aqueous solution is called selectivity.  

According to this affinity, the direction of exchange reaction is determined.  Resin 

selectivity depends on physical and chemical characteristics of the exchanging ions.  The 

magnitude of the valence and the atomic number of the ion are important factors in 

selectivity (Crittenden et al., 2005).  The selectivity increases with larger magnitude of 

the mentioned chemical properties.  Pore size distribution and the type of functional 

groups on the polymer chain are also determinant factors for the selectivity of the resin.  

The molality of the ions in the solution also affects the selectivity (Crittenden et al., 

2005). 

Amount of swelling or pressure within the bead is also important for resin selectivity.  

In an aqueous environment, all the free ions and also resin-phase ions are surrounded by 

water molecules.  This radius varies for different ions.  Normally, when the size of the 

ion increases, the radius of hydration becomes smaller (Crittenden et al., 2005).  When 

ions with large hydration radius enter the resin bead, the water molecules surrounding 
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them also enter that space, and cross-linking structure that holds the chains together resist 

for the swelling forces. Thus, entering the ions with large hydration radius causes some 

swelling forces to the overall resin structure.  Therefore, ions with smaller radius of 

hydration are more preferred by the resin because they decrease the swelling pressure of 

the resin.  These ions make a tight bound with the resin.   

Sulfate is the main competitor of perchlorate in the IX process.  Sulfate ions exhaust 

most of the capacity of resin.  Hence, the resin cannot remove perchlorate only after a 

few bed volumes of water pass through the IX column (Clifford and Weber, 1986).  

Selective resins have high affinity for the ions of interest (e.g. nitrate or perchlorate) 

wand very low affinity for competitor ions, particularly sulfate.  The most important 

factor affecting the selectivity of IX resins is the spacing of functional groups (Clifford 

and Weber, 1986).  The distance between active functional groups affects the divalent / 

mono-valent selectivity of the IX resin.  A divalent ion requires two adjacent active 

functional groups to connect to and to satisfy electroneutrality of the exchange chemical 

reaction.  Therefore, increasing the distance between active functional groups decreases 

the selectivity for a divalent ion (e.g. sulfate) (Crittenden et al., 2005).   

The order of preference for some alkali metals, alkaline earth metals, and anions are 

presented below (Crittenden et al., 2005). 

Cs+ > Rb+ > K+ > Na+> Li+ (Crittenden et al., 2005) 

Ba2+ > Sr2+ > Ca2+ > Mg2+ > Be2+ (Crittenden et al., 2005) 

ClO4
- > I- > ClO3

- > NO3
- > Br- > NO2

- > BrO3 > Cl- > CH3COO- > HCO3
- > OH- > F- 

(Crittenden et al., 2005; Sodaye et al., 2007)  
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As it is apparent from the selectivity of the above-mentioned anions, perchlorate ion 

has the most affinity for anionic resins among the listed anions (Crittenden et al., 2005; 

Sodaye et al., 2007; Lehman et al., 2008).   

Ionic strength of the solution is an important factor for selectivity.  When the ionic 

strength of the solution increases, the preference of the resin for divalent ions compared 

to mono-valent ions decreases.  This is the main reason why very high saline solutions 

are used in the regeneration cycles.  The use of regenerant solutions with high 

concentrations in the regeneration cycle enhances the efficiency of the process.  

However, in some cases such as perchlorate, even using high strength saline solution is 

not able to regenerate the resin (Lehman et al., 2008).  

The law of mass can be applied to the ion exchange reaction when the exchange 

reaction is assumed as a stoichiometric reaction.  Thus, the following generalized 

equation can represent the ion exchange process (Crittenden et al., 2005).  

±±±±±± +↔+ nABRnBARn nn ][][                                                                               (2.7) 

where 
±R  is the functional group of the ion exchange resin, A and B are exchanging 

ions, and n is the valence of the ion. 

The equilibrium coefficient can be written for the above reaction where A
BK  is called 

selectivity coefficient for ion A exchanging with ion B.  Selectivity coefficient is a 

coefficient that compares the affinity of a resin to a certain ion compared to a reference 

ion which is Cl- in anionic resins and Na+ in cationic resins. Selectivity coefficient can be 

expressed as the following equation.   
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[A±] and [B±] are the concentration of counter-ion and contaminant ion, respectively.  

And }{ ±± AR  and }{ ±± nBR are the activities of resin-phase counter-ion and contaminant 

ion, respectively.  The selectivity coefficient for different ions has been well-studied and 

reported in many textbooks and articles. 

Selectivity coefficient is not constant and is affected by several factors (Crittenden et 

al., 2005).  The following factors may influence the selectivity coefficient of resins: size 

and charge of exchangeable ions; resin properties such as particle size, cross-linking 

amount, type of functional groups; water characteristics including concentration of 

different ions and organic compounds; and temperature (Crittenden et al., 2005). 

Selectivity coefficient is a very practical factor to express the selectivity of a 

contaminant ion compared to the counter-ion.  Table 2.4 shows some typical separation 

factors for commercial resins.  The higher the selectivity coefficient, the greater the 

affinity of the resin for the target ion. 

Generally, type I strong-base ion exchange resins with quaternary amine functional 

groups attached to the aromatic styrenic chain with divinylbenzene cross-linking bridges 

are considered to be hydrophobic compared to polyacrylic resins (Gu and Brown, 2006).  

Therefore, type I strong-base ion exchange resins have high affinity for poorly hydrated 

anions such as perchlorate (Gu and Brown, 2006).  Replacement of one of the trialkyl 

groups with an ethanol increases the hydrophilic characteristics.  Thus, type II strong-

base ion exchange resins are less selective for perchlorate anion.  Studies showed that 

increasing the length of trialkylic group from methyl to butyl or hexyl increases the 

hydrophobic characteristics in addition to charge separation distance (Gu and Brown, 

2006).  Thus, the selectivity of the resin for perchlorate increases by increasing the length 
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of trialkylic group (Gu and Brown, 2006).  Increasing the length of functional group from 

methyl to ethyl and then to propyl affects the selectivity coefficient significantly from 

125 to 1100 and finally to 1500, respectively (Batista et al., 2002).  Although increase in 

the length of functional group increases the selectivity of the resin, these long-chain 

functional groups were found to have slower exchange kinetics (Batista et al., 2002).  To 

address this issue, a bi-functional resin consisting of quaternary amine groups with large 

(C6) and small (C2), which has a high selectivity and acceptable kinetics, has been 

manufactured and tested by Oak Ridge National Laboratory (ORNL) (USEPA, 2004). 

 

 

Table 2.4. Some Typical Selectivity Coefficient for Strong-acid and Strong-base Resins 
(Crittenden et al., 2005) 

Strong-Acid Cation Resins 
Polysterene divinylbenzene matrix with 
sulfonate functional groups 

Strong-Base Anion Resins 
Polysterene divinylbenzene matrix with type-I 
functional groups 

Cation Selectivity, i

Li
K +  Anion Selectivity, i

Cl
K −  

Li + 1.0 HPO4
2- 0.01 

H+ 1.3 CO3
2- 0.03 

Na+ 2.0 OH- (type I) 0.06 
NH4

+ 2.6 F- 0.10 
K+ 2.9 SO4

2- 0.15 
Rb+ 3.2 CH3COO- 0.2 
Mg2+ 3.3 HCO3

- 0.4 
Zn2+ 3.5 OH- (type II) 0.65 
Cu2+ 3.8 BrO3

- 1.0 
Be2+ 4.0 Cl- 1.0 
Mn2+ 4.1 CN- 1.3 
Ca2+ 5.2 NO- 1.3 
Ba2+ 11.5 HSO4

- 1.6 
Ra2+ 13.0 Br- 3.0 
  ClO4

- (for polyacrylic resin) 5.0 
  ClO4

- (for polystyrene resin) 150 
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Instead of concentration of ions, the equivalent fractions can be used in the 

equilibrium equation. The preference of the resin for one ion over another can be 

represented as separation factor (Crittenden et al., 2005).   

ji

jii
j YX

XY
=α                                                                                                                      (2.9) 

where Xi and Xj are equivalent fraction of counter-ion and contaminant ion in 

aqueous phase, respectively, and Yi and Yj are resin-phase equivalent fraction of counter-

ion and contaminant ion in aqueous phase, respectively.  Like selectivity coefficient, the 

higher relative separation factor, the greater affinity of the resin for the target ion. 

2.4.5. Common IX Resins and Their Application to Remove Perchlorate 

According to the selectivity coefficients, ion exchange resins used to remove 

perchlorate from water can be categorized in two groups: perchlorate selective resins and 

perchlorate non-selective (conventional) resins.   

Non-selective resins have relatively lower affinity for perchlorate, thus other anions 

can compete with perchlorate and occupy most of the functional group sites.  Therefore, 

the breakthrough point occurs more frequently, and as a result the resin bed should be 

regenerated more often.  The disadvantage of using these resins is more frequent 

regeneration cycles due to the low affinity of these resins for perchlorate, and production 

of waste brine with high perchlorate concentration.   

Selective resins have high efficiency in perchlorate removal and can remove 

perchlorate for several bed volumes without leakage. However, the regeneration of these 

resins using the conventional methods is almost impractical.  Table 2.5 lists the 

commercially available perchlorate selective and perchlorate non-selective resins used for 

perchlorate removal.   
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Table 2.5. Common Available Perchlorate-selective and Perchlorate-non-selective Resins 

ManufacturerResin Type
Commercial 

name 
Water 

Content (%)
Capacity 
(eq/L) 

Resin 
structure 

Functional group 

Calgon selective CalRes 2103 50-70 NA NA NA* 

DOW selective 
DOWEX 
PSR-3 

50 - 65 0.6 
Styrene, 

Macroporous 
(CH3)3 Cl- ** 

DOW selective 
DOWEX 
PSR-2 

40-47 0.65 Styrene, Gel (CH3)3 Cl- 

DOW 
non-

selective 
DOWEX 
NSR-1 

53-63 0.9 
Styrene, 

Macroporous 

Article I. (CH3)2 
(CH2)2 OH Cl- *** 

DOW selective 
DOWEX-

1 
43-48 1.4 Styrene, Gel (CH3)3 Cl- 

Purolite 
non-

selective 
A520E 50-56 0.9 

Styrene, 
Macroporous 

(CH3)3 Cl- 

Purolite selective A530E ~50 0.55 
Styrene, 

Macroporous 
(CH3)3 Cl- 

Purolite selective A532E 36-45 0.75 Styrene, Gel (CH3)3 Cl- 

Purolite 
non-

selective 
A600E 43-48 1.4 Styrene, Gel (CH3)3 Cl- 

Purolite 
non-

selective 
A850E 57-62 1.25 Acrylic, Gel (CH3)3 Cl- 

ResinTech selective 
SIR-110-

HP 
35-55 0.6 Styrene, Gel (C4H9)3Cl- 

ResinTech selective 
SIR-110HP-

MACRO 
58-

65**** 
0.6 

Styrene, 
Macroporous 

(C4H9)3Cl- 

ResinTech 
non-

selective 
SIR-100 50-65 1.0 Styrene, Gel (CH3)3 Cl- 

ResinTech 
non-

selective 
SIR-

100HP 
52-60 0.85 

Styrene, 
Macroporous 

(CH3)3 Cl- 

ResinTech 
non-

selective 
SBG-1HP 43-50 1.45 Styrene, Gel (CH3)3 Cl- 

ResinTech 
non-

selective 
SBG-2HP 37-45 >1.45 Styrene, Gel (CH3)3 Cl- 

Rohm & 
Haas 

selective PWA2 34-42 >0.6 Gel NA 

Rohm & 
Haas 

non-
selective 

PWA5 52-58 >1.0 NA NA 

Rohm & 
Haas 

non-
selective 

PWA12 57-64 >1.25 NA NA 

Sybron 
non-

selective 
ASB-1 43-48 1.4 Styrene, Gel (CH3)3 Cl- 

Sybron 
non-

selective 
SR-7 52-67 0.6 

Styrene, 
Macroporous 

(CH3)3 Cl- 

* Not Available 
** Type I quaternary amine functional group 
*** Type II quaternary amine functional group 
**** Estimated based on Ion Exchange chapter (chapter 16, Crittenden et al., 2005).  
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Tripp and Clifford (2006) performed research on fifteen perchlorate selective and 

non-selective resins and reported the selectivity of the resins for perchlorate.  According 

to this research, macroporous resins have higher affinity for perchlorate than gel-type 

resins.  In 20ºC, macroporous resins have selectivity coefficient ranging from 5.5 to 134, 

while, the selectivity coefficient for macroporous resins is between 145 and 1300 (Tripp 

and Clifford, 2006).  This research shows that macroporous resins are preferred to gel-

type resins due to their higher selectivity coefficient for perchlorate.  

In addition to strong-base resins discussed above, weak-base resins have also been 

used to remove perchlorate from waters (Batista et al., 2002).  While, the acrylic type 

weak-base resin can be economically regenerated using either NaCl or NaOH solutions, 

styrenic type weak-base resin cannot be completely regenerated (Batista et al., 2002).  

But, due to presence of other ions in waters, it is not economical to use the weak-base ion 

exchange resins in the treatment processes.  

Commercial application using ion exchange resins to remove perchlorate started in 

1999.  The first commercial Calgon ISEP® system with the total capacity of 2500 gpm 

was installed to treat three wells in La Puente Valley Water District located in Southern 

California (California EPA, 2004, ITRC, 2007).  The system contained Purolite A-850 

resin.  The influent concentration of perchlorate was ~ 200 ppb and the effluent 

perchlorate was < 4 ppb.  In 2000, Lawrence Livermore National Laboratory started three 

Sybron Ionic SR-7 plants with the capacity of 5000, 1400, and 1000 gpm.  The project 

target was to reach a perchlorate concentration of < 4 ppb in the effluent, while the 

influent concentration for three plants was 10 ppb, 10 ppb, and 7.5 ppb, respectively 

(California EPA, 2004).  A 2000 gpm plant using Amberlite PWA2, manufactured by 
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Rohm and Haas, was designed to be operated in Aerojet, Sacramento, CA, in 2001.  The 

influent concentration in this plant was 50 ppb and the effluent was designed to be < 4 

ppb (ITRC, 2007).  In 2002, another Calgon ISEP® system with the total capacity of 450 

gpm was started to treat water in Kerr-McGee, Henderson, Nevada. This system operated 

for 6 months and operation was discontinued due to maintenance problems caused by 

high TDS, hardness, and sulfate (California EPA, 2004).  In this system, the influent and 

effluent perchlorate concentrations were 100 ppb and < 2 ppb.   

Several other ion exchange systems to remove perchlorate from drinking water have 

been designed and installed in the recent five years.  Most of these systems are located in 

California and Arizona with the capacity ranging from 24 gpm to 5000 gpm (ITRC, 

2007).  The effluent target for most of these ion exchange systems was < 4 ppb.  The 

highest perchlorate influent concentration in the installed ion exchange systems was 200-

300 ppm in Kerr-McGee, Henderson, Nevada.  This 850 gpm system was replaced by a 

biological FBR in 2004 (ITRC, 2007).   

2.4.6. Regeneration of Ion Exchange Resin 

After the capacity of ion exchange resin is exhausted, the resin bed is not able to 

remove the contaminant ions form the aqueous environment any more.  Regeneration is a 

chemical process that uses very high strength solution of the original counter ion to 

reestablish the exchange capacity.  Theoretically, most of the common resins can be 

100% regenerated. But, it is very costly to regenerate a resin bed to its initial capacity.  

Thus, cost-benefit studies are required to establish an efficient schedule for regeneration.   

The following regeneration equations show the regeneration reaction for strong-base 

ion exchange resin with NaCl and NaOH, respectively.   
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−+−+−+ +↔+ 433433 )(])([])([ ClONaClNCHRNaClClONCHR                                   (2.10) 

−+−+−+ +↔+ 433433 )(])([])([ ClONaOHNCHRNaOHClONCHR                              (2.11) 

Similarly, regeneration equation for weak-base ion exchange resin using NaCl and 

NaOH can be written as the following equations, respectively.  

43423 ])([])([ NaClOHClNCHRNaClHClONCHR +↔+−                                         (2.12) 

43423 ])([])([ NaClOHOHNCHRNaOHHClONCHR +↔+−                                    (2.13) 

However, perchlorate non-selective resins can be regenerated using brine solution 

(Gingras and Batista, 2002; Lehman et al., 2008).  Regeneration of perchlorate selective 

resins, using conventional method (i.e. using brine solution as the regenerant) is 

impractical (Gu et al., 2001).  In order to regenerate perchlorate non-selective ion 

exchange resins, concentrated mono-valent anion solutions can be used.  Typical counter-

ion for basic anion resins are chloride and hydroxide in approximate concentration of 2-

12% by weight (Gingras and Batista, 2002).  Batista et al. (2002) showed lower affinity 

of perchlorate ion for acrylic resin than for styrenic resins.  Brine regeneration is very 

difficult and impractical because of high affinity of perchlorate ion for type I strong-base 

ion exchange resin (Gu et al., 2001).  Because perchlorate is a monovalent anion with 

high affinity, a significant part of any exchanged perchlorate in the regenerant solution 

will re-exchange with the functional groups throughout the regeneration cycle. This re-

exchange will cause leakage of perchlorate in the next operation cycle because the 

adsorbed perchlorate ions will exchange for the chloride coming from the influent 

(Lehman et al., 2008).   



 43

Applying FeCl3 and HCl has been tested to regenerate a specific ion–exchange resin 

developed by ORNL.  Nearly 100% recovery of the active sites of the resin has been 

reported.  Tetrachloroferrate (FeCl4
-) anion from FeCl3 and HCl is the anion that is 

exchanged with perchlorate attached to the functional groups (Gu et al., 2001).  But the 

full scale feasibility of this regeneration method has been questioned because of the 

production of regeneration waste with very low pH and high concentration of soluble 

perchlorate (Kim and Gurol, 2004).  In order to reduce the soluble perchlorate in the low 

pH regeneration waste, high pressure and temperature with several hours residence time 

is required which make the use of this regeneration method very difficult and costly.  

2.4.7. Kinetics of Ion-Exchange Process 

Ion exchange is a process that depends on following relative rates: a) transport of the 

contaminant ion from bulk solution to the film surface around the resin bead; b) transport 

of the ion through the film which surrounds the resin bead; c) transport of the ion through 

the pore of the resin bead inward to reach to the target functional group; d) exchange of 

the contaminant ion with the original counter-ion; e) transport of the exchanged ion 

through the pore outward to reach to the surface of the resin bead; f) transport of the 

exchanged ion through the boundary layer (i.e. film) surrounding the resin particle to the 

surface of the boundary layer; and, g) transport of the exchanged resin from the external 

surface of the film to the bulk solution (Weber, 1972; Helfferich, 1962).   

Several studies have been performed to determine the rate-limiting step for ion 

exchange process and the results showed that the overall process does not depend on the 

actual exchange reaction (i.e. step d).  Rather, the process is controlled by diffusion.  The 

controlling steps are the transport of contaminant ion from the bulk solution to the active 
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site (i.e. steps a to c) and the transport of exchanged ion form active site to the bulk 

solution (i.e. steps e to g) (Weber, 1972).  The rate-determining step in ion exchange 

process is either diffusion across the liquid boundary layer of solution around the resin 

particle or inter-diffusion of exchanging ions through the interstitial pore of the resin.  

The first process is usually called film diffusion and the second process is normally called 

pore diffusion (Weber, 1972). 

The appropriate representation for the time rate of decrease of concentration for ion 

exchange process for a batch reactor in which film diffusion is the controlling step would 

be (Weber, 1972): 
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where Ce is the concentration after equilibrium, a° is the total surface of the resin beads in 

the reactor, V is the volume of the solution in the reactor, and kf is the film transfer 

coefficient.  

If the controlling step in the process is the pore diffusion, a diffusion model based on 

Fick’s second law can be used considering simultaneous diffusion-reaction process, and 

would be expressed as (Weber, 1972): 
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where Dl is the diffusion coefficient, qe is the concentration of exchanged ions in 

equilibrium with the bulk solution, and r is the resin bead radius.   

The important operational differences between film diffusion controlled and pore 

diffusion controlled processes are listed below (Weber, 1972; Helfferich, 1962). 
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a) Flow rate and/or stirring: change in flow rate or stirring does not affect pore 

diffusion, while increasing the turbulence of the solution by increasing the flow 

rate and/or stirring increases the rate of exchange in a film diffusion controlled 

system.   

b) Resin particle diameter: in a film diffusion controlled system, increasing the 

particle size decreases the rate of exchange, while in a pore diffusion controlled 

system reduction of exchange rate with increase of particle diameter has a 

larger effect. 

c) Concentration in the bulk liquid: at high concentrations, pore diffusion is more 

important than film-diffusion, while at low concentrations, film diffusion is 

more predominant than pore diffusion. 

d) Cross-linking degree: change in the cross-linking degree has more effect on 

pore diffusion systems than film diffusion processes.   

2.5. Biological Reduction of Perchlorate 

2.5.1. Perchlorate Biological Reduction Pathway 

Perchlorate biodegradation by bacteria has been well-studied and documented.  

Perchlorate can be used as an electron acceptor by perchlorate-reducing bacteria under 

anaerobic conditions.  In this process, bacteria use organic compounds (such as acetate, 

lactate, ethanol and methanol) or hydrogen as electron donors (Wallace et al., 1996, Xu et 

al., 2003, Logan and LaPoint, 2002).  In perchlorate degradation via heterotrophic 

growth, organic compounds can serve as both energy and carbon source for bacteria.  In 

autotrophic growth, hydrogen is used as a source of energy and carbon dioxide is used as 

carbon source.  In order to sustain microbial growth, trace amount of nutrients and 
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minerals also are required.  Fortunately, perchlorate-reducing bacteria have been found in 

several different environments.  The ubiquity of perchlorate-reducing bacteria in the 

environment makes perchlorate reduction possible (Kim and Logan, 2000; Logan, 1998; 

Logan et al., 2001; Rikken et al., 1996; Wu et al., 2001; Kesterson et al., 2005).  

Reactions 2.16 and 2.17 show the general pathways of heterotrophic and autotrophic 

perchlorate biodegradation, respectively. 

 

 

Although Korenkov et al. (1976), Attaway and Smith (1993), Stepanyuk et al. (1993), 

and Malmqvist et al. (1994) have reported some bacterial strains capable to reduce 

perchlorate to chloride, they did not explain the degradation pathway.  In 1996, Rikken et 

al. characterized strain GR-1 microorganism (Dechlorosoma sp. GR-1) from activated 

sludge biosolids, and they hypothesized that the perchlorate degradation pathway goes 

from perchlorate (ClO4
-) to chlorate (ClO3

-), then to chlorite (ClO2
-), and finally through 

hypochlorite (OCl-)  to chloride (Cl-).  In Rikken’s study, perchlorate and chlorate 

reduction were only observed in the absence of oxygen, but the conversion of chlorite to 

chloride took place under both aerobic and anaerobic environments.  Observing the 

conversion of chlorite under both aerobic and anaerobic environments, Rikken et al. 

hypothesized that chlorite disproportionates to oxygen and chloride ion.  The reduction of 

ClO4
- + H2 gas 

(electron donor) 
CO2 

(carbon source) 

Enzymes 
Cl- + H2O + Biomass    (2.17) + 

ClO4
-   + Organic molecule  

(electron donor & carbon source) 

Enzymes 
Cl- + CO2 + Biomass   (2.16) 
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perchlorate and the production of stoichiometric amounts of chloride showed that there 

was no accumulation of intermediate reaction products such as chlorite. 

Rikken et al. (1996) also observed that the transformation of chlorite to oxygen and 

chloride is a non-energy yielding process because their measurements showed that the 

transformation of chlorite is not dependent on the presence of acetate as energy source 

(i.e. chlorite is reduced to molecular oxygen and chloride directly).  In their experiments, 

Rikken et al. (1996) observed the transformation of chlorite to oxygen and chloride in 

washed cell suspensions without the addition of any reductive substrates.  Van Ginkel et 

al. (1996) proved that oxygen is generated in the last step of biodegradation and it does 

not accumulate in the bioreactor. 

Based on their findings and the knowledge from previous studies, Rikken et al. 

(1996) developed the enzymatic pathway for perchlorate reduction depicted in Figure 2.2.  

In this process, first, perchlorate (ClO4
-) is reduced to chlorate (ClO3

-) and then chlorate 

(ClO3
-) is converted to chlorite (ClO2

-) via two energy-yielding enzymatic reactions.  

Next, chlorite (ClO2
-) is reduced to chloride (Cl-) via a non-energy yielding reaction, and 

finally, oxygen molecule produced from dismutation of chlorite (ClO2
-) is reduced to 

water via an energy yielding process.   

Wallace et al. (1996) have tested the accumulation of intermediates in a bioreactor 

containing Wolinella succinogenes HAP-1 strain, and they found that the reduction of 

chlorite to chloride is about 1000 times faster than the reduction of perchlorate to 

chlorite.  Using this founding and performing some more experiments, Herman and 

Frankenberger (1998) concluded that intermediates do not accumulate in the reactor and 

do not reach toxic levels (Herman and Frankenberger, 1998).   
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Figure 2.2. The Pathway of Perchlorate Reduction Goes from Perchlorate (ClO4
-) to 

Chloride (Cl-) (Modified from: Rikken et al., 1996; Logan et al., 2001) 
 

 

2.5.2. Biochemistry of the Perchlorate Reduction 

There is very little known about the biochemistry of the bioreduction pathway of 

perchlorate in the environment.  However, studies have revealed some important 

information about the processes involved in the reduction pathway.  Studies have 

confirmed that there is involvement of c-type cytochrome(s) in the perchlorate reduction 

pathway (Coates et al., 1999).  C-type cytochromes are redox active compounds that are 

commonly involved in respiratory electron transfer chains of various organisms (Coates 

and Achenbach, 2004).  Coates et al. (1999) performed an experiment that used 

measurement of light absorbance to differentiate between oxidized c-type cytochromes 

and reduced c-type cytochromes.  The spectra measurement results show that H2 reduced 

cytochrome c from different perchlorate reducing bacteria willingly reoxidized when 

perchlorate or chlorate were introduced to the environment, while, it was unaffected by 

other electron acceptors (i.e. Fe (III), fumarate or sulfate).  Bender et al. (2005) presented 

a model for electron transfer during perchlorate reduction.  According to this model, the 

cytochrome links the periplasmic reductase to the membrane quinone pool, which is the 
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electron source to reduce perchlorate (Bender et al., 2005).  These results indicate that c-

type cytochrome(s) are specifically involved in the electron transfer of perchlorate 

reducing bacteria (Coates and Achenbach, 2004; Bender et al., 2005). 

2.5.3. Enzymes Involved in the Perchlorate Reduction Pathway 

The pathway of perchlorate reduction from perchlorate (ClO4
-) to chloride (Cl-) has 

three main steps (Rikken et al., 1996; Logan et al., 2001), involving perchlorate reductase 

and chlorite dismutase:   

2.5.3.1. Perchlorate Reductase 

Studies show that all perchlorate reducers are able to reduce chlorate as well.  This 

indicates that the reduction pathway for both perchlorate and chlorate ions are identical 

(Figure 2.3), and the same enzyme (i.e. perchlorate reductase) is responsible for reduction 

of perchlorate to chlorate and chlorate to chlorite (Kengen et al. 1999).  Purified 

perchlorate reductase can catalyze both reduction processes at the same rate (Kengen et 

al. 1999).  However, there are some species (e.g. members in the genera Proteus, 

Pseudomonas, and Rhodobacter) that are capable of reducing chlorate and cannot reduce 

perchlorate (Steinberg et al., 2005).   

There are some similarities between perchlorate reductase and other reductases.  

Perchlorate reductase isolated from strains GR-1 (Kengen et al. 1999), perc1ace (Giblin 

and Frankenberger, 2001), and chlorate reductase from Pseudomonas chloritidismutans 

strain AW-1 (Wolterink et al., 2003) all have some resemblance to selenate reductase 

isolated from Thauera selenatis and other reductases, heme-proteins, and dehydrogenases 

(Steinberg et al., 2005).  Perchlorate reductase contains selenium (Kengen et al. 1999), 
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and similarly, formate dehydrogenases extracted from enterobacteria or clostridia 

contain selenium (Heider and Bock, 1993).   

 

 

 

Figure 2.3. The Enzymatic Pathway of Perchlorate Reduction Showing Competition of 
Chlorate with Perchlorate for Perchlorate Reductase (Modified from: Dudley et al., 2008) 

 

 

The reduction pathway from perchlorate to chlorate by perchlorate reductase is shown 

in Figure 2.3 (Dudley et al., 2008).  In this pathway the resulting chlorate competes with 

perchlorate for the active sites of perchlorate reductase molecules.  Thus, this competition 

may slow down the overall pathway.  It is likely that increasing the concentration of 

either perchlorate or chlorate anion results in faster reduction of the anion of which the 

concentration was increased (Nerenberg et al., 2006; Dudley et al., 2008). 

Some species have been identified that accumulate chlorate in the bioreactor 

(Nerenberg et al., 2002; Dudley et al., 2008).  Dechlorosoma sp. HCAP-C, also known as 

Dechlorosoma sp. PCC, is a perchlorate reducing bacteria that has been shown to 

accumulate chlorate.  It is reported that Dechlorosoma sp. HCAP-C accumulates about 20 

percent of the initial perchlorate concentration on a weight basis (Dudley et al., 2008).   
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In order to study the enzymes involved in the perchlorate reduction pathway, the 

capacity of different perchlorate-reducing bacteria strains to reduce other potential 

terminal electron acceptors (i.e. nitrate and oxygen) has been studied.  Strain GR-1 and 

isolate Ideonella dechloratans reduce nitrate to nitrogen gas (Rikken et al., 1996; 

Malmqvist et al., 1994).  Wolinella succinogenes HAP-1 is able to reduce nitrate only to 

nitrite (Wallace et al. 1996).  But, strain CKB is not capable to reduce nitrate.  Simply, it 

can be suggested that the enzymes responsible for perchlorate and nitrate reduction 

pathways are more likely independent (Bruce et al., 1999).  Additionally, it has been 

reported that strain perc1ace concurrently reduces perchlorate and nitrate, with no 

considerable change in utilization rates (Giblin and Frankenberger, 2001).  Thus, it can be 

hypothesized that perchlorate reductase and nitrate reductase are two distinct enzymes 

involved in the perchlorate and nitrate reduction pathways (Bruce et al., 1999; Giblin and 

Frankenberger, 2001). 

Perchlorate reductase in perchlorate-reducing bacteria, similar to chlorate reductase in 

chlorate-reducing species, is an oxygen-sensitive enzyme (Kengen et al. 1999, Steinberg 

et al., 2005).  Azospira sp. KJ culture loses its ability to reduce perchlorate after 12 hours 

exposure to air, although the bacteria are still viable (Song and Logan, 2004).  

Furthermore, extracts from KJ strain have been reported to lose 70% of perchlorate 

reductase activity and 50% of chlorate reductase activity after 3 days air exposure 

(Steinberg et al., 2005).  However, Pseudomonas sp. PDA, a chlorate-respiring 

bacterium, is able to respire using chlorate under aerobic conditions (Steinberg et al., 

2005). 
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The location of perchlorate reductase has been studied by comparing the results of 

measurement of the enzyme activity in the whole cell and after lysozyme treatment.  

Lysosome treatment is a method to separate the periplasmic contents from the cytoplasm 

and membrane fractions.  The results show release of almost all the activity after 

lysozyme treatment.  Thus, it indicates that perchlorate reductase is located in the 

periplasmic area of the cell (Kengen et al., 1999).  It is not apparent how perchlorate 

reductase is coupled to the membrane while it is soluble in a way that energy is preserved 

(Kengen et al., 1999).  It is expected that perchlorate reductase is a part of the electron 

transport chain; however, it is located in the periplasmic area and it is soluble (Kengen et 

al., 1999; Steinberg et al., 2005).  In the case of nitrate reductases, soluble periplasmic 

enzymes have been detected, too, although, most of the nitrate reductases are bound to 

the inner side of the membrane (Hochstein and Tomlinson, 1988).  In contrast, chlorate 

reductase C from Proteus mirabilis and nitrate reductase A, which acts also as chlorate 

reductase, are cytoplasmic membrane bounded (Steinberg et al., 2005; Oltmann el al., 

1976).  Chlorate reductase produced by P. chloritidismutans has been found in the 

cytoplasm of the cell (Wolterink et al., 2003).  Giblin and Frankenberger (2001) reported 

that in nitrate grown perchlorate-reducing bacteria, nitrate reductase associated with the 

membrane/cytoplasmic fraction (not periplasmic fraction) of the lysozyme treated cells 

has some perchlorate reductase activity.  Kengen et al. (1999) also had similar 

observation about nitrate, bromate, and iodate reduction by perchlorate reductase 

enzyme.  Additionally, Herman and Frankenberger (1998) observed a slight decrease in 

the perchlorate reduction rate when nitrate was added to the reactor, supporting the idea 

that perchlorate reductase enzyme is also able to reduce nitrate. 
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Using the above mentioned observations, it can be concluded that separate 

reductases are involved in perchlorate-reducing bacteria capable to reduce perchlorate 

and nitrate, but, both reductases have some ability to reduce other terminal electron 

acceptor (Giblin and Frankenberger, 2001). 

Kinetics of the perchlorate reductase enzymatic activity has been studied and 

reported.  Kengen et al. (1999) reported the half saturation constant (Km) and maximum 

activity (Vmax) values for perchlorate reductase as 27 µM (2.69 mg ClO4
-/L) and 3.8 U 

mg protein-1 for GR-1 strain, respectively, while 34.5 µM (3.43 mg ClO4
-/L) and 4.8 U 

mg protein-1 have been measured by Okeke and Frankenberger (2003) as the values for 

Km and Vmax for perc1ace strain.  Considering the affinity for perchlorate, it seems that 

the reported Km values are similar; however, the Vmax value for perclace strain is slightly 

higher than that of GR-1 strain (Okeke and Frankenberger, 2003). 

Optimum pH and temperature for activity of perchlorate reductase has been studied 

and reported.  Okeke and Frankenberger (2003) reported the optimum temperature of 

25ºC to 30ºC with activity range between 20ºC to 40ºC.  Okeke and Frankenberger 

(2003) also reported the optimum pH values of 7.5 to 8.0, while, optima pH for 

perchlorate and nitrate reductions have been measured and reported by Giblin and 

Frankenberger (2001) as 8.0 and 9.0, respectively.   

2.5.3.2. Chlorite Dismutase 

The last step in Figure 2.2 (i.e. from chlorite to chloride) is catalyzed by the enzyme 

chlorite dismutase (van Ginkel et al., 1996).  Chlorite dismutase, which is a red-colored 

enzyme, is a homotetramer with biotechnological and bioremediative application (Streit 

and DuBois, 2008).  Chlorite dismutase dismutases harmful chlorite into harmless 
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chloride and oxygen.  The bioreaction is called dismutation, because chloride and oxygen 

have been reduced and oxidized at the same time, respectively.   

The dismutation process is a non-energy yielding process because measurements 

show that the conversion is not dependent on the presence of an energy source.  It means 

that chlorite is transformed to the products directly (Rikken et al. 1996). 

Chlorite dismutase is a remarkable heme-containing enzyme.  First, it decomposes 

chlorite into chloride and oxygen preventing accumulation of chlorite to toxic levels.  

Second, it is the only known enzyme for O-O bound formation except for the 

photosystem II enzymes (Lee et al, 2008; Streit and DuBois, 2008).  Third, it produces 

oxygen that is a negative inhibitor of the perchlorate bioreduction process (Lee et al, 

2008). 

The production of oxygen by chlorite dismutase does not inhibit the process; 

however, chloride (Cl-) is a mixed inhibitor with low binding affinity to both free enzyme 

and enzyme-substrate complex in the enzymatic process (Streit and DuBois, 2008).  

Chloride irreversibly inactivates the chloride dismutase enzyme after approximately 

1.7×104 turnovers (per heme).  The half-life of the enzyme has been measured at about 

0.39 min, due to the bleaching of heme chromophore (Streit and DuBois, 2008). 

Similar to perchlorate-reducing bacteria, denitrifiers also are able to reduce chlorate 

to chlorite using nitrate reductase enzyme, but since they are unable to reduce chlorite to 

chloride due to lack of chlorite dismutase, the toxicity of the environment because of 

chlorite accumulation would kill the denitrifies (Oltmann et al., 1976).  Chlorite 

dismutase has no function in the nitrate-reduction pathway from nitrate to ammonium and 

nitrogen gas (Streit and DuBois, 2008).  Thus, chlorite dismutase is an enzyme only 
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presented in chlorate-reducing and perchlorate-reducing bacteria (Xu and Logan, 2003).  

In contrast with perchlorate reductase, which is able to reduce chlorate, nitrate, iodate and 

bromate, chlorite dismutase is highly specific for chlorite and alternative analogous 

anions cannot be served as substrate for this enzyme (Coates and Achenbach, 2004; 

Coates et al., 1999).   

Chlorite dismutase activities have been measured in nitrate-grown perchlorate-

reducing bacteria (Xu and Logan, 2003).  These basal chlorite dismutase activities, which 

have been detected in all tests, even under nitrate-reducing condition, may be essential 

for perchlorate-reducing bacteria survival (Xu and Logan, 2003). 

Chlorite dismutase location in the cell structure has been studied (Kengen et al., 

1999).  Alike perchlorate reductase, chlorite dismutase is located in periplasmic area of 

the cell due to high enzymatic activity in the whole cell and release of nearly all the 

activity after lysozyme treatment (Kengen et al., 1999).   

Kinetics of the chlorite dimutase enzymatic activity have been studied and reported.  

Vmax and Km values for chlorite dismutase have been measured and reported for 

perchlorate-reducing bacteria.  Vmax and Km for chlorite dismutase have been reported as 

2,200 U mg protein-1 and 170 µM (11.47 mg ClO2
-/L), respectively, for GR-1 strains (van 

Ginkel et al., 1996).  Although, the Km value for chlorite dismutase is higher than the Km 

value for perchlorate reductase, which has been reported as 27 µM (2.69 mg ClO4
-/L) for 

strain GR-1 (Kengen et al., 1999), the Vmax value for chlorite dismutase is three orders of 

magnitude larger than the Vmax value for perchlorate reductase, which has been measured 

as 3.8 U mg protein-1 for GR-1 strain (Kengen et al., 1999).  This shows that although the 
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half saturation constant for chlorate reductase is relatively higher, the rate of activity for 

perchlorate reductase enzyme governs the entire reduction process.   

Optimum pH and temperature for activity of chlorite dismutase has been studied, as 

well.  van Ginkel et al. (1996) reported that the optimum pH for purified chlorite 

dismutase is narrow with maximum activity at pH 6.0.  However, Xu and Logan (2003) 

reported the maximum pH for chlorite dismutase activity for the cell suspension at pH 

6.0, but, their pH profile is not as narrow as van Ginkel et al. (1996) profile.  This finding 

may show the ability of the cells to buffer external pH changes (Xu and Logan, 2003).  

Chlorite dismutase is most active at the temperature of 30ºC (van Ginkel et al., 1996), 

while the chemical reduction of chlorite occurs at a temperature above 200ºC (Taylor et 

al., 1940). 

2.5.4. Microorganism Involved in Perchlorate Biodegradation 

More than 70 years ago, Aslander (1928) reported that oxyanions of chlorine (such as 

chlorate and perchlorate) can be biologically reduced under anaerobic conditions.  Some 

unknown soil microorganisms were assumed to be responsible for rapid reduction of 

chlorate that was used as a herbicide for Canada thistle (Aslander, 1928).  First, it was 

hypothesized that chlorate reduction is performed by nitrate reducing bacteria in nature 

(de Groot and Stouthamer, 1969).  Additional investigations showed that membrane-

bound respiratory nitrate reductases and assimilatory nitrate reductases are enzymes that 

can reduce chlorate as an alternative to nitrate (Rikken et al., 1996; Malmqvist et al., 

1994).  Although nitrate reducing bacteria are capable of reducing perchlorate or chlorate 

to chlorite, there is no evidence that these bacteria will have sustainable growth if they 
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use perchlorate (Oltmann et al., 1976; Coates and Achenbach, 2004).  This is because of 

accumulation of chlorite in the environment due to chlorite dismutase deficiency. 

Several dissimilatory perchlorate/chlorate reducing bacteria have been identified, 

isolated, and grown as a pure culture.  To date, the number of perchlorate reducing 

bacteria that exists in pure culture is well above 50, and it is speedily increasing (Coates 

and Achenbach, 2004; Nirmala and Jae-Ho, 2008).  Some of the strains that have been 

identified and studied are discussed in this section.   

Perchlorate reducing bacteria are found in different environments, including 

perchlorate/chlorate contaminated and non-contaminated soils and sediments.  Even soil 

samples collected from Antarctica contain perchlorate reducing bacteria (Bender et al., 

2004).  The reason why perchlorate reducing bacteria occurs in different environments 

could be the diversity in metabolism pathways of the bacteria.  Studies indicated that 

perchlorate reducing bacteria have diverse metabolism pathways which use different 

substrates (Coates et al., 1999).  So far, all of the studied perchlorate reducing bacteria 

are facultative anaerobic or microaerophilic.  This is reasonable because oxygen is 

generated as a transient intermediate of the perchlorate/chlorate reduction pathway (van 

Ginkel et al., 1996).  All of the known perchlorate reducing bacteria are able to respire 

using chlorate.  However, there are some chlorate reducing bacteria that are not able to 

use perchlorate as the electron acceptor source (Xu et al., 2004).  Some of the perchlorate 

reducing bacteria are able to respire using nitrate (Bruce et al., 1999).  Almost all of them 

prefer using nitrate to perchlorate.  However, Nirmala and Jae-Ho (2008) reported that 

isolate Dechlorospirillum anomalous prefers perchlorate to nitrate.  There are diverse 
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electron acceptors and electron donors can be utilized by perchlorate reducing bacterial 

strains (Xu et al., 2004). 

The perchlorate reducing bacteria that are isolated so far are all members of four 

subclasses (i.e. α, β, γ and ε) of the total five subclasses of Proteobacteria (Coates et al., 

1999; Kesterson et al., 2005).  Proteobacteria is an important group of bacteria.  This 

group includes several pathogens such as Salmonella and Vibrio (Madigan and Martinko, 

2005).  Nitrogen fixing bacteria are also members of this group.  Proteobacteria are all 

gram-negative and their outer membrane is mostly composed of lipopolysaccharides.  

Most of them are motile using flagella, but some are non-motile (Madigan and Martinko, 

2005).  The β-proteobacteria sub-class consists of numerous bacteria that have high 

adaptability for degradation capacity (Madigan and Martinko, 2005).  Some of the 

Proteobacteria genera (such as Pseudomonas and Wolinella) were studied previously for 

other purposes; however, their capability to respire using perchlorate has been recognized 

during the recent decade (Wallace et al., 1996). 

Most of the known perchlorate reducing bacteria are closely related to each other 

(Coates and Achenbach, 2004).  However, their known close relatives, such as 

Rhodocyclus tenuis and Ferribacterium limneticum, based on 16S rDNA sequence 

similarity, do not respire using perchlorate (Coates and Achenbach, 2004); therefore, 

phylogenetic relatedness alone cannot guarantee any conclusion on metabolic 

functionality of these bacteria.  Even with 99% similarity in 16S rDNA sequence and 

only 1% divergence, some of the perchlorate reducing bacteria relatives exhibit distinct 

physiologies.  For example, Ferribacterium limneticum is an obligate anaerobic, non-

fermenting, dissimilatory Fe(III) reducer; and Rhodocyclus tenuis is a phototrophic, non-
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sulfur, purple bacteria containing bacteriochlorophyll (Lee at al., 2002).  Thus far, there is 

no perchlorate reducing bacteria that can grow either by Fe(III) reduction or phototrophy 

(Coates and Achenbach, 2004).   

Perchlorate reducing bacteria in the environment are mostly members of β 

subdivision of proteobacteria, consisting of two novel genera with monophyletic origin, 

which are Dechloromonas and Azospira (formerly called Dechlorosoma) (Achenbach et 

al., 2001; Coates and Achenbach, 2004).  Based on signature nucleotide sequence 

analysis of the 16S rRNA, Dechloromonas genus can be divided into CKB and RCB 

types (Coates and Achenbach, 2004).  Perchlorate reducing bacteria from Dechloromonas 

and Azospira genera are ubiquitous and have been found in almost all environmental 

samples that have been screened (Coates et al., 1999; Bender et al., 2004).  Other species 

that can usually be found in contaminated sites and are common in the groundwater-

treating bioreactors are Dechlorospirillum species (Coates and Achenbach, 2004).  

Dechlorospirillum species belongs to α subdivision of proteobacteria.   

Chlorate reducing bacterial species, which utilize chlorate using chlorate reductase, 

are mainly members of γ subclass of proteobacteria.  These members of proteobacteria 

have some similarities to Escherichia coli genus (Achenbach et al., 2001). 

2.5.5. Thermodynamics, Kinetics and Stoichiometry of Perchlorate Reduction 

2.5.5.1. Thermodynamics of Perchlorate Reduction Pathway 

From a thermodynamic perspective, the standard reduction potentials for the half 

reactions from perchlorate to chloride and perchlorate to chlorate have been investigated 

and reported as reactions 2.18 and 2.20 as shown below (Gurol and Kim, 2000): 

ClO4
- + H2O + 2e- → ClO3

- + 2OH-                          E0 = 0.360 V                              (2.18) 

ClO4
- + 2H+ + 2e- → ClO3

- + H2O                            E0 = 1.189 V                              (2.19) 
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ClO4
- + 8H+ + 8e- → Cl- + 4H2O                              E0 = 1.389 V                              (2.20) 

The principle of Le Chatelier can clarify the difference between E0 of the reactions 

2.18 and 2.19.  In reaction 2.19, due to the presence of 1.0 M of H+ in the left hand side, 

the pH of the environment would be 0.0.  Thus H+ acts as the reactant, and the reaction is 

driven to the right.  In contrast, in reaction 2.18, since the OH- ion is the product, it 

reduces the driving force of the reaction to take place.   

The standard enthalpy of formation (∆H0
f) of perchlorate in dilute aqueous solution 

at 25◦C is -30 ± 0.07 kcal/mole (Matyushin et al., 1985), which is equivalent to -125.574 

± 0.293 kJ/mole.  Sawyer et al. (2002) reported -129.3 kJ/mole, -99.2 kJ/mole, -66.5 

kJ/mole, and -167.20 kJ/mol as standard enthalpy of formation for perchlorate, chlorate, 

chlorite, and chloride, respectively.  From a thermodynamic point of view, negative 

standard enthalpy of formation shows that the perchlorate formation occurs 

spontaneously.   

The standard Gibbs free energy of formation (∆G0
f) for perchlorate and chloride 

have been reported as -8.5 kJ/mol and -8.0 kJ/mole, respectively.  Similarly, Sawyer et al. 

(2002) reported -8.60 kJ/mol, -3.40 kJ/mol, 17.10 kJ/mol, and -131.30 kJ/mol as the 

Gibbs free energy of formation for perchlorate, chlorate, chlorite, and chloride, 

respectively.   

∆G’s of perchlorate reduction reaction and related other competitive reactions (i.e. 

nitrate and oxygen) have been reported in the literature.  Reaction 2.21 through 2.30 in 

Table 2.6 shows some of the ∆G’s.   

The large negative value of ∆G0 from perchlorate to chloride (reaction 2.24) shows 

that the reaction is very favorable.  However, this is not observed because the reaction is 

kinetically controlled by a large initial activation energy.  Presence of catalyst, enzyme, 
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heat or light is needed to be able to reduce perchlorate (Gurol and Kim, 2000).  Different 

reductants can be employed to reduce perchlorate, and depending on the reductant, the 

final product would be different, and can be either chlorate or chloride (Urbansky, 1998).  

In order to reduce perchlorate to chlorate, ruthenium(II) can be used while vanadium(III), 

vanadium(II), molybdenum(III), dimolybdenum(III), chromium(II), and titanium(III) can 

reduce perchlorate to chloride (Urbansky, 1998).   

 

 

Table 2.6. Stoichiometric Reactions of Perchlorate Reduction and Other Competitive 
Reactions 

Reaction ∆G0’ Reference Reaction 

ClO4
- + H2O + 2 e- → ClO3

- + 2 OH- -69.59 

(kJ/mol) 

Gurol and Kim, 

2000 

(2.21) 

ClO4
- + 2 H+ + 2 e- → ClO3

- + H2O -229.77 

(kJ/mol) 

Gurol and Kim, 

2000 

(2.22) 

ClO4
- + 4 H+ + 4 e- → Cl- + 2 H2O + O2 -437.60 

(kJ/mol) 

Shrout and 

Parkin, 2006 

(2.23) 

ClO4
- + 8 H+ + 8 e- → Cl- + 4 H2O -752.48 

(kJ/mol) 

Shrout and 

Parkin, 2006 

(2.24) 

ClO4
- + CH3COO-

→ Cl- + H+ + 2HCO3
-  -966 

(kJ/molacetate) 

Rikken et al., 

1996 

(2.25) 

4/3 ClO3
- + CH3COO-

→ 4/3 Cl- + H+ + 2 HCO3
-  -1015 

(kJ/molacetate) 

Rikken et al., 

1996 

(2.26) 

ClO4
- + ½ CH3COO-

→ ClO2
- + ½ H+ + HCO3

- -801 

(kJ/molacetate) 

Rikken et al., 

1996 

(2.27) 

O2 + ½ CH3COO-
→ ½ H+ + HCO3

-  -844 

(kJ/molacetate) 

Rikken et al., 

1996 

(2.28) 

ClO2
-
→ O2 + Cl-  N/Aa Rikken et al., 

1996 

(2.29) 

3/5 NO3
- + CH3COO-+ 13/5 H+

→ 4/5 N2 + 4/5 

H2O + 2 HCO3
-  

-792 

(kJ/molacetate) 

Rikken et al., 

1996 

(2.30) 

a The dismutation of chlorite ion dose not produce energy for biosynthesis. 
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To have complete perchlorate reduction to chloride and water, eight electrons are 

needed.  Comparing reactions perchlorate/chloride + oxygen and perchlorate/chloride + 

water, clearly indicates that four electrons are required to reach from perchlorate to 

chloride and oxygen; and another four electrons provided by the electron donor are used 

to reduce the produced oxygen to water (Rikken et al., 1996).   

Comparing the ∆G0’s for the utilization of acetate as electron donor with oxygen, 

nitrate, and perchlorate (Table 2.6) it can be concluded that oxygen and nitrate are 

preferred electron acceptors over perchlorate (Rikken et al., 1996).  Although there are 

some exceptions (Nirmala and Jae-Ho, 2008), laboratory experiments show that most of 

the perchlorate reducing bacteria prefer nitrate to perchlorate.  This preference is 

supported by the Gibbs free energies shown in Table 2.6.  During the bioreduction 

process, first perchlorate is reduced to chlorite and then chlorite is dismutated to chloride 

and oxygen through a non-energy yielding mechanism (Kengen et al., 1999).  The energy 

produced from reduction of perchlorate to chlorite (∆G0
’= -801 kJ/mole acetate) is 

significantly lower that the energy produced by utilization of oxygen as electron acceptor 

(∆G0
’= -844 kJ/mole acetate).  This shows the thermodynamically preference of oxygen 

utilization over perchlorate.  However, the energy production from perchlorate reduction 

through chlorite dismutation (∆G0
’= -801 kJ/mole acetate) has a narrow difference with 

energy produced from nitrate reduction (∆G0
’= -792 kJ/mole acetate), nitrate is still 

thermodynamically more attractive than perchlorate for the bacteria (Nirmala and Jae-Ho, 

2008).  Accordingly, metabolic reduction of oxygen and nitrate are thermodynamically 

dominant over perchlorate (Figure 2.4). 
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Figure 2.4. Electron Acceptor Preference for Perchlorate Reducing Bacteria (Modified 
from Coates and Achenbach, 2004) 

 

 

2.5.5.2. Kinetics of Perchlorate Reduction Pathway 

In order to be able to model perchlorate reducing bioreactors, kinetic parameters of 

different perchlorate reducing bacteria have been investigated and reported.  Kinetic 

parameters for some of the perchlorate reducing bacteria that have been studied to date 

are listed in Table 2.7.   

The kinetic parameters listed in Table 2.7, include the maximum substrate utilization 

rate (qmax), half saturation constant (KS), biomass yield (Y), and maximum growth rates 

(µmax).  The qmax ranges from 6.0 mgClO4
-/mgDW-day to 1.68 mgClO4

-/mgDW-day 

when the electron acceptor is perchlorate.  It means that each gram of dried biomass 

(DW) can utilize a maximum 6.0 grams of perchlorate per day.  In the presence of 

chlorate, qmax has slightly greater value.  Observed maximum growth rates (µmax) for 

perchlorate have been reported to be in the range of 0.067 h-1 to 0.24 h-1.   
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Table 2.7. Reported Kinetic Parameters for Perchlorate Reducing Bacteria* 

Pure or mixed 
culture 

qmax 

(mgClO4
- 

/mgDW-day) 

KS 

(mg/L) 
Electron 
Donor 

Electron 
Acceptor 

µmax 
(1/h) 

Y 
(g/gdonor) 

Reference 

Vibrio 
dechloratans 

1.68 NA acetate perchlorate NA NA 
Korenkov et 
al. (1976) 

Wolinella 
succcinogenes 

HAP-1 
2.57 NA acetate perchlorate NA NA 

Wallace et al. 
(1996) 

GR-1 5.65 NA acetate perchlorate 0.1 0.24 
Rikken et al. 

(1996) 

KJ 1.32 33 acetate perchlorate 0.2 0.5 
Logan et al. 

(2001) 

PDX 0.41 12 acetate perchlorate 0.24 NA 
Logan et al. 

(2001) 

HCAP-C 4.4 76.6 hydrogen perchlorate NA 
0.41 

g/gClO4 
Dudley et al. 

(2008) 

PC1 3.1 0.14 hydrogen perchlorate NA 
0.23 

g/gClO4 
Nerenberg et 

al. (2006) 

RC1 6.00 12 acetate perchlorate 0.085 0.34 
Waller et al., 

(2004) 

INS 4.35 18 acetate perchlorate 0.067 0.37 
Waller et al. 

(2004) 

ABL1 5.43 4.8 acetate perchlorate 0.086 0.38 
Waller et al., 

(2004) 

SN1A 4.60 2.2 acetate perchlorate 0.069 0.36 
Waller et al., 

(2004) 

Perc1ace NA NA acetate perchlorate 0.07 NA 
Herman and 

Frankenberger 
(1998) 

Mixed culture 0.49 <0.1 acetate perchlorate 0.15 0.20 
Wang et al. 

(2008a) 

GR-1 7.48 NA acetate chlorate NA NA 
Rikken et al. 

(1996) 

PC1 6.3 <0.014 hydrogen chlorate NA 
0.22 

g/gClO3 
Nerenberg et 

al. (2006) 

HCAP-C 8.3 58.3 hydrogen chlorate NA 
0.34 

g/gClO3 
Dudley et al. 

(2008) 

*all of the kinetic parameters are based on simple Monod, and competitive inhibition has been neglected. 

 

 

As it is shown in Table 2.7, the half saturation constant (Ks) ranges from 0.14 mg/L 

to 76.6 mg/L.  Interestingly, both high and low values for half saturation constants (0.14 

mg/L to 76.6 mg/L) are for the strains that utilize hydrogen gas as their electron donor 
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(i.e. autotrophic growth).  In the case of heterotrophic growths, although, Wang et al. 

(2008a) have reported the half saturation constant for a mixed culture as <0.1 mg/L, most 

of the studies that have been performed on pure cultures show the half saturation 

constants range from 2.2 mg/L to 33 mg/L.  The perchlorate degradation process follows 

first-order kinetics under typical concentrations of perchlorate in the environment, which 

is in the part-per-billion range (Logan et al., 2001).  Between the strains listed in Table 

2.7, SNA1 and ABL1 are members of alpha-proteobacteria subclass, with the half 

saturation constants of 2.2 mg/L and 4.8 mg/L, which are comparatively lower that the 

constants found for the rest of the strains.  These data may indicate that Azospirillum-type 

perchlorate reducing bacteria have a higher affinity to reduce perchlorate compared to the 

other strains due to the lower KS value (Waller et al., 2004). 

Growth threshold concentration, Smin, has been calculated for some of the perchlorate 

reducing bacteria strains.  Dudley et al. (2008) calculated the Smin for the strain HCAP-C 

as 2.2 mg/L and concluded that in order to sustain perchlorate reducing bacteria in the 

system, alternative electron acceptors (i.e. oxygen and nitrate) are needed in low 

concentrations, when the perchlorate concentration is lower than Smin.  Nerenberg et al. 

(2006) had the same conclusion for Smin of 14 mg/L for strain PC1. 

The decay constant (b) has not been studied as well as the other kinetic parameters.  

For an autotrophic growth, Nerenberg et al. (2006) reported the decay constant as 

0.055/day.  Wang et al. (2008a) reported similar value for decay constant as 0.05/day for 

a mixed culture grown under heterotrophic condition.   
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2.5.5.3. Stoichiometry of Perchlorate Reduction 

The stoichiometry of overall reaction of perchlorate utilization can be calculated 

knowing the observed stoichiometry of moles electron donor per mole of electron 

acceptor (i.e. perchlorate).  Studies have been performed and the stoichiometric ratio of 

electron donor to perchlorate has been published.  Chaudhuri and Coates (2002) reported 

that pure culture of Dechlorosoma suillum strain PS utilizes 1.65 ± 0.24 mole of acetate 

per each mole of perchlorate.  Therefore, the fraction of acetate (i.e. the fraction of eight 

electrons to reduce perchlorate) which was used to degrade perchlorate, fe, was 1/1.65 or 

0.61.  Accordingly, the fraction of electrons for biomass synthesis was fs = 1-fe = 0.39 

(Chaudhuri and Coates, 2002).  Wang et al. (2008a) reported the cell yield of 4.7 g 

protein/mole acetate for strain JB116.  They also reported 1.72 mole of acetate was 

utilized to reduce one mole of perchlorate.  Thus, the fe and fs in their study would be 

0.58 and 0.42, respectively.  Consequently, the following overall reaction was reported 

(Wang et al., 2008a): 

ClO4
-+1.72 CH3COO-

→ 

Cl-+0.288 C5H7O2N+0.28 CO2+1.14 H2O+1.72 HCO3
-                                                                    (2.31) 

Waller et al. (2004) reported the observed stoichiometry of 1.7 mole acetate/mole 

perchlorate.  Accordingly, they calculated the fe and fs as 0.59 and 0.41, respectively, 

which corresponds to biomass yield of 0.31 g cells/g acetate through the following 

calculations (Rittman and McCarty, 2001; Waller et al., 2004). 

acetate g

cells g
31.0

acetate g 59

acetate mole 1

acetate mole

eqe 8

cells eqe

cells g 65.5

acetate eqe

cells eqe 41.0 -

--

-

=×××             (2.32) 

The calculated yield based on observed acetate/perchlorate stoichiometry (0.31 g 

cells/g acetate) is similar to the measured yield which was 0.36 g cells/g acetate, 
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indicating the accuracy of the measurements.  Waller et al. (2004) used this stoichiometry 

ratio to present the overall perchlorate reduction reaction using acetate as electron donor 

and ammonium as nitrogen source: 

ClO4
- + 1.7 CH3COO- + 0.28 NH4

+ →   

Cl- + 0.28 C5H7O2N + 0.58 CO2 + 1.42 H2O + 1.7 HCO3
-                                          (2.33) 

In addition to the above mentioned studies that all have used acetate as the electron 

donor in pure cultures, Shrout and Parkin (2006) have used lactate as the electron donor 

in mixed culture.  In their study, the approximate optimal lactate/perchlorate ratio was 

reported ~1.2 g COD/g ClO4
-.   

Consequently, according to the studies performed to date, it can be concluded that 

the stoichiometric ratio of acetate as the electron donor to perchlorate ranges from 1.65 to 

1.72 mole acetate/mole perchlorate.  It indicates that to degrade one mole of perchlorate 

at least 1.7 moles of acetate (equivalent to 1.08 g COD/g ClO4
-) are needed.  

2.5.6. The Controlling Parameters of Perchlorate Reduction 

2.5.6.1. Micronutrients 

Studies performed on perchlorate reducing bacteria pure cultures that are members of 

Dechloromonas and Azospira genera have demonstrated that these isolates can grow in a 

wide range of environmental conditions (Coates et al., 1999).  Although most of the 

experimental studies on pure cultures of perchlorate reducing bacteria have been 

performed on media supplemented defined or undefined vitamin sources (e.g. biotin, folic 

acid, pyridoxine HCl, riboflavin, thiamine, nicotinic acid, pantothenic acid, vitamin B12, 

p-aminobenzoic acid, and thioctic acid), it has been proven that at least one strain, 

Dechloromonas agitate, does not require vitamin supplementation for its growth (Bruce 
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et al., 1999).  Zhang et al. (2002) used yeast extract for the autotrophic strain HZ and 

found that yeast extract improved growth of the culture; however, it was not needed for 

growth.  Both phosphate-buffer system and bicarbonate-buffer system have been used for 

growth of perchlorate reducing bacteria, but, there is no evidence that shows of the 

preference of one system to the other (Xu et al., 2003).   

Dechloromonas and Azospira genera are normally not particular in their nutrition 

requirements, but Bender, et al. (2002) reported that perchlorate reductase requires 

molybdenum, and selenium as cofactors.  Molecular genetic studies on some of the 

perchlorate reducing bacteria isolates indicate presence of molybdenum dependent genes 

encoding chlorite dismutase and perchlorate reductase (Chaudhuri et al., 2002).  Kengen 

et al., (1999) reported 1 mole of heterodimeric molecules obtained from perchlorate 

reductase enzyme purified from strain GR-1 contain 1 mole of molybdenum, 11 moles of 

iron and 1 mole of selenium, indicating that trace amount of molybdenum, iron and 

selenium is important for perchlorate reducing bacteria.  Studies showed that growth and 

perchlorate reduction of Dechloromonas aromatica were completely inhibited when the 

culture was transferred to molybdenum free medium.  Also, similar inhibition was 

observed when the Dechloromonas agitate culture depleted the molybdenum content 

(Chaudhuri et al., 2002).  Thus, it seems that molybdenum is a requirement for all 

perchlorate reducing bacteria.  Bioavailability of molybdenum can be an important issue 

in the bioremediation implication strategies.  Specially, in low-pH soils adsorption 

reduces the availability of molybdenum; therefore, it can be an often limiting nutrient in 

many soils (Chaudhuri et al., 2002). 
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2.5.6.2. pH 

Although, some studies have reported the acidity range to have optimum growth and 

maximum perchlorate degradation rate, the effect of pH on biological perchlorate 

reduction has not been investigated systemically.  Perchlorate degradation involves quite 

complex enzymatic activity (Rikken et al., 1996), that pH is potentially one of the 

effective environmental parameters affecting the activity of the involved enzymes.  In 

general, acidity of the environment can affect the activity of an enzymatic system via 

three possible mechanisms: (i) pH variation can change the three dimensional shape of 

the enzyme; (ii) changes in pH of the environment can change the ionic form of basic and 

acidic groups of the active sites of the enzyme molecules; and (iii) pH variation can affect 

the acidic and basic groups on the substrate molecules and as a result the affinity of the 

substrate for the for the enzyme can be altered, potentially (Wang et al., 2008a). 

Scientists have reported pH ranges and optimum pH for perchlorate reduction by 

different perchlorate reducing bacteria.  pH ranges of 6.6-7.5 (optimum pH of 7.1) and 

5.0-9.0 (optimum pH of 7.0) have been illustrated as the pH ranges that heterotrophic 

mixed cultures of perchlorate reducing bacteria are capable to reduce perchlorate 

(Attaway and Smith, 1993; Wang et al., 2008a).  For heterotrophic pure culture of 

perc1ace, Coates and Achenbach (2004) have reported pH of 6.5-8.5 (optimum pH of 

7.0-7.2) as the pH range that perchlorate reduction can occur.  In addition to pH ranges 

for perchlorate reduction, appropriate acidity for bacteria growth also has been 

investigated and reported.  Bruce et al. (1999) have showed the pH range of 6.5-8.0 

(optimum pH of 7.1) for HAP-1 strain as the appropriate pH range for bacteria growth.  
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Similarly, pH range of 6.5-8.5 (optimum pH of 7.5) has been reported for strain CKB 

(Herman and Frankenberger, 1998).   

It can be concluded that pH range of 6.5-8.0 is the appropriate pH range for 

perchlorate reducing bacteria for both perchlorate reduction and growth.  In order to keep 

the pH in this pH range, in most of the studies either phosphate buffer system or 

bicarbonate-buffer system are used to control the acidity and keep it in the optimum 

range (Xu et al., 2003).   

2.5.6.3. Salinity 

The effect of salinity on conventional microbial systems used in wastewater 

treatment is well known (Lefebvre and Moletta, 2006).  Inhibition of microbial processes 

is generally attributed to the osmotic pressure effects between inside and outside the cell 

wall (Lefebvre and Moletta, 2006).   

Different bacterial genera have different tolerance levels for salinity.  In general, the 

tolerance levels of the halophilic bacteria for salinity can be categorized into three 

classes: mild (10-60 g NaCl/L), moderate (60-150 g NaCl/L) and extreme or 

extremophiles (150-300 g NaCl/L) (Madigan and Martinko, 2005).  In addition to the 

difference tolerance levels between different microorganisms, halotolerance is also linked 

to the growth phase of the culture.  The very old or very young bacteria are more 

vulnerable in saline environments (McAdam and Judd, 2008; Cang et al. 2004).   

Because of the high affinity of ion exchange resins, which are developed to remove 

perchlorate from water, to perchlorate ion, very strong NaCl solutions (70-120 g NaCl/L) 

are needed to regenerate the regenerable resins.  Thus, perchlorate contamination occurs 

along high salinity in the regenerant wastes (Logan et al., 2001).  The perchlorate 
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contamination level in the 7% regenerant waste ranges from 2000 to 500,000 µg/L, 

depending on the ion exchange influent perchlorate concentrations (Gingras and Batista, 

2002).   

Halophilic bacteria have been obtained by screening various sites and used in order 

to degrade perchlorate at relatively high levels of salinity.  It has been found that not all 

locations contain halophilic bacteria capable to reduce perchlorate at salinity levels of 3% 

and higher (Logan et al., 2001).  Logan et al. (2001) showed that perchlorate reduction 

occurred only in three of the total six samples collected from saline environments at 

salinity of 3%.  Although, perchlorate reduction rates have not been reported, growth 

rates were measured while the salinity ranges from 1% to 15%.  The maximum growth 

rate reported as 0.060±0.003/day for the sample obtained from Great Salt Lake, UT, at a 

salinity level of 5% (Logan et al., 2001).  Growth rate reduced about 40% when the 

salinity was increased to 11%, and the culture did not have any growth at salinity of 13% 

and higher (Logan et al., 2001).   

In addition to the growth rates, Gingras and Batista (2002) reported the reduction 

rates on a non-halophilic perchlorate reducing culture enriched from an activated sludge 

sample.  It has been reported that salinity level as low as 0.5% decreased the perchlorate 

reduction rate to 30% of initial rate while the growth coefficient reduced by 32%, and 

salinity greater than 1% reduced the rate to 40%, while the growth coefficient decreased 

more than 40% (Gingras and Batista, 2002).   

Salt tolerant bacterial species capable to reduce perchlorate in saline environments 

have been identified and reported.  Haloferax denitrificans and Paracoccus 

halodenitrficans as two denitrifying halophilic bacteria and Citrobacter sp. have been 
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reported as the bacteria capable to reduce perchlorate in presence of salinity (Okeke et al., 

2002).  Citrobacter sp. has been classified as an effective salt tolerant culture that was 

able to reduce about 21% and 18% of the initial perchlorate amount in 1 week at salinity 

levels of 2.5% and 5%, respectively (Okeke et al., 2002).   

Thus, it can be noted that although halophilic perchlorate reducing species can have 

growth in saline environments containing NaCl as high as 11%, most of the known 

perchlorate reducing bacteria, which are non-halophilic species, cannot grow and reduce 

perchlorate in the normal salinity levels of the ion exchange regenerant wastes. 

2.5.6.4. Oxidation-Reduction Potential 

Oxidation-reduction potential of the bioreactor can be used as an indicator to explain 

the behavior of the perchlorate reducing bacteria.  Shrout and Parkin (2006) reported that 

perchlorate reduction increased with decreasing oxidation-reduction potential in their 

mixed culture.  They achieved 100% removal at oxidation-reduction potential of -220 

mV.  It has been illustrated that achieving oxidation-reduction potential as low as the 

levels necessary for sulfate reduction and methanogenesis are not required for perchlorate 

bioreduction (Attaway and Smith, 1993).  Attaway and Smith (1993) noted that 

perchlorate degradation does not occur at oxidation-reduction potential above -110 mV.  

Interestingly, a study in 2006 showed 32% perchlorate reduction, by a culture enriched 

from an anaerobic digester, with an oxidation-reduction potentials as high as +180 mV 

(Shrout and Parkin, 2006).  This is the only report that shows that a perchlorate reducing 

culture is able to degrade perchlorate in oxidized condition. 
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2.5.6.5. Presence of Other Competitive Electron Acceptors 

Other electron acceptors such as oxygen and nitrate can compete with perchlorate to 

receive electrons.  Attaway and Smith (1993) showed the inhibition of perchlorate 

bioreduction in the presence of oxygen.  Oxygen is a preferred electron acceptor for 

perchlorate reducing bacteria, since the bacteria can obtain more energy consuming 

oxygen than it can obtain from perchlorate.  It has been proven that perchlorate reducing 

bacteria yields more biomass when oxygen is used to oxidize the available electron donor 

(Coates et al., 1999; Coates and Anderson, 2000).   

The effects of oxygen exposure time on perchlorate reduction by Dechloromonas sp. 

KJ were studied in 2004 (Song and Logan, 2004).  It was observed that exposure time 

more than 12 hours inhibits the ability of the cells to reduce perchlorate.  In contrast, cells 

that were exposed to dissolved oxygen for less than 12 hours could quickly recover the 

oxidation-reduction potential of the bioreactor to negative values (-127 to -337 mV), and 

as a result, they were able to reduce perchlorate (Song and Logan, 2004).  This study 

showed that exposure to oxygen for less than 12 hours due to the backwashing cycle of 

the biofilm layers in perchlorate degrading reactors would not change the ability of the 

cells to reduce perchlorate (Song and Logan, 2004). 

Considering the thermodynamic preference of oxygen to perchlorate by perchlorate 

reducing bacteria alone may be an oversimplification (Chaudhuri et al., 2002).  Studies 

indicate that genetic regulation plays a significant role in the reduction of perchlorate.  

Perchlorate reduction is dependent on the presence of chlorite dismutase, and inhibition 

of chlorite dismutase occurs even with oxygen concentrations of < 2 mg/L (Chaudhuri et 

al., 2002).  Rikken et al. (1996) demonstrated that strain GR-1 has higher chlorite 
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dismutase activity when the bacteria are grown using perchlorate than the same bacteria 

grown in aerobic conditions, indicating that chlorite dismutase was induced when the 

culture was grown without oxygen (Rikken et al., 1996).  Chlorite dismutase 

measurements on Dechloromonas agitata pure culture showed the enzyme chlorite 

dismutase was expressed only when the biomass was grown using perchlorate (O’Connor 

and Coates, 2002).  Similar results were obtained for chlorite dismutase activity of 

Dechloromonas suillum culture (Chaudhuri et al., 2002), indicating the genetic regulation 

of enzymatic activity of chlorite dismutase. 

Another set of experiments on Dechloromonas suillum culture were performed by 

Chaudhuri et al. (2002) to determine whether anoxic condition alone can induce the 

production of chlorite dismutase.  In these experiments, nitrogen gas was introduced to an 

actively metabolizing aerobic Dechloromonas suillum culture.  Samples taken after 3.5, 

5, and 7 h of incubation did not show any chlorite dismutase activity, pointing that 

anaerobic condition alone was not sufficient to induce chlorite dismutase activity 

(Chaudhuri et al., 2002).  In addition, Chaudhuri et al. (2002) showed that the existence 

of perchlorate in the presence of even low levels of dissolved oxygen was not sufficient 

to initiate the expression of perchlorate reductase.  Thus, it can be concluded that both 

anaerobic/anoxic condition and the presence of perchlorate are necessary to initiate 

perchlorate reduction enzymatic activity.   

Oxygen also results from the dismutation of chlorite by chlorite dismutase.  

Although, the bioavailability of the produced molecular oxygen is not known (Shrout and 

Parkin, 2006), studies showed that addition of chlorite to perchlorate reducing culture 

grown using perchlorate, produced molecular oxygen outside the cells (Rikken et al., 
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1996; Coates et al., 1999).  This release of oxygen by the bacteria might be due to 

protection of oxygen sensitive enzymes (Kengen et al., 1999; Shrout and Parkin, 2006).  

Immediately after production and without accumulation, oxygen is utilized by the cell 

(Rikken et al., 1996; Logan et al., 2001; Xu and Logan, 2003).  The final product of the 

reaction of oxygen with an electron donor is carbon dioxide and water (Rikken et al., 

1996).  

Nitrate is another electron acceptor that can be reduced by most of the perchlorate 

reducing bacteria.  However, some perchlorate reducing bacteria such as Dechloromonas 

agitata strain CKB cannot grow on nitrate (Chaudhuri et al., 2002).  Other experiments 

were performed on Dechloromonas suillum culture that can grow either on perchlorate or 

nitrate medium to investigate the preference of the culture for electron donor under 

different growth conditions.  The experiments demonstrated that, in all cases, neither 

chlorite dismutase activity nor perchlorate degradation was detected until all nitrate ions 

were utilized (Chaudhuri et al., 2002).  Although strain CKB could not grow on nitrate 

medium, when the culture was transferred into a medium containing both nitrate and 

perchlorate, it had lower perchlorate reduction rate than the culture incubated in the 

absence of nitrate.  This observation indicates that nitrate acts as competitive inhibitor for 

perchlorate reduction.  More interestingly, although the strain CKB could not utilize 

nitrate as electron donor source, nitrate was reduced to nitrite in the presence of 

perchlorate.  It suggests that nitrate ions were co-reduced by perchlorate reductase 

(Chaudhuri et al., 2002).  Herman and Frankenberger (1998) also reported similar co-

reduction of nitrite by the perclace culture; however, since the perclace culture was 

unable to grow on nitrite medium, it co-reduced nitrate to nitrogen gas.   
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2.5.6.6. Effect of Different Electron Donors on the Reduction Process 

Perchlorate reducing bacteria can utilize various electron donors as the energy source.  

The electron donor can be either an organic molecule (e.g. acetate, ethanol, lactate, etc) 

or an inorganic molecule (i.e. hydrogen gas).  Several studies have been performed to 

determine characteristics of the known strains of perchlorate reducing bacteria.  The most 

common electron donor used in these studies is acetate.  The other common organic 

electron donors are propionate, lactate, and ethanol.  In addition to organic electron 

donors, some perchlorate reducing bacteria are also able to utilize hydrogen as energy 

source (Miller and Logan, 2000; Zhang et al., 2002; Shrout et al., 2005).  Only a few 

autotrophic perchlorate reducing bacteria, those that use hydrogen as the electron donor 

and carbon dioxide as the carbon source, have been identified and isolated (Zhang at al, 

2002; Shrout et al., 2005; Nerenberg et al., 2006; Dudley et al. 2008) and they are listed 

in Table 2.7. 

The ratios of electron donor to perchlorate needed for perchlorate degradation have 

been studied during the last decade.  As discussed in the stoichiometry section, 

Chaudhuri and Coates (2002), Waller et al. (2004), and Shrout and Parkin (2006) have 

reported optimal COD to perchlorate ratio as ~1.2 g COD/g ClO4
-.  Shrout and Parkin 

(2006) also noted that perchlorate degradation was faster with lactate compared to 

acetate, without giving an explanation.  Attaway and Smith (1993), Song and Logan 

(2004), and Shrout and Parkin (2006) observed that the lack of electron donor in the 

bioreactor results in a more oxidized oxidation/reduction potential. 

Activity level of the involved enzymes in the perchlorate reduction pathway (i.e. 

perchlorate reductase and chlorate dismutase) is affected by the electron donor type.  
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Shrout et al. (2005) showed that chlorite dismutase activity level in the cells, which were 

grown utilizing hydrogen, was higher than in the cells grown with organic electron 

donors.  Shrout et al. (2005) concluded that it may be due to the production of alternate 

dismutase enzymes under autotrophic conditions.  There are similar observations such as 

production of alternative nitrogenase enzymes by nitrogen-fixing bacteria utilizing 

different electron donors (Harwood and Parales, 1996).    

2.6. Biological Reduction of Nitrate 

Denitrification is the dissimilatory reduction of nitrate (NO3
-) or nitrite (NO2

-) to 

nitrogen gas (N2) (Rittman and McCarty, 2001).  It is an important pathway of the 

biogeochemical nitrogen cycle.  The nitrogen cycle is shown in Figure 2.5.  Nitrogen in 

this cycle exists in the biosphere in several oxidation states, shown in Figure 2.5, from 

+V in nitrate to –III in ammonia.  Denitrification, which is the conversion of nitrate (the 

most oxidized form of nitrogen) to nitrogen gas, passes through four enzymatic reactions: 

nitrate (NO3
-) to nitrite (NO2

-), nitrite to nitric oxide (NO), nitric oxide to nitrous oxide 

(N2O), and finally nitrous oxide to nitrogen gas (N2).  Denitrification is an energy 

yielding process for denitrifying bacteria that use the positive redox potential of NO3
-

/NO2
- (E0’=+0.43 V), NO2

-/NO (E0’=+0.35 V), NO/N2O (E0’=+1.175 V), and N2O/N2 

(E0’=+1.355 V) reactions (Einsle and Kroneck, 2004).   

In environmental biotechnology, denitrification is used when complete nitrogen 

removal is necessary.  The presence of nitrate as a water contaminant is a common issue 

in many drinking water sources.  Nitrate competes with other electron acceptors to utilize 

the available electron donor source, and this competition makes this anion an important 
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factor in anaerobic/anoxic treatment systems (e.g. phosphate removal and perchlorate 

removal systems). 

 

 

Figure 2.5. The Biological Nitrogen Cycle Pathway, Oxidation States and the Enzymes 
Involved in the Processes (Modified from: Einsle and Kroneck, 2004) 

 

 

Dissolved oxygen (DO) controls the denitrification pathway via two distinct 

mechanisms (Rittman and McCarty, 2001).  First, oxygen acts as a repressor for genes 

responsible for nitrogen-reduction.  Studies show that DO concentrations greater than 2.5 

to 5 mg/L repress the responsible genes.  Second, oxygen acts as an inhibitor for the 

activity of the denitrification enzymes.  Dissolved oxygen above a few tenths of mg/L 

slows down the activity of the involved enzymes (Rittman and McCarty, 2001).  It can be 

concluded that inhibition of the enzymes by DO is a more sensitive mechanism compared 

to gene repression by oxygen molecules.   
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2.6.1. Biochemistry of the Nitrate Reduction 

Throughout the denitrification metabolic pathway, all steps are catalyzed by complex 

multi-site metalloenzymes with unique spectroscopic and structural characteristics.  

Enzymes involved in the stepwise reduction pathway are described below. 

2.6.1.1. Nitrate Reductase 

The first step which is a conversion of nitrate to nitrite is performed by nitrate 

reductase.  All of the bacterial and eukaryotic nitrate reductases are molybdenum 

dependent enzymes.  The molybdopterin cofactor in nitrate reductases is in the form of 

two molybdopetrin-guanine dinucleotide (MGD) molecules which are located in the 

molybdenum center (Einsle and Kroneck, 2004).  Nitrate reductases are responsible for 

the following reaction.  Reaction 2.34 shows that two electrons are needed to reduce 

nitrate to nitrite.   

NO3
- + 2e-+ 2H+

→ NO2
- + H2O                                                                                  (2.34) 

In general, there are four types of nitrate reductases: eukaryotic nitrate reductase and 

three distinct prokaryotic nitrate reductases, including cytoplasmic assimilatory (Nas), 

membrane bound (Nar), and periplasmic nitrate (Einsle and Kroneck, 2004).  Most of the 

nitrate reductases are bound to the inner side of the membrane (Hochstein and 

Tomlinson, 1988).  Many bacteria produce more than one type of the above mentioned 

nitrate reductses (Einsle and Kroneck, 2004).  As an example, E.coli contains a 

periplasmic nitrate reductase (Einsle and Kroneck, 2004).  However, when it is grown on 

nitrate under anaerobic conditions, it develops a membrane-bound nitrate reductase, the 

active sites of which face the cytoplasm of the cell (Jormakka et al., 2002).  Also, there 

are some bacteria containing nitrate reductases with unknown physiological functions.  



 80

For instance, Alcaligenes eutrophus contains periplasmic nitrate reductase, the 

physiological function of which is not clear for the microbiologists (Siddiqui et al., 1993). 

As discussed in perchlorate reductase section, membrane-bound respiratory nitrate 

reductases and assimilatory nitrate reductases are also able to reduce perchlorate/chlorate 

to chlorite, as an alternative for nitrate (Oltmann et al., 1976; Giblin and Frankenberger, 

2001).  However, denitrifying bacteria are inactivated when they reduce perchlorate to 

chlorite because of the lack of chlorite dismutase enzyme and accumulation of produced 

chlorite (Oltmann et al., 1976), which is a disinfectant. 

2.6.1.2. Nitrite Reductase 

Nitrite reductase is an enzyme that reduces nitrogen in nitrite to a lower oxidation 

state.  It is the second involved enzyme in the denitrification process.  Certain types of 

nitrite reductases can reduce nitrite to ammonia through a six-electron transfer process.  

This process is called nitrite ammonification (Simon, 2002).  Denitrificatory nitrite 

reductases, which reduce nitrite to nitrous oxide, could be either homotrimer copper 

enzyme or cytochrome cd1 enzymes (Moura and Moura, 2001).  Copper nitrite reductase 

enzymes are categorized into two (i.e. green and blue) subclasses based on absorbance 

characterization (Einsle and Kroneck, 2004).  Cytochrome cd1 nitrite reductase enzymes 

are soluble homodimer protein molecules and are located in the periplasm area (Einsle 

and Kroneck, 2004).  Each subunit of these soluble homodimers consists of one heme c 

and one heme d1 (Moura and Moura, 2001).  The optimum temperature for nitrite 

reductase enzymes has been studied and reported as 35ºC to 38ºC (Peng and Zhu, 2006).  

The reaction which is catalyzed by denitrificatory nitrite reductase requires one electron 

from the electron donor and can be shown as the following reaction. 
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NO2
- + e-+ H+

→ NO + H2O                                                                                         (2.35) 

2.6.1.3. Nitric Oxide Reductase 

Nitric oxide reductase enzymes, which are responsible for the third step of the 

denitrification process to reduce nitric oxide (NO) to nitrous oxide (N2O), belong to the 

cytochrome oxidases family (Hendriks, et al., 2000).  This enzyme has an interesting 

function, since the N-N bond configuration of N2 gas in nature is mainly due to nitric 

oxide reductase during denitrification (Moura and Moura, 2001).  In fact, nitric oxide 

reductase regenerates the N-N bond in the nitrogen cycle.  Accumulation of nitric oxide 

is toxic to the cells.  Nitric oxide reductases reduce nitric oxide immediately after it is 

generated.  In bacteria, nitric oxide reductase is a membrane protein complex, belonging 

to the haem/copper cytochrome oxidases, whereas in fungi, nitric oxide reductase is a 

soluble enzyme that belongs to the category of cytochrome-type proteins (Moura and 

Moura, 2001).   

2.6.1.4. Nitrous Oxide Reductase 

The last step in the denitrification process is conversion of nitrous oxide (N2O) to 

nitrogen gas (N2).  This is a two-electron reduction process, which is catalyzed by nitrous 

oxide reductases: 

N2O + 2e-+ 2H+
→ N2 + H2O                                                                                       (2.36) 

Nitrous oxide reductase is a homodimeric copper-containing metalloenzyme, which 

consists of two subunits (Moura and Moura, 2001).  In this enzyme, copper ion exists in 

both two centers.  Zink, iron, and nickel also have been detected in the structure of this 

enzyme (Simon, 2002).   
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Enzyme location, optimum pH and temperature for the activity, and molecular mass 

of the enzymes involved in the nitrate reduction pathway has been compared to the 

enzymes involved in the perchlorate reduction pathway in Table 2.8. 

2.6.2. Microorganisms Involved in Nitrate Biodegradation 

Nitrate reduction is a common pathway that can be found in both autotrophic and 

heterotrophic bacteria.  Most of the denitrifier bacteria can use other electron acceptor 

sources, such as oxygen, perchlorate, and sulfate, as a substitute for nitrate respiration 

(Hendriks, et al., 2000; Giblin and Frankenberger, 2001).  In prokaryotes, denitrification 

can be detected in some bacteria and even some archaea.  Denitrification is common in 

genera within the Proteobacteria group such as Pseudomonas, Thiobacillus, Alcaligenes 

and Paracoccus, which are all gram negative bacteria (Rittman and McCarty, 2001).  In 

addition to gram negative bacteria, denitrification can be found in some gram-positive 

genera including Bacillus (Suharti, et al., 2001; Suharti and de Vries, 2005).  All 

denitrifiers are facultative anaerobic bacteria (Rittman and McCarty, 2001).  Some 

halophilic archaea such as Halobacterium are also able to perform denitrification 

(Rittman and McCarty, 2001).   

Diversity of microorganism in a denitrification system depends on the conditions of 

the reactor.  Identification of denitrifying bacteria in a denetrification batch reactor, fed 

with acetate and methanol as external carbon sources, has been studied and α and β 

subclasses of Proteobacteria have been reported as the dominant denitrifying cells 

(Osaka et al., 2006).  Using acetate as the external carbon source, the 16S rRNA 

sequence analysis illustrated genes of Comamonadaceae (e.g., Comamonas and 

Acidovorax) and Rhodocyclaceae (e.g., Thauera and Dechloromonas) of the β-
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proteobacteria group and Rhodobacteraceae (e.g., Paracoccus and Rhodobacter) of the 

α-proteobacteria group in the reactor (Osaka et al., 2006).  With methanol as the carbon 

source, Methylophilaceae (e.g., Methylophilus, Methylobacillus, and Aminomonas) and 

Hyphomicrobiaceae were identified and reported (Osaka et al., 2006).  These results 

show that carbon source type has some effects on the genus and diversity level of 

denitrifiers in the system.   

 

 

Table 2.8. Typical Characteristics of Enzymes Involved in Nitrate and Perchlorate 
Reduction 

Enzyme 
name 

Enzyme location 
Molecular 
mass (kDa) 

Optimum pH 
Optimum 

temperature 
(ºC) 

Characteristic 

Perchlorate 
reductase 

periplasm 
(Kengen et al., 

1999) 

420 
(Steinberg et 

al., 2005) 

7.5-8.0 (Okeke 
and 

Frankenberger, 
2003) 

25-30 (Okeke 
and 

Frankenberger, 
2003)  

Selenium 
containing heme-
protein (Steinberg 

et al., 2005) 

Chlorite 
dismutase 

Periplasm 
(Kengen et al., 

1999). 

140 (van 
Ginkel et al., 

1996) 

6.0 (van 
Ginkel et al., 

1996) 

30 (van Ginkel 
et al., 1996) 

Heme-containing 
O-O bound 

former (Lee et al, 
2008) 

Nitrate 
reductase 

cytoplasm, 
membrane- 
bound, and 
periplasm 

(Einsle and 
Kroneck, 2004) 

230 (Polcyn, 
2008) 

9.0 (Giblin and 
Frankenberger, 

2001) 

70-80 
(Morozkina 

and 
Zvyagilskaya, 

2007) 

molybdenum 
dependent (Einsle 

and Kroneck, 
2004) 

Nitrite 
reductase 

membrane- 
bound, and 
periplasm 

(Einsle and 
Kroneck, 2004) 

120 (Moura 
and Moura, 

2001) 
NA 

35-38 (Peng 
and Zhu, 

2006)  

Heme-containing 
protein (Moura 

and Moura, 2001) 

Nitric oxide 
reductase 

Membrane-
bound 

(Hendriks, et 
al., 2000) 

160-180 
(Barton, 
2004) 

NA NA 
Oxidoreductase 
enzyme (Moura 

and Moura, 2001) 

Nitrous 
oxide 

reductase 

Periplasm 
(Rasmussen et 

al., 2005) 

120 (Simon, 
2002) 

7.5 
(Rasmussen et 

al., 2005) 
NA 

Multi-copper 
enzyme (Moura 

and Moura, 2001) 
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CHAPTER 3 

METHODOLOGY 

3.1. Work Plan for Issue One 

The first objective of this research, which involves three hypotheses, was to 

understand the mechanism of degradation of resin-attached perchlorate ions.  In the first 

hypothesis, it was envisioned that there is a desorption mechanism involved in the 

detachment of the resin-attached perchlorate ions.  The second and third hypotheses 

assumed the diffusion of desorbed perchlorate, from the inside region of the resin bead to 

the surface, is the rate-controlling step in the resin bioregeneration process.  The 

hypotheses posed for this objective were: 

Hypothesis 1: The first hypothesis was that resin-attached perchlorate exchanges 

instantaneously with chloride, generated from the degradation of 

perchlorate.  The perchlorate ion thereby is free to be taken up by the 

PRB.  However, this hypothesis did not explain how the first resin-

attached perchlorate ions are biodegraded.   

Hypothesis 2: The second hypothesis was that the bioregeneration of ion-exchange resin 

is controlled by diffusion rather than by the rate of resin-attached 

perchlorate desorption.   

Hypothesis 3: The third hypothesis was that bioregeneration of macroporous ion-

exchange resins is faster than gel-type resins due to higher water content 

and larges resin pore size, which result in a faster diffusion rate in 

macroporous resins compared to gel-type resins.   
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3.1.1. Experimental Approach 

All the experiments were performed in the Environmental Engineering Laboratory at 

UNLV.  Hypotheses 1, 2, and 3 were tested through a series of batch bioregeneration 

experiments.  In the tests associated with hypothesis 1, a series of batch bioregeneration 

tests were performed using different concentrations of chloride.  Chloride was 

hypothesized to be the reason for desorption of resin-attached perchlorate.  It was 

expected that resin-attached perchlorate desorption and bioregeneration can be observed 

only in the presence of chloride ion.   

In the tests associated with hypothesis 2, the ion exchange resin beads were sorted to 

obtain resin samples with different particle sizes.  In one of series of batch 

bioregeneration tests, resin beads were crushed to reduce the resin-bead size.  The batch 

bioregeneration experiments were performed using resin samples with different bead 

sizes.  It was expected that the PRB bioregenerate the smaller diameter resins at a higher 

rate than that for the larger resins due to the increase in specific surface area per volume 

of resin and as a result enhancement in the mass transfer.   

To test hypothesis 3, batch bioregeneration tests were performed using gel-type and 

macroporous ion-exchange resins, which include perchlorate-selective and non-selective 

resins.  It was expected that the bacteria bioregenerate the macroporous resins in higher 

rates compared to the gel-type resins since the macroporous resins have higher water 

content and larges resin pore size than the gel-type resins.   
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3.1.2. Experiments 

3.1.2.1. Resin Characteristics 

Two perchlorate-selective resins (SIR-100HP and SIR-110HP-MACRO) and two 

non-selective resins (ONAC ASB-1 and IONAC SR-7) were used in the batch 

bioregeneration experiments (Table 3.1).  These resins all have a styrenic matrix.  Table 

3.1 presents the characteristics of the selected resins used for this research. 

 

 

Table 3.1. Characteristics of the IX Resins Used in Batch Experiments to Test 
Hypotheses 1-3 

Hypothesis 
Commercial 

name 
Resin Type 

Water 
Con. (%) 

Capacity 
(eq/L) 

Resin 
structure 

Functional 
group 

Hypothesis 1 
Hypothesis 2 
Hypothesis 3 

SIR-110HP 
(ResinTech) 

ClO4
--

selective 
35-55 0.6 

Styrene,  
Gel 

(C4H9)3
+Cl- 

Hypothesis 1 
Hypothesis 3 

IONAC 
ASB-1 

(Sybron) 
non-selective 43-48 1.4 

Styrene,  
Gel 

(CH3)3
+ Cl- 

Hypothesis 3 
SIR-110HP-

MACRO 
(ResinTech) 

ClO4
--

selective 
58-65 0.6 

Styrene, 
Macroporous 

(C4H9)3
+Cl- 

Hypothesis 3 
IONAC 
SR-7 

(Sybron) 
non-selective 48-52 0.8 

Styrene, 
Macroporous 

(CH3)3
+ Cl- 

 

 

3.1.2.2. Resin Loading 

The resin samples were loaded fully to eliminate the original counter ion (i.e. 

chloride) of the functional groups of the resins.  Presence of chloride ion was controlled 

very carefully in all the experiments dealing with hypothesis 1 since the chloride ion was 

assumed as the desorbing agent of resin-attached perchlorate ions in the resin-

bioregeneration process.  Table 3.2 shows the total capacity of the resins as eq/l and g/l 
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and the concentrations of stock solutions.  All the resins were loaded with sodium 

perchlorate.   

 

 

Table 3.2. Resin Loadings Used for the Batch Bioregeneration Experiments for Issue 1 

Hypothesis Resin name 
Capacity 
(eq/L) 

Capacity 
(g/L) 

Concentration of Stock 
Loading Solution 

Hypothesis 1 SIR-110HP 0.6 59.7 120,000 (mg-ClO4/L) 

Hypothesis 1 IONAC ASB-1 1.4 139.3 120,000 (mg-ClO4/L) 

Hypothesis 2 SIR-110HP 0.6 59.7 120,000 (mg-ClO4/L) 

Hypothesis 3 SIR-110HP-MACRO 0.6 59.7 120,000 (mg-ClO4/L) 

Hypothesis 3 SIR-110HP 0.6 59.7 120,000 (mg-ClO4/L) 

Hypothesis 3 IONAC SR-7 0.8 79.6 120,000 (mg-ClO4/L) 

Hypothesis 3 IONAC ASB-1 1.4 139.3 150,000 (mg-ClO4/L) 

 

 

The resin samples were loaded batchwise.  Batch loading was selected to shorten the 

time period required to load the resin.  Furthermore, in the batch loading, the ions are 

distributed more homogeneously through the resin particles.  For each milliliter of the 

resin sample, 1 mL of the loading solution (Table 3.2) was prepared and added to a glass 

bottle.  The bottle was then placed on a rotary mixer (Associate Design Mfg. Co., 

Alexandria, VA) at 40-50 rpm and 22±2ºC.  After 24 hours, the mixer was stopped, and 

the resin was separated from the liquid supernatant using a filter paper. The supernatant 

was sampled for residual perchlorate analysis and the rest of it was decanted.  Perchlorate 
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concentrations of the added and residual solutions were then measured using Ion 

Chromatography (IC) analysis.   

The loaded resin was then rinsed 12 times with 1 L of de-ionized (DI) water for 6 

hours to remove all the residual unattached perchlorate ions and the rinsate solutions 

were submitted for perchlorate analysis using IC.  After 12 times rinsing, no perchlorate 

was detected in the rinsate solution.  The resins were then dried at room temperature (i.e. 

22±2ºC) for 6 hours, labeled, and stored in the refrigerator. 

3.1.2.3. Resin Size Reduction 

Loaded SIR-110HP resin particles were sorted to different sizes for the batch 

bioregeneration experiment evaluating the effect of resin particle size on the 

bioregeneration process (i.e. hypothesis 2 of issue 1).  The normal SIR-110HP resin size 

ranges between 1.19 to 0.297 mm, which corresponds to US mesh number 16 and 50 

respectively.  In order to obtain very small size of SIR-110HP, the loaded resin particles 

were crushed using a mortar and pestle.  A U.S. standard (Das, 2001) stainless-steel 

series of sieves (Fisher Scientific, Inc., Waltham, MA) with mesh sizes of 0.853, 0.710, 

0.599, 0.500, 0.150, and 0.106 mm were used for size distribution analysis and size 

separation of the dried resin particles (Table 3.3).   

Five different particle sizes of 0.924, 0.778, 0.652, 0.547, and 0.128 mm were used as 

the mean particle sizes for SIR-110HP in the experiment evaluating the effect of particle 

size on the bioregeneration process.  The specific surface area per volume was calculated 

by determine the total surface area per unit of solid volume of the resin (Sepaskhah et al., 

2010).  For the experiment examining the performance of gel-type and macroporous 

resins during bioregeneration process (i.e. hypothesis 3), only resin particles with the 
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representative particle size of 0.778 mm (i.e. remained on the sieve #25) were used.  Size 

distribution of SIR-110HP and ASB-1 resins was not changed for the batch 

bioregeneration experiment evaluating the effect of initial chloride on bioregeneration 

process.   

 

 

Table 3.3. Standard Sieve Numbers Selected to Perform the Sieve Analysis to Separate 
the Resin Beads with Different Diameters 

Sieve Number Opening Size (mm) Mean size (mm) 
Specific surface area per 

volume, 1/mm 

18 1.000 NA NA 

20 0.853 0.924a 6.476 

25 0.710 0.778 7.677 

30 0.599 0.652 9.167 

35 0.500 0.547 10.919 

100 0.150 NA NA 

140 0.106 0.128 46.785 
a 0.924 = (1.000 × 0.853)0.5 

 

 

3.1.2.4. Perchlorate Reducing Master Culture 

Perchlorate-reducing microbial culture for this research was taken from two master 

seed cultures, called BALI I and BALI II.  These microbial cultures were enriched from 

samples taken from the Las Vegas Wash and Lake Mead in Nevada.  These areas have 

been contaminated with ammonium perchlorate for the past five decades and were 

presumed likely sources of PRB (Gingras and Batista, 2002).  The culture was enriched 

under anaerobic conditions by providing perchlorate as the electron acceptor, acetate as 

the electron donor, and a mineral/nutrient/buffer broth for the seed (Table 3.4).  The 

culture has been identified using two different molecular methods, Restriction Fragment 
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Length Polymorphism (RFLP) and 16S rRNA sequencing (Kesterson, 2005).  The 

characterization results indicate the culture is composed of at least six isolates, two of 

which are able to degrade perchlorate as the electron acceptor source.  All six isolates are 

gram-negative, facultative anaerobe bacteria.  The bacterial species that have been 

identified in the culture include Pseudomonas, Azospira (formerly called Dechlorosoma), 

Dechloromonas, Aeromonas, and Rhizobium, which are typically present in soil and 

water (Kesterson, 2005).   

The master seed cultures were maintained by feeding/wasting and monitoring for 

total suspended solids (TSS), perchlorate residual, conductivity, turbidity, chemical 

oxygen demand (COD), pH, oxidation reduction potential (ORP), and dissolved oxygen 

(DO) on a weekly basis schedule.  During the growth, the reactors were sealed 

completely to ensure anaerobic condition for the microorganisms.  The culture was mixed 

using a magnetic stirrer to keep the biomass in suspension.   

3.1.2.5. Stock Solutions for Perchlorate Reducing Culture 

The stock solutions for feeding the seed master cultures were the electron acceptor 

(i.e. perchlorate), electron donor (i.e. acetate), and mineral/nutrient/buffer solutions.  The 

concentration of the electron acceptor and electron donor solutions was 40,000 mg-

ClO4/L and 120,000 mg- CH3COO-/L.  Table 3.4 shows the electron acceptor, electron 

donor, buffer, and mineral/nutrient stock solutions.  

The observed stoichiometry of ~1.7 mole acetate / mole perchlorate (i.e. ~1.01 g 

acetate / g perchlorate) has been reported in the previous studies (Chaudhuri and Coates, 

2002; Waller et al. 2004; Wang et al., 2008a).  Hence, a mass ratio of 2 for 

acetate/perchlorate (i.e. 2000 mg/L / 1000 mg/L) was used to feed the master cultures.   
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Table 3.4. Electron Donor, Buffer, and Nutrient Stock Solution Used for Feeding the 
Master Seed Cultures 

Solution Name Components Concentration of stock (g/L) 

Electron donor/ 
carbon source 

(40X)* 
CH3COO- (Sodium 

form) 
120.00 

Electron Acceptor/ 
Perchlorate 

(40X) 
NaClO4 40.00 

Buffer 
(100X) 

K2HPO4 
NaH2PO4.H2O 

NH4H2PO4 

155.00 
97.783 
50.000 

Mineral/Nutrients 
(100X) 

MgSO4.7H2O 
EDTA 

ZnSO4.7H2O 
CaCl2.2H2O 
MnCl2.4H2O 
FeSO4.7H2O 

Na2MoO4.2H2O 
CuSO4.5H2O 
CoCl2.6H2O 
NiCl2.6H2O 

NaSeO3 

H3BO3 

5.500 
0.300 
0.200 
0.100 
0.100 
0.400 
0.040 
0.020 
0.040 
0.010 
0.010 
0.060 

                    * 40X: need to be diluted 40 times 

 

 

3.1.2.6. Cell Extraction from Master Microbial Culture 

For the series of batch bioregeneration experiment that was performed using different 

concentrations of chloride, two liters of BRP microbial culture obtained form the master 

seed cultures were rinsed five consecutive times using phosphate buffer solution (Table 

3.4) to eliminate the presence of chloride ion in the liquid phase.  The culture was 

centrifuged using a Legend RT Sorvall centrifuge (Kendro, Thermo Fisher Scientific, 

Inc., Waltham, MA) at the rotational speed of 3850 rpm for 45 minutes.  The supernatant 

containing chloride was discarded and phosphate buffer solution was added to the 

concentrated biomass.  The mixture of the concentrated biomass and phosphate buffer 
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solution was then blended to reach a SS concentration of 1500 mg/l using a bench-top 

orbital shaker (Cole-Parmer, Series 51704) for 20 min at 80-100 rpm.  The culture was 

centrifuged and rinsed five times to ensure the elimination of chloride from the culture.  

A sample of rinsed culture was then submitted for chloride analysis by IC and no chloride 

was detected.   

3.1.2.7. Batch Testing Procedure 

All the bioregeneration experiments were performed in batch-bioreactor tubes with a 

capacity of 25 mL.  For each experiment a series of batch-bioreactor tubes were used so 

that a tube was sacrificed at the given time intervals for sampling (Table 3.5).  The 

culture was diluted to 1000 mg/L in the batch-bioreactor tubes by adding nutrient, buffer, 

and acetate media (Table 3.4) and DI water.  Initial concentrations of 0, 500, 1000, and 

5000 mg/L of sodium chloride (NaCl) were used for the series of bioregeneration 

experiments evaluating the effect of varying initial chloride concentration on 

bioregeneration process.  A concentration of 9000 mg/L of acetate was used for all of the 

batch-bioreactor tubes.   

Approximately 1.2 g of resin (i.e. about 2 ml) was added to each batch-bioreactor 

tube.  All the solutions (i.e. nutrient, buffer, and acetate stock solutions, and DI water) 

were purged with nitrogen gas for 30 minutes prior to start the experiment to eliminate 

dissolved oxygen in the solutions.  After all the solutions were added to the batch-

bioreactor tube, they were sealed using aluminum-crimpled butyl rubber-stopper 

(Wheaton Industries, Inc., Millville, NJ), labeled, and placed on a rotary mixer at 22±2ºC 

and 40-50 rpm.   
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Table 3.5. Experimental Design Used for Batch Bioregeneration Experiments 

Resin name 
Resin particle size, 

mm 

Amount of 
Resin in each 

tube, g 

Initial 
conc. of  
NaCl, 
mg/L 

Bioregeneration 
length, days 

Series #1: Cl- variation (hypothesis 1) 

SIR-110HP Original distribution 1.2 0 8 
SIR-110HP Original distribution 1.2 500 8 

SIR-110HP Original distribution 1.2 1000 8 

SIR-110HP Original distribution 1.2 5000 8 

ASB-1 Original distribution 1.2 0 8 

ASB-1 Original distribution 1.2 500 8 

ASB-1 Original distribution 1.2 1000 8 

ASB-1 Original distribution 1.2 5000 8 

Series #2: Size variation (hypothesis 2) 

SIR-110HP 0.924 1.2 NAa 8 

SIR-110HP 0.778 1.2 NA 8 

SIR-110HP 0.652 1.2 NA 8 

SIR-110HP 0.547 1.2 NA 8 

SIR-110HP 0.128 1.2 NA 8 

Series #3: Gel-type resin vs. Macroporous resin (hypothesis 3) 

SIR-110HP 0.778 1.2 NA 8 

SIR-110HP-MACRO 0.778 1.2 NA 8 

ASB-1 0.778 1.2 NA 8 

SR-7 0.778 1.2 NA 8 
a Initial concentration of chloride was not changed (i.e. it was the same concentration as the master seed 
cultures).  

 

 

Each series of bioregeneration experiment contained 5 bioreactor-tubes (i.e. days 1, 2, 

4, 6, and 8), 2 replicates for quality control (i.e.  day-1-QC and day-8-QC), an abiotic 

control tube (i.e. resin and nutrient/buffer/acetate medium, no microbial cell), and a 

replicate for abiotic control tube (Figure 3.1).  For the series of bioregeneration 

experiment evaluating the effect of varying initial chloride concentration (i.e. hypothesis 

1), two other control tubes were prepared (Figure 3.1): (a) an abiotic tube containing resin 

and DI water (i.e. no microbial cells, no nutrient/buffer/acetate medium), and (b) a 

bioreactor-tube containing resin, microbial cells, and buffer solution (i.e. no 
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nutrient/acetate medium).  The sealed abiotic reactor-tubes were autoclaved immediately 

after preparation of tubes to avoid any microbial activity.  All the control tests were 

performed in duplicate.   

 

 

 
Figure 3.1. Batch Experiment Setup Used for Resin Bioregeneration Experiments for 

Hypothesis 1-3 
 

 

Bioreactor-tubes were collected form the mixer on days 1, 2, 4, 6, and 8.  The resin 

was rapidly settled and the microbial culture above the settled resin was collected and 

tested for COD, pH, SS, and ORP.  The resin sample was then rinsed 5 times with 5 mL 

of DI water to remove the remaining microbial cells and organics which might remain in 

the resin.  Preliminary experiments by measuring % transmittance of the rinsate solution 
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showed that after 5 time rinse, the % transmittance of the rinsate solution before and after 

rinsing does not change.  The resin sample was then submitted to resin-attached residual 

perchlorate analysis.   

All the control tubes were collected after 8 days from the mixer.  In the abiotic tests, 

the supernatant was submitted for perchlorate analysis by IC to determine the amount of 

desorbed perchlorate.  The resin from the control tubes containing resin, microbial cells, 

and buffer solution was rinsed 5 times with 5 mL of DI water to remove the remaining 

microbial cells and organics and submitted to resin-attached residual perchlorate analysis.   

For the experiment investigating the resin attached perchlorate desorption kinetic, 1.2 

g of 0.924 and 0.128 mm SIR-110HP resin was added to a 25 mL batch-reactor tube 

containing 23 mL of 2000 mg/L NaCl solution and placed on a rotary mixer at 22±2ºC 

and 40-50 rpm.  One hundred µL (100 µL) samples were collected from the batch-reactor 

tubes using a micropipette after prescribed time intervals and submitted to perchlorate 

analysis by IC.  The desorption kinetic experiments were performed in duplicate.   

3.1.2.8. Batch Test Design to Test Hypothesis 1-3 of Issue One 

Testing hypothesis 1 involved using two different gel-type resins (i.e. SIR-110HP and 

ASB-1) and four different initial chloride concentrations (0, 500, 1000, 5000 mg-

NaCl/L).  Both resins were loaded with perchlorate (section 3.1.2.2).  In total, 8 sets of 

experiments were performed to study hypothesis 1 (Table 3.6).   

Testing hypothesis 2 involved using a gel-type perchlorate-selective resin (i.e. SIR-

110HP) that was sorted in five different sizes.  To obtain the smallest size (i.e. 0.128 

mm), the resin beads were crushed using mortar and pestle.  In total, 5 sets of 

experiments were performed to study hypothesis 2 (Table 3.7).  For hypothesis 3, 
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perchlorate-selective and non-selective resins in the form of gel-type and macroporous-

type were used to perform four sets of batch bioregeneration tests.   

3.1.2.9. Investigation of Diffusion and Reaction Control of Bioregeneration 

The shrinking core model (Arevalo et al., 1998; Pritzker, 2005) can be used to 

describe perchlorate desorption and utilization in IX resin bead.  Based on the shrinking 

core model, about 90% of perchlorate load is located between r0/r = 0.5 and r0/r = 1.0.  

Reducing the resin bead size will accelerate the diffusion process and a result 

bioregeneration of resin, if the bioregeneration process is controlled by pore diffusion 

(Helfferich, 1962).  According to the shrinking core model, reducing the resin bead size 

exposes more surface to the liquid phase, and if the bioregeneration process is pore 

diffusion controlled, it will enhance the process. 

In addition to pore diffusion, it is thought that film diffusion is also involved in the 

bioregeneration process.  Film diffusion limitation increases with decreasing resin bead 

size.  While, decreasing resin bead size results in increase of pore mass transfer flux.  The 

rate controlling step in mass transfer process can be mathematically identified 

(Helfferich, 1962): 

1)25(
0

<<+ A
BCDr

DX
α

δ
   pore diffusion control                                                          (3.1) 

1)25(
0

≈+ A
BCDr

DX
α

δ
   pore / film diffusion control                                                  (3.2) 

1)25(
0

>>+ A
BCDr

DX
α

δ
   film diffusion control                                                          (3.3) 

where: 

X = concentration of fixed ionic group (eqperchlorate/Lresin) 
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C = concentration of solution (eqchloride/Lsolution) 

D  = pore diffusion coefficient (cm2/s)  

D = film diffusion coefficient (cm2/s) 

r0 = mean particle radius (mm) 

δ = assumed liquid film thickness (cm) 

A
Bα  = selectivity coefficient 

The Thiele modulus is an understood measure of the comparison of diffusion limited 

to kinetic limited reactions (Thiele, 1939; Helfferich, 1962; Hong et al., 1999).  In the 

bioregeneration process, Thiele modulus can be used to examine whether the process is 

controlled by diffusion of perchlorate ion thought the resin pores or by the biological 

reduction of perchlorate in the bulk liquid.   

The Thiele modulus for a process involving reaction and diffusion can be calculated 

mathematically as following (Helfferich, 1962; Hong et al., 1999):  

e
T D

kr
M

3
0=                                                                                                            (3.4) 

where: 

MT = Thiele modulus  

r0 = mean particle radius (mm) 

De = pore / film diffusion coefficient (cm2/s) 

k = kinetic coefficient (1/sec) 

3.2. Work Plan for Issue Two 

The second objective of this research was to investigate the possibility of multi-cycle 

ion-exchange resin bioregeneration.  The hypothesis posed for this objective was: 
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Table 3.6. Summary of the Batch Experiments Performed to Test Hypothesis 1- Issue 
One 

 

Resin Name 

SIR-110HP (Selective) IONAC ASB-1 (non-selective) 

Resin load ClO4
-  ClO4

-  ClO4
-  ClO4

-  ClO4
- ClO4

-  ClO4
-  ClO4

-  

NaCl Conc. 
(mg/l) 

0 500 1000 5000 0 500 1000 5000 

 mL of NaCl 
solution 
(200 g/l) 

0 0.057 0.115 0.575 0 0.057 0.115 0.575 

mL of 
Culture 

(1500 mg/L) 
15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 

mL of 
Acetate (120 

g/L) 
1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 

mL of 
Nutrients 
(100X) 

0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 

mL of Buffer 
(100X) 

0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 

mL of DI 
water 

5.485 5.431 5.370 4.910 5.485 5.431 5.370 4.910 

Resin mass 
(g) 

1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

Total 
volume of 
tube (mL) 

25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

# of sample 
tubes / # of 
replicate 

tubes 

5 / 2 5 / 2 5 / 2 5 / 2 5 / 2 5 / 2 5 / 2 5 / 2 

Days of 
sampling 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

replicates for 
main tubes 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 
# of control 
tubes (all 

replicated) 
3 3 3 3 3 3 3 3 

Total No of 
tubes 

13 13 13 13 13 13 13 13 
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Table 3.7. Summary of the Batch Experiments Performed to Test Hypothesis 2- Issue 
One 

 

Resin Name 

SIR-110HP 

Resin Size (mm) 0.924 0.778 0.652 0.547 0.128 

NaCl Conc. (mg/l) NA NA NA NA NA 

 mL of NaCl solution (200 g/l) NA NA NA NA NA 

mL of Culture (1500 mg/L) 15.33 15.33 15.33 15.33 15.33 

mL of Acetate (120 g/L) 1.725 1.725 1.725 1.725 1.725 

mL of Nutrients (100X) 0.23 0.23 0.23 0.23 0.23 

mL of Buffer (100X) 0.23 0.23 0.23 0.23 0.23 

mL of DI water 6.060 6.060 6.060 6.060 6.060 

Resin mass (g) 1.20 1.20 1.20 1.20 1.20 

Total volume of tube (mL) 25.0 25.0 25.0 25.0 25.0 

# of sample tubes / # of 
replicate tubes 

5 / 2 5 / 2 5 / 2 5 / 2 5 / 2 

Days of sampling 
1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

1, 2, 4, 
6, and 8 

replicates for main tubes 
D1QC 

& 
D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

D1QC 
& 

D8QC 

# of control tubes  
(all replicated) 

1 1 1 1 1 

Total No of tubes 9 9 9 9 9 
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Table 3.8. Summary of the Batch Experiments Performed to Test Hypothesis 3- Issue 
One 

 

Resin Name 

SIR-110HP 
SIR-110HP-

MACRO 
IONAC 
ASB-1 

IONAC 
SR-7 

Resin Size (mm) 0.778 0.778 0.778 0.778 

NaCl Conc. (mg/l) NA NA NA NA 

 mL of NaCl solution (200 
g/l) 

NA NA NA NA 

mL of Culture (1500 
mg/L) 

15.33 15.33 15.33 15.33 

mL of Acetate (120 g/L) 1.725 1.725 1.725 1.725 

mL of Nutrients (100X) 0.23 0.23 0.23 0.23 

mL of Buffer (100X) 0.23 0.23 0.23 0.23 

mL of DI water 6.060 6.060 6.060 6.060 

Resin mass (g) 1.20 1.20 1.20 1.20 

Total volume of tube 
(mL) 

25.0 25.0 25.0 25.0 

# of sample tubes / # of 
replicate tubes 

5 / 2 5 / 2 5 / 2 5 / 2 

Days of sampling 
1, 2, 4, 6, 

and 8 
1, 2, 4, 6, and 

8 
1, 2, 4, 6, 

and 8 
1, 2, 4, 6, 

and 8 

replicates for main tubes 
D1QC & 
D8QC 

D1QC & 
D8QC 

D1QC & 
D8QC 

D1QC & 
D8QC 

# of control tubes  
(all replicated) 

1 1 1 1 

Total No of tubes 9 9 9 9 
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Hypothesis: The bioregeneration process can be performed on perchlorate-selective 

macroporous anion-exchange resins for several consecutive exhaustion-

bioregeneration cycles.  It was expected that bioregeneration does not affect 

the capacity of ion-exchange resin significantly. 

3.2.1. Experimental Approach 

A perchlorate-selective resin was subjected to several cycles of loading and 

bioregeneration.  The loading cycles were performed batch-wise, while the 

bioregeneration cycles were run using a fluidized bed reactor (FBR), which was 

connected to a fermenter that contained the perchlorate reducing culture.   

To be economically feasible, the bioregeneration process must be practical to be 

performed for several loading-bioregeneration cycles.  The number of bioregeneration 

cycles that must be performed depends on the virgin resin price in the market, and 

bioregeneration operation and maintenance costs.  For this research, the resin was 

subjected to five cycles of the loading-bioregeneration process, due to the time and 

experiment costs limitations.  

3.2.2. Experiments 

3.2.2.1. Resin Characteristics 

SIR-110-MP, which is a perchlorate-selective macroporous resin, was used in the 

experimental tests (Table 3.9).  This resin is not commercially available and it was 

manufactured exclusively for this research.  Table 3.9 presents the characteristics of SIR-

110-MP resin.   
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Table 3.9. Characteristics of the Resin Used in the Experiments to Study Issue Two 

Resin Name Resin Type 
Water 

Con. (%) 
Capacity 
(eq/L) 

Resin 
structure 

Functional 
group 

SIR-110-MP 
(ResinTech) 

ClO4
--selective 58-65 0.6 

Styrene, 
Macroporous 

(C4H9)3
+Cl- 

 

 

3.2.2.2. Resin Loading 

Batch loading was selected to shorten the time period required to load the resin.  In 

the batch loading process, the ions are distributed homogeneously through the resin 

beads.  A loading of 10 grams of perchlorate per liter of resin was selected (Table 3.11).  

This loading was chosen to mimic the amount of perchlorate that would be present in the 

resin in industrial applications.  Industrial applications include waters that are 

contaminated with high concentrations of perchlorate (i.e. >50 ppb).   

Preliminary studies performed to estimate the amounts of perchlorate load in 

industrial and domestic water treatment applications.  Studies showed that with an 

influent perchlorate concentration of 10 ppb, SIR-110HP, which is a gel-type perchlorate-

selective resin, can be loaded up to 410,000 bed volumes (BVs) (Seidel et al., 2006).  

Also, studies performed in the Environmental Engineering Laboratory at UNLV, showed 

that with the influent perchlorate concentration of 100,000 and 1000 ppb, SIR-110-MP 

resin can be loaded up to 270 and 6,120 bed volumes, respectively.  Table 3.10 shows the 

total amount of perchlorate ion per liter of resin in both industrial and domestic 

applications.   
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Table 3.10. Estimation of Perchlorate Loads in Perchlorate Selective Resins for Industrial 
and Domestic Applications (Seidel et al., 2006; Studies performed at UNLV) 

Resin 
Perchlorate, 

ppb 
Bed Volumes 

Total grams of 
ClO4

- /  L of resin 
Capacity 
(eq/L) 

% capacity occupied 
with ClO4

- 

SIR-110HP 10 410,000 4.1 0.6 6.9% 

SIR-110-MP 1,000 6120 6.12 0.6 9.7% 

SIR-110-MP 100,000 270 27.00 0.6 42.7% 

 

 

Table 3.10 shows that in perchlorate-selective resin, depending on the influent 

concentration, the loading ranges from 4 to 27g perchlorate per liter of resin.  The loading 

combination chosen to load the SIR-110-MP resin is presented in Table 3.11.  The 

selectivity coefficients for these ions are listed in Table 2.4.   

For each milliliter of the resin sample, 1 mL of the loading solution (Table 3.11) was 

added to a 2-L glass container and the contained was then placed on a rotary tumbler 

(Associated Design MFG Co., Alexandria, VA) with the rotational speed of 30 rpm.  

After 24 hours, the resin was separated from the liquid portion using a coffee filter paper, 

rinsed three times with 5 BVs of deionized (DI) water, air dried for 2 hours, and stored in 

the refrigerator.  The liquid portion was then submitted to perchlorate, nitrate, sulfate, and 

chloride analysis by IC, and the amount of adsorbed ions were calculated by subtracting 

the residual ion in the liquid portion from the initial values.  The amount of perchlorate 

adsorbed in the resin was then confirmed by the residual perchlorate measurement 

analysis using the oxygen Parr Bomb. 
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Table 3.11. Loading Combination Used to Load the SIR-110-MP Resin for Issue Two of 
This Research 

Component 
Concentration of Stock Loading 

Solution (mg/L) 

Perchlorate 10,000 

Nitrate 460 

Sulfate 500 

Chloride 500 

Bicarbonate 500 

 

 

3.2.2.3. Perchlorate Reducing Master Culture 

Perchlorate-reducing microbial culture for this part of the research was taken from 

two master seed cultures, called BALI I and BALI II.  The characteristics of the master 

seed culture have been described in detail in section 3.1.2.4.   

3.2.2.4. Fermenter Start-up and Monitoring 

A 10-gallon (37.8 L) HDPE plastic fermenter connected to a 3-inch diameter (7.6 cm) 

x 50 inch (127 cm) tall plexiglass fluidized bed reactor (FBR) was used in this research.  

The fermenter was covered with a HDPE lid and sealed with a weather strip to avoid 

oxygen entry.   The fermenter was instrumented with a +GF+ Signet pH/ORP meter (J.L. 

Wingert Co., Garden Grove, CA) and a Omega dissolved oxygen meter (Omega 

Engineering Inc., Stamford, CT).  The microbial culture in the fermenter was monitored 

for SS, pH, DO, COD, ORP, conductivity, and perchlorate residual level.  A stirrer was 

used to mix the bacterial enrichment culture in the fermenter at 45 rpm rotational speed.  

The fermenter contained three ports.  The first port was used for nutrient feeding using a 

peristaltic pump.  The second port was used to waste the culture from the bottom of the 

fermenter when it was needed.  The third port was used as a vent fitted with a “U” shape 
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tube that is connected to a 1-L HDPE bottle that contained a 10% NaOH solution.  This 

set-up served as a scavenger of the gases produced in the fermenter.  Figure 3.2 shows the 

schematic design of the fermenter that contains microbial culture and the FBR that 

contains the loaded resin. 

 

 

 

Figure 3.2. Schematic Design of the Fermenter and the FBR 
 

 

At start-up, approximately 4-L of seed culture, was taken from the master microbial 

reactor and transferred into the 10-gallon fermenter.  Perchlorate, acetate, nutrient, and 

buffer solutions were then added to the fermenter to foster microbial growth.  The 

composition of the nutrient and buffer solutions used is depicted in section 3.1.2.5.  

Perchlorate degradation was monitored with time, and more perchlorate, acetate, nutrient, 
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and buffer solutions were added until 30-L of microbial solution with a SS of about 1500 

mg/l was achieved.  The culture was not wasted during the start-up period.   

Prior to starting the resin bioregeneration cycles, all perchlorate remaining in the 

fermenter was allowed to biodegrade, so that no perchlorate was present in the microbial 

solution. 

3.2.2.5. Bioregeneration Procedure for FBR Reactor 

One thousand five hundred mL (1500 mL) of loaded SIR-110-MP resin (procedure 

shown in section 3.2.2.2) was transferred to the FBR column.  The bacterial culture 

contained in the fermenter was then fed up-flow using a peristaltic pump with a flow rate 

of 1250 mL/min to have 30 to 40% expansion in the resin bed.  Then the microbial 

culture was returned back to the fermenter.  The culture was monitored for SS, pH, DO, 

COD, ORP, conductivity, and perchlorate residual, daily.  The minimum amount of 

acetate in the bioreactor was kept above 1500 mg/L.  The pH of the fermenter was 

maintained between 7.0 and 8.0 using a phosphate buffer.  ORP and temperature 

variations also were controlled.  DO was kept below 0.2 mg/L.    

Daily, a 4 mL resin sample was taken from the FBR ports located along the FBR 

column.  The resin was then rinsed with 1 BV of DI water 5 times to remove microbial 

cells.  Then, the resin sample was transferred to a 15-mL plastic container with about 10-

mL of DI water on top, labeled, and stored in the refrigerator.  Finally, the resin samples 

were subjected to residual perchlorate analysis using an oxygen Parr Bomb (Appendix 

A).   

Resin bioregeneration process was continued until the residual perchlorate 

concentration in the resin remained constant.  Bioregeneration processes ran for a period 
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of 9-14 days.  After completion of bioregeneration process, the microbial culture in the 

FBR was transferred from the bottom of FBR to the fermenter using a peristaltic pump.  

The resin was then rinsed 5 times with 1 BV of DI water to remove the remaining 

microbial cells and organics which might remain in the resin.  To ensure the rinsing 

procedure is effective, % transmittance of the rinsate solutions were measured.  The resin 

was then submitted to the fouling removal process (section 3.2.2.6).  This procedure for 

loading-bioregeneration of the resin was repeated for five consecutive times.  Since there 

was not any electron acceptor to maintain the microbial culture growth while the resin 

was under defouling and reloading processes, the fermenter was fed directly with 

perchlorate and acetate solutions.  Phosphate buffer was added to the fermenter to control 

pH variation.  Suspended solids (SS) of 1500 mg/l and zero remaining perchlorate in the 

fermenter were needed to start the next bioregeneration cycle.   

3.2.2.6. Defouling and Disinfection of the Resin 

Defouling was performed using a NaOH/NaCl mixture and disinfection was carried 

out using a sodium hypochlorite solution.  Preliminary investigations showed that 

NaOH/NaCl mixture remove the fouling resulted from the bioregeneration process with 

an acceptable efficiency by visual observation.  Furthermore, sodium hypochlorite was 

shown to have better disinfection and defouling effect compared to the other common 

disinfectants (Batista et al., 2007a).  Preliminary investigations showed that 1.5 bed 

volumes of 100 mg/L of total chlorine residual is sufficient to reach the required E.Coli 

and heterotrophic plate counts (HPC) (i.e. <1 MPN/100mL for E.Coli and <500 CFU/mL 

for HPC) after resin disinfection.  In addition, preliminary suggested that if excessive 

amount of sodium hypochlorite is used, more disinfection by-product (i.e. NDMA) will 
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be produced as a result of the presence of high free-chlorine.  The results of the 

preliminary tests were used to develop the following procedure for fouling removal and 

disinfection of bioregenerated ion-exchange resins.  The fouling removal and disinfection 

procedure is summarized in Table 3.12. 

Defouling of the resin was performed in 4 steps:  

1) Soaking for 16 hours in 1.5 BV of the 6% NaCl/ 0.5% NaOH solution, 

2) Soaking for 2 hours in 1.5 BV of the 6% NaCl/ 0.5% NaOH solution, 

3) Soaking for 2 hours in 12% NaCl solution, and 

4) Rinsing with six bed volumes of DI water. 

All the solutions were pumped up-flow with a small flow rate of 80 mL/min.  

Chemical oxygen demand (COD) of the rinsate solutions after each step of fouling 

removal procedure was measured. 

 

 

Table 3.12.  - Fouling Removal and Disinfection Procedure Used after Bioregeneration 
Process 

 Fouling removal 
reagent  

Applied 
volume  

Retention time 

Fouling removal 
procedure 

12% NaCl +  
2% NaOH 

1.5 BV 12 hours 

12% NaCl +  
2% NaOH 

1.5 BV 4 hours 

12% NaCl 1.5 BV 2 hours 
DI water rinse 3 BV N/A 

Disinfection 
procedure 

100  mg/L free 
chlorine using 
sodium hypochlorite 

1.5 BV 15-20 min 

DI water rinse until no residual chlorine is detected 
in the rinsate 
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The resin was disinfected with 1.5 BV of 100 mg/l sodium hypochlorite solution.  

The disinfectant agent was pumped up-flow to the column with a small flow rate of ~80 

mL/min.  The residence time was 15 to 20 minutes.  The resin was then rinsed with six 

BVs of DI water.  Total Coliform test using IDEXX Quanti-Tray method (IDEXX 

Laboratories, Inc., Westbrook, ME) was performed on the rinsate solution after 

disinfection step.  The bioregenerated and disinfected resin was then loaded batch wise 

again (section 3.2.2.2) to commence the new bioregeneration cycle.  The process was 

repeated five times consecutively.   

3.2.2.7. Resin Capacity Measurement 

It was expected that bioregeneration would result in decreased resin capacity after 

each cycle.  Therefore, the total capacity of fresh and bioregenerated resin was measured.  

To measure the capacity, 15 mL of wet resin was placed in a pipette filled with a 

stopcock.  One L of 4.0% HCl was passed through the resin bed to convert the resin to 

the chloride form.  Next the resin was rinsed with 1 L of DI water to rinse interstitial 

chloride.  One L of 1.0 N NaNO3 solution was then passed through the resin to replace 

the chloride ions with nitrate.  The effluent from the NaNO3 rinse was collected and 

titrated with AgNO3 to measure the chloride concentration.  Theoretically, each mole of 

detected chloride in the effluent corresponds one mole of nitrate exchanged by the active 

functional groups.  The resin capacity in equivalents/L is then calculated using the 

chloride measurements.   
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3.3. Analytical Methods 

3.3.1. Analysis of Perchlorate, Nitrate, and Chloride 

All perchlorate concentrations and low concentrations of chloride was measured 

using Dionex ICS-2000 Ion Chromatograph (IC) (Dionex Corporation, Sunnyvale, CA), 

consisting of an Ion Suppressor-ULTRA II (4 mm), IonPac AS16 (4 mm) analytical, 

AG16 (4 mm) guard columns, and an AS16 autosampler.  For perchlorate, EPA method 

314.0 was used with a current of 100 mA and a NaOH concentration of 35 mM with a 

flow rate of 1.0 mL/min.  A calibration curve was established using perchlorate standard 

solutions with concentrations between 5 and 100 µg/L (i.e. 5, 10, 25, 50, 75, and 100 

µg/L).  A coefficient of determination of 99.97% was used for calibration.  Similarly, a 

current of 100 mA and a NaOH concentration of 35 mM with a flow rate of 1.0 mL/min 

were used to measure low-concentration chloride ion. Calibration curve for low-

concentration chloride was plotted with standard solutions with concentrations between 

100 and 500 µg/L (100, 200, 300, 400, and 500 µg/L) using a coefficient of 

determination of 99.97%.  For nitrate, sulfate, and high concentrations of chloride anions, 

IonPac AS20 (4 mm) analytical and AG16 (4 mm) guard columns were used on the same 

IC with a current of 110 mA and a NaOH concentration of 30 mM and a flow rate of 1.0 

mL/min.  The calibration curve for nitrate, sulfate, and high concentrations of chloride 

anions measurement was prepared for concentrations between 1 and 10 mg/L and a 

99.99% coefficient of determination.   

3.3.2. Residual Perchlorate Measurement (Oxygen Combustion Bomb Method) 

The amount of perchlorate left in the resin sample was analyzed indirectly using 

Oxygen Parr Bomb apparatus (Parr Bomb 1108, Parr Instruments, Moline, IL).  Parr 
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Bomb (oxygen combustion bomb) was used to ignite the resin sample and convert the 

residual perchlorate in the resin sample to chloride ions.  Parr Bomb, as it is shown in 

Figure 3.3, is a closed stainless steel cylinder.  This stainless steel cylinder can tolerate an 

inside pressure of 100 psi.  The detailed Parr Bomb procedure, developed by UNLV, is 

shown in Appendix A.   

 

 

 

Figure 3.3: Oxygen Combustion Bomb 1108 (Parr Instruments) 

 

 

3.3.3. Total Suspended Solids (TSS) 

The total suspended solids (TSS) was measured using a filtration apparatus (Thermo 

Fisher Scientific, Waltham, MA).  A glass microfiber filter with an average pore diameter 

of 0.45 µm (Whatmann glass microfiber filters (GFC)) was placed in the filtration 

apparatus as the filter paper.  The initial weight of a microfiber filter paper and an 

aluminum dish (Thermo Fisher Scientific, Waltham, MA) was measured and recorded.  A 

known volume of the sample was measured using a micropipette and passed through the 

filter paper.  Then the filter paper in the aluminum dish was dried in 105ºC oven (Thermo 
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Fisher Scientific, Waltham, MA) for 60 min.  The amount of TSS was then calculated by 

subtracting the initial weight from the final weight divided by the volume of the sample. 

3.3.4. Chemical Oxygen Demand (COD) 

Chemical Oxygen Demand (COD) was measured using Hach COD digestion vials 

(Hach Company, Loveland, CO) in three different renges: high range (0-1500 mg/l), low 

range (0-150 mg/l) and ultra low range (0-40 mg/l).  Based on the strength of the sample, 

the appropriate Hach COD vial was selected and used.  Dilutions performed to ensure the 

COD of the sample is in these ranges, when it was needed.  Two mL (2 mL) of sample 

was pipetted and placed in the COD vial.  The Hach COD vial was then placed in a Hach 

DRB-200 Dry Thermostat COD digester (Hach Company, Loveland, CO) for 120 min at 

the constant temperature of 150ºC.  After 120-min digestion time, the vial was cooled 

down for 20 min at the room temperature. Lastly, the COD of the vial was measured 

using a Hach DR-3000 spectrophotometer (Hach Company, Loveland, CO).   

3.3.5. pH 

The pH of the samples was measured using a Fisher Scientific model AR25 pH meter 

(Thermo Fisher Scientific, Waltham, MA).  Every day the pH meter was calibrated 

according to the pH meter operation instructions.  Two standard pH solutions of 7.00 and 

of 10.01 (Thermo Fisher Scientific, Waltham, MA) were used to perform the calibration 

procedure.  If the slope was above 90%, the pH meter was considered calibrated.   
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3.3.6. Conductivity 

The conductivity of the samples was measured using YSI (Model # 30/10 FT) 

conductivity meter (YSI, Inc., Warm Springs, OH).  The temperature of the samples was 

22±2ºC for the conductivity analysis. 

3.3.7. Dissolved Oxygen (DO) 

The dissolved oxygen (DO) of the samples was measured using YSI Model 58 

Dissolved Oxygen meter (YSI, Inc., Warm Springs, OH).  The Dissolved Oxygen meter 

was calibrated daily according to the operation instructions.  Barometric pressure and 

room temperature were used to calibrate the DO meter.  Barometric pressure and room 

temperature was measured using Princo barometer model 453 (Princo Inc., Southampton, 

PA).   

3.3.8. Turbidity 

The turbidity of the samples was measured using a Hach turbidimeter Model 2100N 

(Hach Company, Loveland, CO).  The turbidimeter was calibrated before every 

measurement.  According to the operation instructions, five company-sealed Formazin 

standard turbidity vials were used to calibrate the turbidimeter.   

3.3.9. Absorbance and Optical Density (OD) 

The absorbance and optical density of the samples were measured using a Hach DR 

3000 Spectrophotometer (Hach Company, Loveland, CO).  DI water was used to 

calibrate the spectrophotometer before each measurement.  The samples were scanned for 

all wavelengths, and the maximum hits were selected to use as the wavelength of 

measurement.   
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3.3.10. Scanning Electron Microscopy (SEM) 

Fresh and bioregenerated resin samples were rinsed with 5 BVs of DI water and air-

dried for 24 hours at 22±2ºC.  Scanning electron microscopy imaging of the resin 

samples was performed using Jeol JSM-7500F SEM (JEOL Ltd., Tokyo, Japan) 

employing secondary electron detector at 1.00 kV. 

3.4. Analysis of Data 

3.4.1. Introduction 

In this research, several bioregeneration experiments were performed.  Chemical 

analyses were conducted to evaluate the performance of the bioregeneration tests.  The 

main chemical analysis was the determination of residual resin-attached perchlorate in 

the resin sample with time for which an oxygen Parr bomb method was developed.  Other 

analyses included perchlorate, nitrate, chloride, and sulfate measurements by IC, COD, 

TSS, and optical density (OD).  The experimental data were analyzed statistically in 

order to interpret the obtained results. 

3.4.2. Bioregeneration Data Analysis – Issue One 

3.4.2.1. Data Analysis for Hypothesis 1 

Hypothesis 1 of issue one involved batch bioregeneration experiments using different 

amounts of chloride.  In the batch bioregeneration experiments, resin samples were taken 

according to the schedule (Table 3.6), and residual resin-attached perchlorate was 

analyzed in the samples.  For each set of the batch experiments (Table 3.6), residual 

resin-attached perchlorate was plotted against time (i.e. day) to observe the 

bioregeneration of perchlorate throughout the days.  For each resin type (i.e. perchlorate-

selective and non-selective resins), four curves representing four initial chloride 
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concentrations were plotted.  Each set of experiments contain 5 data points, 2 of which 

have replicates (i.e. day 1 and day 8).  The data obtained from replicate samples were 

compared using independent t-test assuming a 95% confidence interval (p<0.05) in Excel 

spreadsheet.  The null hypothesis was that the difference in residual resin-attached 

perchlorate concentration between replicates is zero.  The alternate hypothesis was that 

the residual resin-attached perchlorate concentration between the replicate samples is 

different.  Up to 5% deviation per the average of the replicate values was acceptable, 

otherwise the residual resin-attached perchlorate analysis were repeated.   

To evaluate the effect of chloride between four data sets of bioregeneration 

experiments and to observe whether the data sets are significantly different, two-way 

analysis of variance (i.e. ANOVA) using the F statistical test was performed on the 

replicated data points (i.e. day-1 and day-8) (Table 3.13).  SPSS Statistics, version 16.0, 

(SPSS Inc., Chicago, IL) was used to perform the ANOVA test.   

The confidence interval was 95% for statistical analysis (p<0.05).  The null 

hypothesis of the test was that the biodegradation in all four initial chloride 

concentrations are similar.  The alternate hypothesis was that the residual resin-attached 

perchlorate degradation pattern associated with different initial chloride concentrations 

among the data sets is significantly different.   

3.4.2.2. Data Analysis for Hypothesis 2 

Hypothesis 2 of issue one investigated the controlling step in the bioregeneration 

envisioned model by evaluating the effect of resin particle size on the bioregeneration 

process (Table 3.7).  The collected data (i.e. residual resin-attached perchlorate 
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concentration) were plotted against time (i.e. day).  In total, 5 bioregeneration curves 

were plotted.   

The data obtained from replicate samples of each bioregeneration test were compared 

using an independent t-test assuming a 95% confidence interval (p<0.05).  The null 

hypothesis was that the difference in the residual resin-attached perchlorate concentration 

between replicates is zero.  The alternate hypothesis was that the residual resin-attached 

perchlorate concentration between the replicate samples is different.  Up to 5% deviation 

per the average of the replicate values was acceptable, otherwise the residual resin-

attached perchlorate analysis were repeated  

 

 

Table 3.13. Data Input Arrangement for SPSS to Perform ANOVA Test for the 
Experiment Evaluating the Effect of Initial Chloride Concentration 

Initial chloride 

concentration 

(mg/L) 

Day-1 Day-8 

0 D1-0 D8-0 

0 D1-0-QC D8-0-QC 

500 D1-500 D8-500 

500 D1-500-QC D8-500-QC 

1000 D1-1000 D8-1000 

1000 D1-1000-QC D8-1000-QC 

5000 D1-5000 D8-5000 

5000 D1-5000-QC D8-5000-QC 

 

 

To evaluate the effect of resin size among five data sets of bioregeneration 

experiments, two-way analysis of variance (i.e. ANOVA) using the F statistical test was 
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performed on the replicated data points (i.e. day-1 and day-8) assuming 95% confidence 

interval (Table 3.14).  The null hypothesis of the test was that the biodegradation data in 

all five experiments with different resin sizes is similar.  The alternate hypothesis was 

that the biodegradation experiments among the data sets associated with different resin 

sizes are different.   

3.4.2.3. Data Analysis for Hypothesis 3  

In the experiments associated with hypothesis 3, perchlorate-selective and non-

selective resins in the form of gel- and macroporous-type were subjected to 

bioregeneration process (Table 3.8). The obtained data (i.e. residual resin-attached 

perchlorate) were plotted against time (i.e. day).  In total, 4 bioregeneration curves 

representing two gel-type resins (i.e. perchlorate-selective and non-selective resins) and 

two macroporous resins (i.e. perchlorate-selective and non-selective resins) were plotted.   

 

 

Table 3.14. Data Input Arrangement for SPSS to Perform ANOVA Test for the 
Experiment Evaluating the Effect of Resin Bead Size 
Resin particle size 

(mm) 
Day-1 Day-8 

0.924 D1-0.928 D8-0.928 

0.924 D1-0.928-QC D8-0.928-QC 

0.778 D1-0.778 D8-0.778 

0.788 D1-0.778-QC D8-0.778-QC 

0.652 D1-0.652 D8-0.652 

0.652 D1-0.652-QC D8-0.652-QC 

0.547 D1-0.547 D8-0.547 

0.547 D1-0.547-QC D8-0.547-QC 

0.128 D1-0.128 D8-0.128 

0.128 D1-0.128-QC D8-0.128-QC 
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All data obtained from replicate samples were compared using an independent t-test 

assuming a 95% confidence interval (p <0.05).  The null hypothesis was that the 

difference in the residual perchlorate concentration between replicates is zero.  The 

alternate hypothesis was that the residual perchlorate concentration between the replicate 

samples is different.  Up to 5% deviation per the average of the replicate values was 

acceptable, otherwise the residual resin-attached perchlorate analysis were repeated  

To evaluate the effect of resin structure (i.e. gel-type vs. macroporous resin) among 

four data sets of bioregeneration experiments, two-way analysis of variance (i.e. 

ANOVA) using the F statistical test was performed on the replicated data points (i.e. day-

1 and day-8) assuming 95% confidence interval.  The null hypothesis of the test was that 

the biodegradation data in all four experiments with different resin sizes is similar.  The 

alternate hypothesis was that the two biodegradation experiments for gel-type resins (i.e. 

ASB-1 and SIR-110HP) are different with the two biodegradation experiments for 

macroporous resins (i.e. SIR-110HP-MACRO and SR-7).   

3.4.3. Bioregeneration Data Analysis – Issue Two 

Issue two of this research involved batch loading and FBR bioregeneration of SIR-

110-MP resin for five consecutive cycles.  Daily collected data (i.e. residual resin-

attached perchlorate concentration) were plotted against time (i.e. day) to observe the 

bioregeneration rate of the FBR bioregeneration process.  In total, 5 bioregeneration 

curves were plotted.   

Descriptive statistical analyses, including mean, standard error, standard deviation, 

variance, sample range, and skewness, on each data set were performed.  The broader 

sample range (i.e. the difference between first day and last day of bioregeneration 
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process) indicated the more efficiency in perchlorate biodegradation.  In addition, the 

higher skewness in the data sets indicated that the bioregeneration curve is steeper at first.   

The resin capacity loss for each bioregeneration cycle was calculated by subtracting 

the final resin capacity after each bioregeneration cycle from the initial capacity of the 

resin before that particular cycle.  Descriptive statistical analyses, including mean, 

standard error, and standard deviation on the resin capacity loss data were performed.  

Lastly, the total capacity loss for the resin bed was calculated by subtracting the final 

capacity of the resin from the initial capacity of the virgin resin.   

3.5.    Quality Assurance/Quality Control (QA/QC) 

3.5.1. Introduction 

The quality assurance / quality control evaluation is essential to guarantee the quality 

of the results collected during the experimental phase.  Minimizing the systematic errors 

(i.e. procedure, instrumental, and human error) assures the quality of the analysis, while 

checking the accuracy, precision, and detection limits of the employed methods control 

the quality of the collected data.   

3.5.2. Quality Assurance 

The critical parameters being analyzed in this research were the residual resin-

attached perchlorate concentration, chloride, perchlorate, COD, optical density (DO), 

TSS, pH, DO, and conductivity.  Residual resin-attached perchlorate analysis was 

directly involved in determination of the bioregeneration process’ performance.  TSS, 

DO, COD, pH, conductivity, chloride, and perchlorate analyses were critical to maintain 

the fermentor / master seed culture in an appropriate condition.  The goal was to collect 

all the data through the experimental phase accurately.  However, error can occur through 
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data collection.  The main sources of errors in the posed experimental procedures were: 

human error, lack of balance calibration, lack of Ion Chromatograph (IC) calibration, lack 

of pipette calibration, lack of turbidimeter calibration, lack of pH meter calibration, lack 

of DO meter calibration, and inappropriate resin sample rinsing and/or preservation 

procedure.  To minimize the error sources, the following precautions were taken: 

1) The IC that was used to measure chloride, perchlorate, nitrate, and sulfate was 

calibrated weekly.  The calibration curve for perchlorate with standard 

solutions was performed between 5 and 100 ppb (i.e. 5, 10, 25, 50, 75, and 100 

ppb) using 99.97% coefficient of determination.  For low-concentration 

chloride, the calibration curve was between 100 and 500 ppb (100, 200, 300, 

400, and 500 ppb) using 99.97% coefficient of determination.  For nitrate, 

sulfate, and high concentrations of chloride the calibration curve was between 

1 and 10 ppm (i.e. 1, 2.5, 5, 7.5, and 10 ppm) using 99.99% coefficient of 

determination. 

2) To prevent carry over in the IC measurements, the prepared samples were 

measured from low to high concentrations. Furthermore, blank samples (i.e. DI 

water) were introduced between the samples to assure there is no carry over. 

3) The calibration of the analytical balances, which was used to weigh the 

chemicals for the solutions and the resin samples, was checked weekly.  Five 

grams (5 g) and 50 g standard weights were used to calibrate the balances 

every week.  In the Environmental Engineering Lab at UNLV, the balances 

were also calibrated every six months by a contractor.   
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4) The micropipettes were calibrated every week.  Various volumes of water 

were weighed using an analytical balance.  If the weight of the water in grams 

was the same as the volume of transferred water, the micropipette considered 

as calibrated, otherwise, it was sent to the outside contractor for calibration. 

5) The appropriate pipette tips as it is recommended by the micropipette 

manufacture were used. 

6) The spectrophotometer was calibrated before every use. 

7) The turbidimeter was calibrated before every use using standard Formazin 

solutions. 

8) A thermometer was maintained in the oven, and it was monitored every week 

to ensure the consistent temperature. 

9) All resin samples were rinsed at least six times with DI water to ensure that all 

the cells have been rinsed off from the sample and there is no electron donor / 

electron acceptor is in contact with the resin sample.   

10) All the resin and culture samples were stored in the refrigerator immediately. 

11) All glass micro-fiber filter papers, which were used to measure TSS, were 

stored in the desiccators prior to use to avoid moisture interference. 

12) Aluminum dishes which were used for TSS analysis were preignited at 550ºC 

for about an hour to avoid weight loss during the TSS analysis. 

13) DO and pH meters were calibrated every day.  Two standard pH solutions of 

7.00 and of 10.01 were used perform the calibration procedure.  If the slope 

was above 90%, the pH meter was considered as calibrated.  DO meter was 



 122

calibrated using 100% air saturation method.  For this method, the barometric 

pressure and temperature were measured using Princo barometer. 

14) All the stock solution were capped properly and stored in the refrigerator to 

avoid chemical/biological reactions and also evaporation. 

15) Deionized (DI) water was used to prepare solutions, rinse the glassware, and 

rinse the resin samples.  The resistance of the DI water was monitored daily to 

be above 17 Mohm-cm.  When the resistance values dropped below 17 Mohm-

cm, the IX column of the DI water system was replaced. 

16) The temperature of the COD digester was monitored using a thermometer 

every time to ensure the digester is at 150ºC.   

17) A stop-watch was used to record the time intervals for all of the proposed 

experimental procedure specially for the residual perchlorate analysis. 

18) All the Parr bomb ignitions were cooled down in a bucket of DI water for 20 

minutes. 

19) All components (except the resin) of the control tubes of the experiments 

associated with issue one, were autoclaved to ensure that there is no bacteria 

present in the blank tubes. 

20) All the parameters measured for the QA/QC purpose were recorded in a bound 

logbook. 

21) Glassware were soaked in soap for at least six hours and washed with tap 

water and triple rinsed with DI water. 
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3.5.3. Quality Control 

Accuracy, precision, detection limit, and the coefficient of determination (R2) of the 

chemical analyses that were used in this research are listed in Table 3.15.  The accuracy 

of the obtained data was determined by using the known standard solutions.  The 

precision was determined by performing replicate measurements.  For the Parr bomb 

method, the precision was repetition of the residual resin-attached perchlorate 

concentration measurement by replication the whole procedure for every five samples.   

 

 

Table 3.15: Accuracy, Precision, Detection Limit, and the Coefficient of Determination 
of the Chemical Analyses of Various Parameters 

Parameter Method R2 Detection 
Limit 

Precisiona Calibration Range 

Perchlorate IC 0.9997 5 ppb 
95% confidence 

limit 
5 – 100 ppb 

Chloride (High 
Range) 

IC 0.9999 1 ppm 
95% confidence 

limit 
1 – 10 ppm 

Chloride (Low 
Range) 

IC 0.9997 100 ppb 
95% confidence 

limit 
100 – 500 ppb 

Nitrate IC 0.9999 1 ppm 
95% confidence 

limit 
1 -10 ppm 

Sulfate IC 0.9999 1 ppm 
95% confidence 

limit 
1 – 10 ppm 

COD (High 
Range) 

HACH 
Manganese 

III 
NA 0.1 ppm 

95% confidence 
limit 

0 – 1500 ppm 

a Replicate samples were run every five samples. 
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CHAPTER 4 

INVESTIGATION OF POTENTIAL MECHANISMS OF ION-EXCHANGE RESIN 

BIOREGENERATION 

4.1.    Abstract  

Ion-exchange (IX) is possibly the most feasible technology for perchlorate removal.  

Perchlorate-selective and non-selective IX resins are commercially available.  Selective 

resins are incinerated after one time use, and non-selective resins produce a regenerant 

waste stream that contains high concentration of perchlorate.  A process involving 

directly contacting spent IX resin containing perchlorate with perchlorate-reducing 

bacteria (PRB) to bioregenerate the resin has been recently developed.  In this process 

PRB biodegrade perchlorate ions that are strongly attached to the functional groups of the 

resin.  In this study, the potential mechanisms for bioregeneration of resin-attached 

perchlorate (RAP) were envisioned and investigated.  It was envisioned that the 

bioregeneration process involves four steps. First, RAP ions are desorbed from their 

original functional groups promoted by chloride ion.  Second, perchlorate ions are 

diffused through the pores of the resin.  It is expected that this diffusion is affected by 

both resin bead size and structure.  Third, perchlorate ions are transferred through the 

liquid film surrounding the resin to the bulk liquid.  Forth, perchlorate ions are utilized by 

the PRB present in the bulk liquid.  It is hypothesized that mass transfer is controlling the 

bioregeneration process.  In this research, batch bioregeneration experiments were 

performed using resin samples loaded with perchlorate.  In the batch tests, different initial 

chloride concentrations were used to investigate the effect of chloride as the desorbing 

agent.  Different resin bead sizes were used to examine the effect of resin bead size on the 
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pore diffusion (i.e. second step).  Gel-type and macroporous resins with uniform bead 

size were used to study the effect of resin structure on pore diffusion, as well.  The results 

of the bioregeneration experiments suggested that chloride, the product of perchlorate 

biodegradation, is more likely the desorbing agent of RAP, and increasing the 

concentration of chloride enhances the bioregeneration process.  For commercially 

available resins, both film and pore diffusion found to be effective in the rate of mass 

transfer.  Also, macroporous resins were found more effective than gel-type resins in the 

bioregeneration process.  The outcome of this study implies that in resin bioregeneration, 

the use of macroporous resin with relatively small bead size in presence of higher 

chloride concentration would be preferred.  Chloride concentration, however, should be 

monitored and kept below the inhibitory level for PRB microbial activities. 

4.2. Introduction 

Perchlorate is both a man-made and a naturally occurring contaminant, and is a 

national drinking water concern because of its widespread use in aerospace and defense 

industries (USEPA, 2003; Rao, et al., 2007).  Perchlorate has been on the United States 

Environmental Protection Agency’s (USEPA’s) drinking water Contaminant Candidate 

List (CCL) since 1998 (Brandhuber and Clark, 2005) and is a regulated drinking water 

contaminant in nine states in the United States (US) (Tikkanen, 2006; Sellers et al., 

2007).  Toxicity of perchlorate is well-known through its interference with iodide uptake 

by thyroid gland through functioning of the sodium (Na+) / iodide (I-) symporter in the 

gland, resulting in deficiency of thyroid hormones (Kirk, 2006; Wolff, 1998, Stoker et al., 

2006).  The most effective technologies to remove perchlorate from waters are biological 

reduction and IX (Logan et al., 2001; Gingras and Batista, 2002; Lehman et al., 2008).   
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Biodegradation is mostly practical for waters with high concentrations of perchlorate, 

due to the relatively high half-saturation constant for perchlorate degradation (Logan et 

al., 2001; Waller et al., 2004).  Biological reduction of perchlorate dissolved in water has 

been well studied.  All the PRB known to date are gram-negative bacteria (Waller et al., 

2004; Shrout et al., 2005).  It has been proven that the perchlorate-reduction pathway 

goes from perchlorate (ClO4
-) to chlorate (ClO3

-), then to chlorite (ClO2
-), and finally to 

chloride (Cl-) (Rikken et al., 1996; Logan, 1998).  Stoichiometrically, 1 mole (M) 

chloride is released as the reduction waste product of 1 M perchlorate (Rikken et al., 

1996).  Hence, chloride ion is always present in a bioreactor, where PRB are grown using 

perchlorate as the electron acceptor.  Additionally, it has been shown that the PRB use 

two distinct enzymes located in the periplasmic area of the cell to reduce perchlorate to 

chloride (Rikken et al., 1996; Kengen et al., 1999; Logan, 1998), and c-type 

cytochrome(s) is(are) involved in the respiratory electron transfer chain (Coates et al., 

1999; Bender et al., 2005).  Free perchlorate ions in water are transferred across the outer 

membrane of the PRB cell to the periplasmic area, where the enzymes required for 

perchlorate reduction are located.  Therefore, the current knowledge dictates that the 

perchlorate ion is biodegraded inside PRB cell. 

Ion-exchange is currently the technology of choice to remove perchlorate from 

drinking waters contaminated with low concentrations of perchlorate (Gingras and 

Batista, 2002; Lehman et al., 2008).  Perchlorate can be effectively removed from water 

by perchlorate-selective and perchlorate-non-selective resins.  Based on their structure, 

both perchlorate-selective and non-selective resins can be categorized into gel-type or 

macroporous-type.  The average pore size and percentage water retention in macroporous 
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resins are considerably higher than those of gel-type resins (Sherman et al., 1986).  The 

average size of micropores in gel-type resins is about 0.0005 µm, while macroporous 

resins in addition to have micropores, contain macropores with the average size of 0.6 

µm (Kun and Kunin, 1968; Dale et al., 2001).  Water retention of macroporous resins is 

approximately 11% higher than that of gel-type resins (Du et al., 2010).  The use of 

macroporous resins compared to gel-type resins is expanding due to their stability, 

resistance to oxidation, and less vulnerability to fouling (Weber, 1972; Li and SenGupta, 

2000).   

Although IX is a well-known technology to water utilities, it has some deficiencies.  

First, it only separates perchlorate from water and it does not destroy it.  Second, in the 

case of non-selective resins, the regenerant waste stream contains a high concentration of 

perchlorate that must be treated and disposed of.  In the case of selective resins, the resin 

cannot be effectively regenerated and therefore it is incinerated.  This constitutes a major 

challenge and cost for perchlorate removal with IX process.   

Resin bioregeneration as a new concept in IX technology has been developed and 

patented (Batista, 2006).  This concept is based on directly contacting perchlorate-

containing IX resin with a PRB culture under anoxic/anaerobic conditions.  Although the 

biological reduction of free perchlorate ions in water has been well studied (Logan, 1998; 

Coates and Achenbach, 2004), the biological reduction of RAP ions has only recently 

been initiated (Wang et al., 2009; Venkatesan et al., 2010).  Perchlorate-selective and 

non-selective IX resins can be directly bioregenerated (Batista and Jensen, 2006; Batista 

et al., 2007b; Wang et al., 2008b), leading to the conversion of RAP on the resin to 

innocuous free chloride ions.  However, the mechanisms involved in resin 



 128

bioregeneration have not yet been fully elucidated.  In this research, potential 

mechanisms responsible for resin bioregeneration are investigated. 

4.2.1. Potential Mechanism for Ion-Exchange Resin Bioregeneration 

It has been shown that, typically, perchlorate-reducing bacteria isolates are rod-shape 

with cell sizes ranging between 1.0 µm x 3.0 µm and 1.5 µm x 7.0 µm (Wolterink et al., 

2002), while the average pore size of gel-type and macroporous resins are 0.0005 µm and 

0.6 µm, respectively (Kun and Kunin, 1968; Dale et al., 2001).  Hence, it is not possible 

for PRB to enter the pores of IX resin beads during the bioregeneration process.  The 

known involvement of c-type cytochrome(s) in the respiratory electron transfer chain 

(Coates et al., 1999; Bender et al., 2005) and the strong attachment of perchlorate ions to 

the active functional groups of the IX resin brings to question the mechanisms by which 

RAP can be degraded.  In this research, it is envisioned that the degradation of RAP ions 

involves four steps as following: (1) Desorption of perchlorate from the resin’s functional 

groups.  It is hypothesized that perchlorate desorption is promoted by chloride ions which 

are the waste product of perchlorate biodegradation and are available in all PRB reactors 

fed perchlorate as the electron acceptor (Rikken et al., 1996); (2) Diffusion of the 

desorbed perchlorate from the interior of the resin bead to the resin bead surface through 

the resin pores. Pore diffusion is controlled by both resin bead size and the resin 

structure.  If the bioregeneration process is controlled by pore diffusion, reducing the 

resin bead size would accelerate the diffusion process (Helfferich, 1962).  Additionally, 

macroporous resins, which have higher water content and larger pore sizes compared to 

gel-type resins, are expected to have higher diffusion rates and as a result better 

performance in the bioregeneration process; (3) Diffusion of perchlorate ion through a 
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liquid film on the surface of resin bead to the bulk microbial fluid; and (4) biodegradation 

of the perchlorate ion by PRB in the bulk microbial fluid, where nutrients and electron 

donors are present.  Perchlorate ions should enter the periplasmic region of the PRB 

where the enzymes responsible for perchlorate reduction are located.  The envisioned 

conceptual model for biodegradation of RAP is shown in Figure 4.1.  The 

bioregeneration mechanisms hypothesized above assumes that some initial chloride 

concentration is already present in the microbial fluid used in the biodegradation process.   

 

 

Figure 4.1. Conceptual Model for Biodegradation of Resin-attached Perchlorate in the 
Bioregeneration Process.  It Is Envisioned that, to be biodegraded, RAP ions Should: 1) 

Desorb from the Functional Group Located in the Resin Bead Matrix, 2) Diffuse from the 
Resin Bead to the resin Surface through the Resin Pores, 3) Transfer through a liquid fim 
on the resin surface to the Bulk Liquid, and 4) Enter the Periplasmic Region of the PRB 

to Be Biodegraded. 
 

 

It is essential to mention that although chloride is thought to be the desorption agent 

for perchlorate attached to the resin, at higher concentrations it negatively affects 
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perchlorate biodegradation.  Several studies have been published on the negative effects 

of chloride (i.e. salinity) on perchlorate degradation (Logan et al. 2001; Gingras and 

Batista, 2002; Okeke et al., 2002).  These studies show that significant reduction in 

perchlorate degradation occurs at salinity levels greater than 5000 mg/L.  Therefore, in 

bioreactors used for resin bioregeneration, chloride levels should be kept below toxic 

levels to PRB. 

Recent research has shown that biodegradation of RAP ions has a slower degradation 

rate compared to biological degradation of free perchlorate ions (Venkatesan et al., 

2010).  Figure 4.2 shows typical perchlorate degradation curve during the bioregeneration 

process obtained through preliminary experiments of this research.  At first the 

biodegradation rate is fast and then it slows down and stabilizes with time.  This pattern 

can be thought as being either kinetic or diffusion controlled (Batista and Jensen, 2006; 

Venkatesan et al, 2010).  In the case of kinetic control, the slower degradation rate could 

be explained by the slower degradation of perchlorate for low perchlorate concentrations 

as compared to initially higher concentrations.  In the case of diffusion control, it is 

envisioned that it takes longer for perchlorate ions located deep into the bead to reach the 

surface; that is, perchlorate ions located in the outer portion of the resin bead are 

degraded first. In this research, we will explore whether the bioregeneration process is 

controlled by kinetics or by pore diffusion.   

4.2.2. Mechanism of Desorption  

Ion exchange involves diffusion of ions through the IX resin porous matrix and 

exchange reaction, in the functional group, between the counter ion (i.e perchlorate ion in 

this research) and the free ion (i.e chloride ion in this research) soluble in the liquid 



 131

phase.  It is widely accepted that in ion exchange, the controlling step of the whole 

process is diffusion rather than the actual chemical exchange reaction in the functional 

group (Helfferich, 1962; Helfferich, 1965; Nkedi-Kizza et al., 1984).  Ion exchange 

reaction rate constants may be defined for IX processes, but in reality these numbers do 

not represent the actual exchange reaction rates (Helfferich, 1962).  Since the actual 

exchange reaction is instantaneous, pore diffusion of the involved ions is determining the 

rate of ion exchange.  
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Figure 4.2. Typical Perchlorate Degradation during the Bioregeneration Process 
 

 

In this research, it is thought that chloride resulting from perchlorate biodegradation 

exchanges with the RAP ions in the resin bead pores, releasing them.  It is known that the 

larger and more hydrophobic ions, such as perchlorate, have more potential to bind to the 

IX resin compared to smaller and less hydrophobic ions such as chloride (Diamond, 

1963; Xiong et al., 2007; Lehman et al., 2008).  The affinity of the ions to be adsorbed to 
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the functional groups of the resin is commonly expressed as either selectivity coefficient 

or separation factor.   Selectivity coefficient of chloride compared to selectivity 

coefficients of perchlorate in common non-selective styrenic resins used for perchlorate 

removal are about 1 to 150 (Crittenden et al., 2005) and 1 to 1300 for common 

perchlorate-selective styrenic resins (Tripp and Clifford, 2000).  High selective 

perchlorate resins may have selectivity coefficients of about 3500 (ResinTech, West 

Berlin, NJ).  Given the high affinity of perchlorate for ion-exchange, regeneration 

efficiency of IX resins containing perchlorate has been found to be limited particularly 

for styrenic-type resins (Batista et al, 2000) and very high concentrations of chloride are 

needed to perform the regeneration (Sodaye et al., 2007).  Although perchlorate attaches 

very strongly to the functional groups of perchlorate-selective resins, in the presence of 

chloride a small portion of RAP ions may exchange by the chloride ions instantaneously 

(Lehman et al., 2008).  However, a significant part of the exchanged perchlorate will re-

exchange and re-attach to the resin (Lehman et al., 2008), because perchlorate is a 

monovalent-hydrophobic ion with high selectivity (Crittenden et al., 2005; Sodaye et al., 

2007).   

4.2.3. Mechanisms of Diffusion  

It is thought that transfer of chloride ions from the bulk liquid to the functional groups 

of resin and release of RAP involves pore diffusion within the resin and film diffusion in 

the liquid layer surrounding the resin.  Film diffusion mostly depends on flow rate, 

turbulence, and viscosity, which affect the thickness of the diffusion boundary layer 

(Helfferich, 1962; Weber, 1972; Lahav and Green, 2000; Xiong et al., 2007).  Pore 

diffusion is influenced by viscosity, concentration gradient, resin bead size, degree of 
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crosslinking in the structure of resin, and resin pore size (Helfferich, 1962; Xiong et al., 

2007).  The degree of crosslinking is different for gel-type and macroporous resins.  On 

average, gel-type resins have about 8% divinylbenzene crosslinking, while, macroporous 

resins have about 20-25% percent divinylbenzene crosslinking (Crittenden et al., 2005).  

Increasing the degree of crosslinking decreases the diffusion (Weber, 1972).  Ion 

exchange resins have two types of pores; micropores, the pores within the gel structure of 

resin, and macropores, the pores between the microspheres of macroporous resins 

(Crittenden et al., 2005).  Gel-type resins have only micropores, while macroporous resin 

have both micropores and macropores, resulting in higher water content in macroporous 

resins (Du et al., 2010) (Figure 4.1).  In addition, the resin capacity in macroporous resins 

is smaller than gel-type resins due to more water content in macroporous resins compared 

to gel-type resins (Crittenden et al., 2005).  Although the degree of crosslinking in 

macroporous resins is higher than gel-type resins, it is expected that the overall mass 

transfer rate in macroporous resins is higher than that of gel-type resins due to presence 

of macropores.  

Resin bead size is also an important parameter in diffusion process in IX resins.  

Increasing the resin size decreases the overall rate of ion exchange in the resin 

(Helfferich, 1962; Weber, 1972).  The shrinking core model (Arevalo et al., 1998; 

Pritzker, 2005), in which the counter ions in the outer region of the resin bead are 

desorbed and diffused to the bulk liquid prior to the counter ions that are located deep 

inside the resin bead, has been shown to be an appropriate model to describe the effect of 

resin bead size in the diffusion process in IX resins (Venkatesan et al., 2010). 
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Mass transfer control by either pore diffusion or film diffusion for IX resins can be 

expressed mathematically as (Helfferich, 1962): 
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where: X is concentration of fixed ionic group in eq/L, C is the concentration of the free 

ion in solution in eq/L,D  is the pore diffusion coefficient in cm2/s, D is the film diffusion 

coefficient in cm2/s, r0 is the mean resin bead radius in cm, δ is the liquid film thickness 

in cm, and A
Bα  is the selectivity coefficient for the involved ions.  Xiong et al. (2007) has 

calculated the pore diffusion coefficient for perchlorate ion in IX process for different 

resins.  Four granular macroporous resins and a fibrous resin were used in their 

experiments.  The macroporous resins were A-530E, DOW 66, IRA 900, and IRA 958, 

which were all granular, with water content of 50-57%, 40-46%, 58-64%, and 66-72%, 

respectively, and the fibrous (i.e. not granular) resin was Smopex-103x with water 

content of less than 5%.  The pore diffusion coefficient for granular macroporous resins 

has been reported to vary from 4.67 × 10-9 to 1.67 × 10-8 cm2/s (Xiong et al., 2007).  

Although the pore diffusion coefficient for the fibrous resin was not reported, their results 

showed that the porosity of the IX resin has a direct effect on accessibility of functional 

groups and diffusion rate of the involved ions.  The film diffusion coefficient in IX 

processes has been reported as 10-5 cm2/s (Helfferich, 1962; Lahav and Green, 2000).  

The liquid film thickness in a well-mixed condition has been reported as 10-3 cm 
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(Helfferich, 1962; Lahav and Green, 2000; Crittenden et al., 2005).  The selectivity 

coefficient for highly perchlorate-selective resin has been determined to be > 3500 

(ResinTech, West Berlin, NJ).  Table 4.1 shows the values of the above-mentioned 

parameters involved in the mass transfer control calculation. 

 

 

Table 4.1. Mass Transfer Parameters for IX Resins 

Parameter Value Unit Reference 

δ, liquid film thickness 10-3 (well-stirred condition) cm 
Helfferich, 1962; Lahav 

and Green, 2000 

D, film diffusion 10-5 cm2/s 
Helfferich, 1962; Lahav 

and Green, 2000 

D , pore diffusion 1.67 × 10-8 - 4.67 × 10-9 cm2/s Xiong et al., 2007 

A
Bα , selectivity coefficient 3500 NA 

ResinTech, West Berlin, 
NJ 

 

 

4.2.4. Perchlorate Biodegradation Kinetics 

Perchlorate degradation follows first-order kinetics under typical concentrations of 

perchlorate in the environment, which is in the part-per-billion range (Logan et al., 2001).  

The observed biodegradation rate of perchlorate by PRB varies between 0.0007 to 20 

mg/L.min (Logan et al., 2001). A broad range of perchlorate biodegradation rates occures 

because of the differences in the concentration of perchlorate in the bioreactor.  Since 

biodegradation obeys first-order kinetics under typical concentrations of perchlorate in 

the environment, which is in the part-per-billion range (Logan et al., 2001), higher 

concentration of perchlorate results in higher observed biodegradation rate.  The kinetic 

parameters for some perchlorate reducing bacteria that have been studied to date are 

listed in Table 4.2. 
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Table 4.2. Kinetic Parameters for Perchlorate Reducing Bacteria  
Culture Kinetic parameters Reference 

qmax(d
-1) Ks (mg/L)  

PDX 0.41 12 ± 4 Logan et al., 2001 
KJ 1.32 33 ± 9 Logan et al., 2001 
INS 4.34 18 Waller et al., 2004 
ABL1 5.42 4.8 Waller et al., 2004 
SN1A 4.60 2.2 Waller et al., 2004 
RC1 6.00 12 Waller et al., 2004 
PC 1 3.09 0.14 Nerenberg et al., 2006 
HCAP-C 4.39 76.6 Dudley et al., 2008 
Mixed culture 0.49 <0.1 Wang et al., 2008a 

 

 

4.2.5. Comparison of Kinetic and Diffusion Control 

The Thiele modulus, a dimensionless number which is an acceptable measure of the 

comparison of diffusion-limited to kinetic-limited reactions, can be employed to 

determine whether resin bioregeneration is diffusion or kinetically controlled (Thiele, 

1939; Helfferich, 1962).  As discussed earlier, IX processes which occur in the IX resin 

bead are diffusion-controlled (Helfferich, 1962; Nkedi-Kizza et al., 1984).  In the case of 

bioregeneration process, the Thiele modulus can be used to determine whether the 

bioregeneration process is controlled by biological degradation or pore diffusion.  The 

Thiele modulus for processes involving reaction and diffusion in ion-exchange resins can 

be calculated mathematically as follows (Helfferich, 1962; Hong et al., 1999):  

e
T D

kr
M

3
0=                                                                                                            (4.4) 

where MT is Thiele modulus (dimensionless number), r0 is the mean resin bead radius in 

cm, De is the diffusivity coefficient in cm2/s, and k is the reaction kinetic coefficient in 

1/sec.  Diffusivity coefficient for perchlorate in IX process is shown in Table 4.1.  
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According to Helfferich (1962), low Thiele modulus (MT < 3) indicates that the reaction 

kinetics are not the controlling step in the bioregeneration process, and the process is 

mass transfer limited.   

Although the feasibility of IX bioregeneration has been proven, the mechanism of 

RAP reduction has not been elucidated thus far.  The specific objectives of this research 

were to: (1) investigate the effect of different initial concentrations of chloride as the 

desorbing agent for RAP release in the IX resin bioregeneration process, (2) study the 

influence of resin bead size and different resin structures (i.e. gel-type and macroporous) 

in the resin bioregeneration process, and (3) investigate the controlling step in the 

envisioned conceptual model of IX resin bioregeneration process. 

4.3. Materials and Methods 

4.3.1. Experimental Approach 

Batch resin bioregeneration tests were performed to test the envisioned resin 

bioregeneration mechanism.  The tests were performed in batch-bioreactor tubes 

containing desired amounts of resins loaded with perchlorate, PRB culture, micro 

nutrients and buffer, and acetate as the electron acceptor.  For each experiment, a series 

of batch-bioreactor tubes was prepared and a tube was removed and sacrificed at desired 

time intervals to determine perchlorate biodegradation rates. Resin samples from the 

bioreactor tubes were submitted to an oxygen Parr bomb procedure, developed for this 

research, to determined remaining perchlorate in the resin with time.  Three series of 

batch bioregeneration experiments were performed using: (a) different initial chloride 

concentrations to test the effect of chloride on the desorption of RAP, (b) different resin 

bead sizes to examine whether pore diffusion is the controlling step in the 
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bioregeneration process, and (c) gel-type and macroporous type selective and non-

selective resins to evaluate the effect of resin structure on the bioregeneration process.   

4.3.2. Resin Characteristics 

Two perchlorate-selective resins, SIR-100HP and SIR-110HP-MACRO (Resin Tech, 

West Berlin, NJ), and two non-selective resins, IONAC ASB-1 and IONAC SR-7 

(Lanxess Sybron Chemicals Inc., Birmingham, NJ ), were used in the batch 

bioregeneration experiments (Table 4.3).  The perchlorate-selective macroporous resin, 

SIR-110HP-MACRO, was manufactured specially for this research (Resin Tech, West 

Berlin, NJ).  All resins have a styrenic matrix.  SIR-110HP-MACRO and IONAC SR-7 

have macroporous structure, while SIR-100HP and IONAC ASB-1 are gel-type (Table 

4.3).   

4.3.3. Resin Loading 

The resin samples were loaded batch-wise instead of in a column.  Batch loading was 

selected to shorten the time period required to load the resin, and to assure homogeneous 

distribution of the ions through the resin beads.  Sodium perchlorate (NaClO4) salt was 

used to load the resin.  For each milliliter of resin sample, 1 mL of loading solution 

(Table 4.4) was prepared and added to a 2-L glass bottle.  The bottle was then placed on a 

rotary mixer (Associate Design Mfg. Co., Alexandria, VA) at 40-50 rpm and 22±2ºC.  

After 24 hours, the mixer was stopped, and the resin was separated from the liquid using 

a paper filter.  Preliminary experiments showed that the contact time should be at least 6 

hours to reach equilibrium in the loading step.  The liquid phase was sampled for residual 

perchlorate analysis.   
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Perchlorate was measured in the original solution, before resin addition, and after 

exchange took place.  The difference between initial and final concentrations in solution 

was assumed to be the perchlorate loaded to the resin (i.e RAP).  Perchlorate 

concentrations were measured using Ion Chromatography (IC) analysis.   

 

 

Table 4.3. Characteristics of the Resins Used in Batch Bioregeneration Experiments 

Commercial name 
(manufacturer) 

Resin Type 
Water  

Content. 
(%) 

Capacity 
(eq/L) 

Resin 
structure 

Functional group 

SIR-110HP 
(ResinTech) 

ClO4-selective 35-55 0.6 Styrene, Gel 
Tri-n-butyl-

amine 
(C4H9)3

+Cl- 

SIR-110HP-MACROa 

(ResinTech) 
ClO4-selective 58-65 0.6 

Styrene, 
Macroporous 

Tri-n-butyl-
amine 

(C4H9)3
+Cl- 

IONAC SR-7 
(Sybron) 

NO3-selective 52-67 0.8 
Styrene, 

Macroporous 

Quaternary 
ammonium 
(CH3)3

+ Cl- 

IONAC ASB-1 
(Sybron) 

Non-selective 43-48 1.4 Styrene, Gel 
Quaternary 
ammonium 
(CH3)3

+ Cl- 

a specially made to this research 

 

The resin samples were loaded fully to their capacity to eliminate the original counter 

ion (i.e. chloride) from the functional groups of the resins.  Table 4.4 shows the initial 

and final concentrations of perchlorate in solution and the percent capacity of the resin 

occupied by perchlorate after loading.   
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Table 4.4. Resin Loading for Batch Bioregeneration Experiments 

Resin name 
Volume of 
resin, mL 

Volume of 
loading 

solution, mL 

Added 
concentration, 
g-ClO4/Lsolution 

Residual 
concentration, 
g-ClO4/ Lsolution 

Capacity 
occupied, g-
ClO4/Lresin 

Percent 
capacity 

occupied, % 

SIR-110HP 500 500 119.68 39.48 80.19 134.3% 

SIR-110HP-
MACRO 

100 100 119.68 33.97 85.71 143.5% 

IONAC 
SR-7 

100 100 119.68 32.86 86.82 109.1% 

IONAC 
ASB-1 

500 500 149.26 20.97 128.28 92.1% 

 

 

After loading, the resin was then rinsed 12 times with 1 L of de-ionized (DI) water for 

30 minutes to remove all the residual unattached perchlorate ions.  Rinsing solutions were 

submitted to perchlorate analysis using IC.  After 12 times rinsing, no perchlorate was 

detected in the rinsing solution.  The resins were then air-dried at room temperature 

(22±2ºC) for 6 hours, labeled, and stored in the refrigerator. 

4.3.4. Resin Size Separation 

The bead sizes of commercially available for gel-type SIR-110HP resin ranges from 

1.19 to 0.297 mm, which corresponds to U.S. screen mesh number 16 and 50, 

respectively.  To evaluate the effect of resin bead size (i.e. bead diameter) on the 

bioregeneration process, loaded SIR-110HP resin beads were sorted into different sizes 

(i.e. 0.924, 0.778, 0.652, and 0.547 mm).  A U.S. standard stainless-steel series of sieves 

(Fisher Scientific, Inc., Waltham, MA) with mesh sizes of 0.853, 0.710, 0.599, 0.500, 

0.150, and 0.106 mm was used for size separation of the resin beads (Table 4.5).  Resin 

was screened for 20 minutes.  To obtain a smaller resin size (i.e. 0.128 mm), the loaded 
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resin beads were crushed using a mortar and pestle.  Therefore, it is expected that these 

crushed bead pieces will behave differently, but it is not possible to obtain smaller bead 

size by a different manner.  Scanning electron microscopy (SEM) imaging of the crushed 

resin was performed using Jeol JSM-7500F SEM (JEOL Ltd., Tokyo, Japan) and the 

resin particles appear rough in shape.  The SEM image of the crushed resin is shown in 

Figure 4.3.  However, all the resins used in this study were assumed to be spherical.   

 

 

 

Figure 4.3. SEM Image of the Crushed Resin  
 

 

Five different bead sizes of 0.924, 0.778, 0.652, 0.547, and 0.128 mm were used in 

the experiment evaluating the effect of bead size on the bioregeneration process.  These 

bead sizes are geometric means of the top and bottom sieve sizes and account for sizes 

equal or larger than the retaining bead size (Table 4.5).  

For the experiment comparing biodegradation in gel and macroporous resin types, 

resin beads with the representative bead size of 0.778 mm (i.e. retained on 0.710 mm 
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sieve) were used in.  For the experiments evaluating the effect of initial chloride on the 

bioregeneration process, SIR-110HP and ASB-1 resins were not sieved and used as it 

comes from manufacturer. 

 

 

Table 4.5. SIR-110HP Resin Size Distribution in the Test Evaluating the Effect of 
Initial Chloride on the Bioregeneration Process 

Sieve 
number 

Sieve opening 
size (mm) 

Geometric mean resin 
size (mm) 

External surface area per 
volume of resin sphere (1/mm) 

18 1.000 NA NA 

20 0.853 0.924a 6.494 

25 0.710 0.778 7.712 

30 0.599 0.652 9.202 

35 0.500 0.547 10.969 

100 0.150 NA NA 

140 0.106 0.128 46.875 

a 0.924 = (1.000 × 0.853)0.5 

 

 

4.3.5. Perchlorate-reducing Enrichment Culture 

Perchlorate-reducing microbial culture was taken from two master seed cultures, 

called BALI I and BALI II, enriched and grown in the Environmental Engineering 

Laboratory at UNLV.  The sources of perchlorate-reducing bacterial inocula were the Las 

Vegas Wash and Lake Mead.  The culture was enriched under anaerobic conditions by 

providing perchlorate as the electron acceptor, acetate as the electron donor, and a 

mineral/nutrient/buffer broth for the seed (Table 4.6).  The nitrogen source used to grow 
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PRB was NH4H2PO4.  The PRB culture has been characterized using 16S rRNA 

sequencing (Kesterson et al., 2005).   

 

 

Table 4.6. Nutrients and Buffer Stock Solution for Feeding the Perchlorate Degrading 
Culture 

Solution Name Components Concentration of stock (g/L) 

Buffer 

(100X) 

K2HPO4 

NaH2PO4.H2O 

NH4H2PO4 

155.00 

97.783 

50.000 

Nutrients/Minerals 

(100X) 

MgSO4.7H2O 

EDTA 

ZnSO4.7H2O 

CaCl2.2H2O 

MnCl2.4H2O 

FeSO4.7H2O 

Na2MoO4.2H2O 

CuSO4.5H2O 

CoCl2.6H2O 

NiCl2.6H2O 

NaSeO3 

H3BO3 

5.500 

0.300 

0.200 

0.100 

0.100 

0.400 

0.040 

0.020 

0.040 

0.010 

0.010 

0.060 

 

 

4.3.6. Biomass Extraction from Master Seed Culture 

For the series of batch bioregeneration experiments that were performed using 

different concentrations of chloride, two liters of PRB microbial culture obtained from 
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the master seed cultures were rinsed five consecutive times using 1X phosphate buffer 

solution (Table 4.6) to eliminate the presence of chloride ion in the liquid phase.  The 

culture was centrifuged using a Legend RT Sorvall centrifuge (Kendro, Thermo Fisher 

Scientific, Inc., Waltham, MA) at the rotational speed of 3850 rpm for 45 minutes at 220 

C.  The liquid phase containing chloride was discarded and 1X phosphate buffer solution 

(Table 4.6) was added to the concentrated biomass to obtain a SS concentration of 1500 

mg/L.  The biomass was then resuspended using a bench-top orbital shaker (Cole-Parmer, 

Series 51704) for 20 min at 80-100 rpm.  This procedure was repeated five times to 

ensure the elimination of chloride from the culture.  A sample of culture rinsing solution 

was then submitted for chloride analysis by IC and no chloride was detected.  Detection 

limit for chloride ion in the IC was 100 µg/L.   

4.3.7. Batch Testing Procedure 

All the bioregeneration experiments were performed in batch-bioreactor tubes with a 

capacity of 25 mL.  For each experiment, a series of batch-bioreactor tubes were used so 

that a tube was sacrificed at desired time intervals for sampling (Table 4.7).  The culture 

was diluted to 1000 mg-SS/L in the batch-bioreactor tubes by adding nutrient, buffer, and 

acetate media (Table 4.6) and DI water.   

Initial concentrations of 0, 500, 1000, and 5000 mg/L of sodium chloride (NaCl) were 

used for the series of bioregeneration experiments evaluating the effect of varying initial 

chloride concentration on bioregeneration process.  A ratio of 1.7 mole of acetate to mole 

of perchlorate (Chaudhuri and Coates, 2002) (9000 mg/L of acetate) was used for the 

batch-bioreactor tubes to supply required electron donor. 
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Approximately 1.2 g of resin (about 2 mL) was added to each batch-bioreactor tube.  

All the solutions (i.e. nutrient, buffer, and acetate stock solutions, and DI water) were 

purged with nitrogen gas for 30 minutes prior to start the experiment to completely 

remove dissolved oxygen.  After all the solutions were added to the batch-bioreactor 

tube, they were sealed using aluminum-crimpled butyl rubber-stopper (Wheaton 

Industries, Inc., Millville, NJ), labeled, and placed on a rotary shaker at 22±2ºC and 40-

50 rpm.   

 

 

Table 4.7. Experimental Design for Batch Bioreactor-Tubes 

Resin name 
Resin bead size, 

mm 

Amount of 
Resin in each 

tube, g 

Initial 
conc. of  
NaCl, 
mg/L 

Bioregeneration 
length, days 

 

Series #1 (Evaluation of the Effects of Chloride on Biodegradation)  
SIR-110HP Original distribution 1.2 0 8 
SIR-110HP Original distribution 1.2 500 8 

SIR-110HP Original distribution 1.2 1000 8 

SIR-110HP Original distribution 1.2 5000 8 

ASB-1 Original distribution 1.2 0 8 

ASB-1 Original distribution 1.2 500 8 

ASB-1 Original distribution 1.2 1000 8 

ASB-1 Original distribution 1.2 5000 8 

Series #2 (Evaluation of Resin Bead Size on Diffusion) 

SIR-110HP 0.924 1.2 NAa 8 

SIR-110HP 0.778 1.2 NA 8 

SIR-110HP 0.652 1.2 NA 8 

SIR-110HP 0.547 1.2 NA 8 

SIR-110HP 0.128 1.2 NA 8 

Series #3 (Evaluation of Resin Matrix on Bioregeneration) 

SIR-110HP 0.778 1.2 NA 8 

SIR-110HP-MACRO 0.778 1.2 NA 8 

ASB-1 0.778 1.2 NA 8 

SR-7 0.778 1.2 NA 8 
a Initial concentration of chloride was not changed (i.e. it was the same concentration as the master 

seed cultures).  
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Each series of bioregeneration experiment contained 5 batch bioreactor-tubes (i.e. 

days 1, 2, 4, 6, and 8), 2 replicates for quality control (i.e. day-1-QC and day-8-QC), an 

abiotic control tube (i.e. resin and nutrient/buffer/acetate medium, no microbial culture), 

and a replicate for abiotic control.   

For the series of bioregeneration experiment evaluating the effect of varying initial 

chloride concentration, two other control tubes were prepared: (a) an abiotic tube 

containing resin and DI water (i.e. no microbial cells, no nutrient/buffer/acetate medium), 

and (b) a batch-bioreactor tube containing resin, microbial cells, and buffer solution (i.e. 

no nutrient/buffer/acetate medium).  The abiotic batch-reactor tubes were autoclaved 

immediately after preparation to avoid any microbial activity, then sealed and labeled.  

All the control tests were performed in duplicate.   

After the desired bioregeneration time had been elapsed, batch bioreactor-tubes were 

taken from the shaker, opened and sacrificed on days 1, 2, 4, 6, and 8.  The resin was 

allowed to settle and the microbial culture was collected and tested for COD, pH, and SS.  

The resin sample was then rinsed 5 times with 5 mL of DI water to remove remaining 

microbial cells and organics which might have remained in the resin.  Preliminary 

experiments by measuring % transmittance of the rinsing solution showed that after 5 

times rinse, the % transmittance of the rinsing solution before and after rinsing does not 

change.  The resin sample was then submitted to resin-attached residual perchlorate 

analysis using an oxygen Parr-bomb.   

All the control tubes were removed from the shaker and sacrificed after 8 days.  In the 

abiotic tests, the liquid phase was submitted to perchlorate analysis by IC.  The resin 

from the control tubes containing microbial cells and buffer solution was rinsed 5 times 
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with 5 mL of DI water to remove remaining microbial cells and organics, and then 

submitted to resin-attached residual perchlorate analysis using an oxygen Parr-bomb.   

4.3.8. Residual Perchlorate Analysis 

In this research the method of residual RAP measurement developed by Venkatesan 

et al. (2010) was used.  In this method, small samples of resin (i.e. about 100 to 200 mg) 

are ignited in closed stainless steel oxygen Parr bomb cylinder (Parr Instruments, Moline, 

IL), to incinerate the polymer structure of the resin and convert the resin-attached residual 

perchlorate to chloride (resin-ClO4
- + O2 → CO2 + Cl-).  Thus, the resulting soluble 

chloride can be measured by IC.   

Prior to ignition, the resin sample has to undergo preliminary treatment. One mL of 

resin is placed in 100 mL of nitrate solution (10,000 mg/L as NO3
-) and mixed in a shaker 

for 24 hours to exchange the chloride ions present in the functional groups of the resin 

with nitrate.  The goal is to eliminate any chloride previously loaded to the resin so that 

any chloride measured after ignition originated from perchlorate. The resin is then 

allowed to settle for 3 minutes, and the liquid phase is submitted to perchlorate analysis 

by IC.  Next, the resin is rinsed with DI water 6 times to remove residual anions.  The 

resin sample is then dried at 105ºC for 1 hour in a 1330GM VWR oven (VWR, West 

Chester, PA).  About 100 mg of the dried resin and 400 mg of paraffin oil are measured 

and placed in the small crucible of the oxygen Parr bomb.  Three mL (3 mL) of 3% H2O2 

and 10 mL of 35 mM NaOH are added to the cylinder.  Then, the oxygen Parr bomb 

cylinder is pressurized to about 500 psi (30-35 atm) with oxygen gas.  The oxygen Parr 

bomb is submerged in 5-L of DI water to control the high temperature resulting from the 

ignition, and the resin is ignited using 10 cm of nickel fuse wire.  After ignition, the 
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cylinder is kept in DI water for 20 minutes for cooling. Then, the Parr bomb cylinder is 

opened and its content is rinsed with small portions of DI water and transferred to a 250 

mL volumetric flask.   The resulting solution in then submitted to chloride analysis in the 

IC.  Ultimate coal (Alpha Resources Inc., Stevensville, MI) sample with known chloride 

content is used for quality assurance.  The standard error for replicate coal samples 

measured in the Parr bomb is 2.4%. 

4.3.9. Chemicals and Analyses 

Sodium perchlorate (NaClO4) and sodium nitrate (NaNO3) salts were ACS grade and 

obtained from VWR (West Chester, PA).  DI water with a resistivity of 17.5 MΩ cm was 

acquired from a Barnstead water purification system (Dubuque, IA) and used in all steps.  

The pH values were determined with an Orion 920A+ pH meter (Orion Research, 

Boston, MA).  The % transmittance was measured using a Hach DR 5000 

Spectrophotometer at the wavelength of 600 nm.  Suspended solids (SS) were measured 

based on Standard Methods 2540-D (Greenberg et al., 2005).  Chemical oxygen demand 

(COD) was analyzed using high range (0-1500 mg/l) Hach COD digestion vials (Hach 

Co., Loveland, CO).   

Concentrations of perchlorate and low concentrations of chloride were analyzed using 

a Dionex ICS-2000 ion chromatography (Sunnyvale, CA).  The IC system consisted of an 

ion Suppressor-ULTRA II (4 mm), IonPac AS16 (4 mm) analytical, AG16 (4 mm) guard 

columns, and an AS16 autosampler.  EPA method 314.0 was used for perchlorate 

analysis with a current of 100 mA and an EGC II KOH eluent cartridge with 

concentration of 35 mM and a flow rate of 1.0 mL/min.  IC calibration was performed 

using standard solutions of 5, 10, 25, 50, 75, and 100 µg/L with 99.97% coefficient of 
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determination.  For low concentrations of chloride, an IonPac AS16 column with a 

current of 100 mA, an EGC II KOH eluent concentration of 35 mM, and a flow rate of 

1.0 mL/min were used.  Coefficient of determination for low chloride concentration 

analysis (100 – 1000 µg/L) was 99.99%.  For high concentrations of chloride, IonPac 

AS20 (4 mm) analytical and AG16 (4 mm) guard columns were used with a current of 

110 mA, an EGC II KOH eluent concentration of 30 mM and a flow rate of 1.0 mL/min.  

Coefficient of determination for high concentrations of chloride analysis (1-5 mg/L) was 

99.99%.  

4.3.10. Statistical Analysis 

Analysis of variance (ANOVA) was performed to determine whether there was a 

significant difference in perchlorate biodegradation rates for varying initial chloride 

concentrations in the microbial medium, resin bead size, and with different resin structure 

(gel-type vs. macroporous).  SPSS Statistics, version 16.0, (SPSS Inc., Chicago, IL) was 

used to perform the statistical analysis.   

4.3.11. Investigation of Diffusion and Reaction Control of Bioregeneration 

In this research, it was envisioned that to be degraded, resin-attached perchlorate ions 

should be: a) desorbed from the functional groups located inside the resin bead, b) 

diffused from the inside region of the resin bead to the surface through the pore matrices, 

c) transferred through the liquid film covering the surface of resin bead, and d) degraded 

by PRB to obtain energy.   
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Figure 4.4. Perchlorate Distribution in the Resin Bead Against r/r0 (r: Radius of Core, r0: 
Radius of Resin Bead) (Modified from Venkatesan et al., 2010) 

 

 

It is widely accepted that desorption of RAP (i.e. step a) is not the rate controlling 

step when compared to diffusion of desorbed perchlorate from the inside region of the 

resin bead to the surface through the pore matrices (Helfferich, 1962; Helfferich, 1965; 

Nkedi-kizza et al., 1984).  It is assumed that RAP ions are homogeneously distributed in 

the resin bead; thus, the desorbed perchlorate ions which are located in the outer region of 

resin bead can diffuse out of the resin in a shorter time compared to the ions located deep 

in the resin.  The shrinking core model (Arevalo et al., 1998; Pritzker, 2005) can be used 

to describe perchlorate desorption and utilization in IX resin bead.  Figure 4.4 shows 

theoretical perchlorate distribution verses radius of resin bead.  As shown in Figure 4.4, 

about 90% of perchlorate load is located between r0/r = 0.5 and r0/r = 1.0.  Reducing the 

resin bead size will accelerate the diffusion process and a result bioregeneration of resin, 

if the bioregeneration process is controlled by pore diffusion (Helfferich, 1962).  

According to the shrinking core model, reducing the resin bead size exposes more surface 
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to the liquid phase, and if the bioregeneration process is pore diffusion controlled, it will 

enhance the process. 

In addition to pore diffusion, it is thought that film diffusion is also involved in the 

bioregeneration process.  Film diffusion limitation increases with decreasing resin bead 

size, while, decreasing resin bead size results in increase of pore mass transfer flux.  The 

rate controlling step in mass transfer process can be mathematically identified 

(Helfferich, 1962): 
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   pore diffusion control                                                          (4.1) 

1)25(
0

≈+ A
BCDr

DX
α

δ
   pore / film diffusion control                                                  (4.2) 

1)25(
0

>>+ A
BCDr

DX
α

δ
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The experiment to evaluate the controlling step of bioregeneration involved SIR110-

HP resin which was loaded with 78 gperchlorate/Lresin.  Chloride concentration detected in 

the liquid phase of the PRB culture before starting the bioregeneration experiment was 

approximately 2000 mgchloride/Lsolution.  The presence of chloride is a consequence of 

feeding the PRB stock culture with perchlorate, which is degraded to chloride.  The pore 

diffusion coefficient for perchlorate ion in Table 4.1, which ranges from 4.67 × 10-9 to 

1.67 × 10-8 cm2/s (Xiong et al., 2007) is for macroporous resins, while SIR110-HP resin 

used in this study is a gel-type resin.  Xiong et al. (2007) has concluded that the porosity 

of the IX resin has a direct effect on diffusion rate of the involved ions; hence for 

SIR110-HP resin, the pore diffusion coefficient for perchlorate ion is expected to be less 

than the reported value in Table 4.1 for macroporous resins.  Therefore, the minimum 
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pore diffusion coefficient in Table 4.1 (i.e. 4.67 × 10-9 cm2/s) was used as the pore 

diffusion coefficient for perchlorate ion in SIR-110HP resin.  Hence: 

X = concentration of fixed ionic group (78 gperchlorate/Lresin or 0.78 eqperchlorate/Lresin) 

C = concentration of solution (approximately 2000 mgchloride/Lsolution or 0.056 

eqchloride/Lsolution) 

D  = pore diffusion coefficient (4.67 × 10-9 cm2/s) (minimum value from Table 4.1)  

D = film diffusion coefficient (10-5 cm2/s) (Table 4.1) 

r0 = mean particle radius (0.924 – 0.128 mm) (Table 4.7) 

δ = assumed liquid film thickness (10-3 cm) (Table 4.1) 

A
Bα  = selectivity coefficient (3500) (Table 4.1) 

Regardless of whether pore diffusion or film diffusion is the controlling step in the 

mass transfer process of bioregeneration, mass transfer of desorbed perchlorate ions (i.e. 

either step 2 or step 3 of the envisioned conceptual model) can be compared to 

biodegradation of perchlorate ions in the bulk liquid.  The Thiele modulus is an 

understood measure of the comparison of diffusion limited to kinetic limited reactions 

(Thiele, 1939; Helfferich, 1962; Hong et al., 1999).  In the bioregeneration process, 

Thiele modulus can be used to examine whether the process is controlled by diffusion of 

perchlorate ion thought the resin pores or by the biological reduction of perchlorate in the 

bulk liquid 

The Thiele modulus for a process involving reaction and diffusion can be calculated 

mathematically as following (Helfferich, 1962; Hong et al., 1999):  

e
T D

kr
M

3
0=                                                                                                            (4.4) 
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where: 

MT = Thiele modulus  

r0 = mean particle radius (0.924 – 0.128 mm) (Table 4.7) 

De = pore / film diffusion coefficient (Table 4.1) 

k = first-order kinetic coefficient (1/s) 

Pore diffusion and film diffusion coefficients are listed in Table 4.1.  If the mass 

transfer process is pore diffusion controlled, the pore diffusion coefficient should be 

employed as the De, and if the mass transfer process is film diffusion controlled film 

diffusion coefficient should be employed as the De.  Since SIR110-HP resin used in this 

research is a gel-type resin and the reported values for pore diffusion coefficient in Table 

4.1 are for macroporous resins, the minimum diffusion coefficient as of 4.67 × 10-9 cm2/s 

was used in calculation for Thiele modulus. 

In order to find the biodegradation rate constant, k, the data for perchlorate 

biodegradation in water from Cox et al. (2000), Logan (2001a), and Logan et al. (2005) 

were used assuming the degradation of perchlorate obeys first-order kinetics, and k value 

was calculated as 1.61 × 10-5, 7.66 × 10-5, and 4.69 × 10-6 1/s, respectively.  In similar 

researches, Tan et al. (2004) has reported the perchlorate biodegradation rate constant in 

sediment ranging between 1.50 × 10-6 and 5.32 × 10-6 1/s.  Hiremath et al. (2006) has 

measured the perchlorate biodegradation rate constant in brine solution in 6.8% brine 

solution using salt-tolerant PRB as of 6.67 × 10-6 1/s.  In all the above mentioned studies, 

perchlorate biodegradation obeys first-order kinetics.  In this research, the highest and 

lowest perchlorate biodegradation rate constant, as of 7.66 × 10-5 1/s and 1.50 × 10-6 1/s 

were used in this study to calculate the Thiele modulus. 
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4.4. Results 

4.4.1 Potential Mechanism Involved in the Desorption of Resin-attached Perchlorate 

Figures 4.5.a and b show the RAP biodegradation in perchlorate-selective (i.e. SIR-

110HP) and non-selective (i.e. ASB-1) resins with varying concentrations of chloride (i.e. 

0, 500, 1000, and 5000 mg/L of NaCl) present in the microbial solutions.   Table 4.8 

shows the biodegradation rates as mg of perchlorate degraded per day (mgp/d) in 

perchlorate-selective and non-selective resins for day-0 to day-2 and day-2 to day-8 

period of times.  As shown in Table 4.8, except for the bioregeneration experiments with 

0 mg/L of initial chloride, the rate of perchlorate degradation was fast during the first two 

days of bioregeneration and then decreased significantly after the second day.  In the 

bioregeneration experiments with 0 mg/L of initial chloride, perchlorate biodegradation 

rate increased for day-2 to day-8 compared to day-0 to day2 in both perchlorate-selective 

(i.e. SIR-110HP) and non-selective (i.e. ASB-1) resins.   

Figure 4.5.a shows that after 8 days of bioregeneration for perchlorate-selective resin 

(i.e. SIR-110HP), the overall observed perchlorate biodegradation rate was 0.375, 0.497, 

0.504, and 0.535 mgp/d for initial NaCl concentrations 0, 500, 1000, and 5000 mg/L, 

respectively.  For non-selective resin (i.e. ASB-1) the biodegradation rate was 0.370, 

0.527, 0.549, and 0.583 mgp/d, respectively (Figure 4.5.b).   
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Figure 4.5. Residual Resin-attached Perchlorate Concentration in Presence of 
Different Initial Concentrations of Chloride Added to Bioregeneration Tubes for: (a) 

Perchlorate-selective Resin (SIR-110HP), and (b) Non-selective Resin (ASB-1) 
 

 

Analysis of significance in both perchlorate-selective and non-selective resins at 95% 

confidence level showed that RAP degradation is significantly affected by the initial 

NaCl concentration.  Analysis of significance showed that in both perchlorate-selective 
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and non-selective resins the bioregeneration experiment results of initial NaCl 

concentration of 0 mg/L compared to 500 mg/L, and 500 mg/L compared to 5000 mg/L 

are significantly different, however, there is no significant difference between initial 

chloride concentrations of 500 and 1000 mg/L in both perchlorate-selective (p=0.082) 

and non-selective resins (p=0.141).  The most significant difference in the results in both 

perchlorate-selective and non-selective resins is found between 0 mg/L of NaCl and the 

presence of NaCl as a whole.  The results suggest that the addition of NaCl had a positive 

effect on increasing the overall bioregeneration performance in both resins.   

Analysis of the control tests with different initial chloride concentrations (Figure 4.6) 

shows that increasing the amount of initial NaCl concentration increased the amount of 

RAP desorption into the liquid phase as free perchlorate ions.  Figure 4.6 shows that no 

perchlorate desorption was observed in the tests with DI water and bacteria/buffer 

solution.  However, in the control test with nutrient/buffer/acetate solutions, with 500 

mg-NaCl/L, 1000mg-NaCl/L, and 5000 mg-NaCl/L, the percentage of RAP desorbed 

was 0.02%, 0.31%, 0.49%, and 0.64%, respectively, for (SIR110-HP) resin, and for non-

selective resin the amount desorbed RAP was 0.05%, 2.29%, 3.35%, and 7.37%, 

respectively.  Resin-attached perchlorate desorption in all the control tests was less than 

8% (Figure 4.6), however, in Figure 4.5 more RAP was desorbed and biodegraded.  The 

reason for smaller desorption in control tests is establishment of equilibrium in the batch 

control tests, while in the bioregeneration tests, as soon as RAP is released to the bulk 

microbial fluid, it is degraded, and the system never reaches an equilibrium point.   

 

 



 157

Table 4.8. Resin-attached Perchlorate Biodegradation Rates for Day-0 to Day-2 and Day-
2 to Day-8 of the Bioregeneration Experiments for Perchlorate-selective and Non-

selective Resins 

IX Resin 
Initial NaCl 
concentation 

(mg/L) 

Observed perchlorate 
biodegradation rate 
for day-0 to day-2 

(mgp/d) 

Observed perchlorate 
biodegradation rate 
for day-2 to day-8 

(mgp/d) 

Observed 
overall 

perchlorate 
biodegradation 

rate (mgp/d) 
Perchlorate-selective 

(SIR110-HP) 
0 0.324 0.392 0.375 

Perchlorate-selective 
(SIR110-HP) 

500 1.321 0.223 0.497 

Perchlorate-selective 
(SIR110-HP) 

1000 1.373 0.214 0.504 

Perchlorate-selective 
(SIR110-HP) 

5000 1.499 0.214 0.535 

Non-selective 
(ASB-1) 

0 0.350 0.376 0.370 

Non-selective 
(ASB-1) 

500 1.625 0.160 0.527 

Non-selective 
(ASB-1) 

1000 1.640 0.185 0.549 

Non-selective 
(ASB-1) 

5000 1.886 0.149 0.583 

 

 

Although the resin was rinsed well (i.e. 12 times) prior to the experiments to remove 

all the unattached perchlorate ions to prevent leakage of perchlorate to the liquid phase 

during the desorption tests, RAP was desorbed in the tests with nutrient/buffer/acetate 

solutions.  The possible explanation for desorption of perchlorate in these tests could be 

presence of 0.991 mg/L of chloride ion in the components of nutrient medium (i.e. 

CoCl2.6H2O, NiCl2.6H2O, CaCl2.2H2O, and MnCl2.4H2O) (Table 4.6).  The effect of 

phosphate buffer medium can be neglected due to the result of control tests with bacterial 

cells, and buffer solution (Figure 4.6), showing no RAP was desorbed in the presence of 

buffer solution.  Residual RAP analysis (i.e. Parr-bomb analysis) of the resin collected 

from the tests with bacterial cells, and buffer solution confirmed that no perchlorate 

degradation occurred.   
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Figure 4.6. Decrease in the Amount of Resin-attached Perchlorate for Perchlorate-
selective Resin (SIR-110HP) and Non-selective Resin (ASB-1) 

 

 

Perchlorate desorption in the bioregeneration process is envisioned to be according to 

the following reaction: 

[R-N-(C4H9)3]-ClO4
- + Cl- ↔ [R-N-(C4H9)3]-Cl- + ClO4

- 

where [R-N-(C4H9)3] is the functional group of the resin.  According to this exchange 

reaction, increasing the concentration of chloride in the left side of the reaction makes it 

to produce more free-perchlorate ion in the right side.  Thus, increasing the NaCl 

concentration has a positive effect on desorption of RAP as shown in Figure 4.6.   

Figures 4.5.a and b show that 32% and 18% of the initial RAP in SIR-110HP and 

ASB-1 resins was biodegraded during 8 days of bioregeneration with initial NaCl 

concentration of 0 mg/L, respectively.  The potential reason for desorption while the 

initial NaCl concentration was 0 mg/L (Figures 4.5.a and b) is possibly due to the 

presence of 0.991 mg/L of chloride ion introduced by addition of nutrient/buffer/acetate 

medium to the batch bioreactor-tubes.  Figure 4.7 shows a significant increase of RAP 
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biodegradation rate while the initial concentration of NaCl in the batch bioreactor-tubes 

increases.  In Figure 4.7, the actual concentration of initial chloride, including initially 

added chloride and the chloride ion resulted from addition of nutrients medium to batch 

bioreactor-tubes, is calculated as 1, 304, 608, and 3035 mg-Cl-/L.   
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Figure 4.7. Resin-attached Perchlorate Degradation Rate in Presence of Different 
Initial Concentrations of NaCl for Perchlorate-selective Resin (SIR-110HP) and Non-

selective Resin (ASB-1) 
 

 

Sensitivity analysis on the data in Figure 4.7 shows that even a slight change of the 

initial chloride ion concentration in the low concentration range (i.e. less than 100 mg/L 

of chloride ion) noticeably affects the RAP biodegradation rate.  A larger change of 

initial chloride ion concentration in high concentration range (i.e. more than 1000 mg/L 

of chloride ion) has the same effect on the RAP biodegradation rate. 
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Employing yield coefficient of 0.5 gSS/gacetate (Logan et al., 2001) and stoichiometry 

of the overall reaction of free-perchlorate degradation of 1.7 moleacetate/moleperchlorate 

(Waller et al. 2004), it is estimated that in order to grow 1000 mgSS/L of PRB in a 

acetate-fed bioreactor, about 2040 mg/Lculture of perchlorate should be utilized which 

contributes to 730 mg/Lculture of chloride is the system. Therefore, any PRB culture grown 

by perchlorate, as the electron acceptor, contains sufficient chloride concentration, and 

can be used in the IX resin bioregeneration process.   

4.4.2. Determination of the Rate Controlling Step in the Resin Bioregeneration Process  

Perchlorate degradation curves of SIR-110HP resin for resin bead sizes of 0.924, 

0.778, 0.652, 0.547, and 0.128 mm are shown in Figure 4.8.  The observed average RAP 

degradation rate for resin sizes of 0.924, 0.778, 0.652, 0.547, and 0.128 mm through 8 

days of bioregeneration process was 0.406, 0.419, 0.441, 0.458, and 0.796 mgp/d, 

respectively.  Statistical analysis showed that the biodegradation curves of the five bead 

sizes are significantly different, and perchlorate degradation in the 0.128 mm resin is 

significantly higher than that of the other sizes.  However, the bioregeneration curves of 

0.547 mm and 0.652 mm resins, 0.652 mm and 0.778 mm resins, and 0.778 mm and 

0.924 mm resins are not significantly different in pairs, while the bioregeneration curves 

of 0.547 mm and 0.778 mm resins are significantly different (p=0.047).   
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Figure 4.8. Residual Resin-attached Perchlorate Concentration for Different Resin 
Bead Sizes for Perchlorate-selective Resin (SIR-110HP). 

 

 

Mass balance calculations showed that if all the RAP content inside the batch 

bioreactor-tube had desorbed entirely and suddenly, free-perchlorate concentration inside 

the batch bioreactor-tube would be approximately 7 mg/Lculture.  In Figure 4.8, it takes 8 

days for resin size of 0.128 mm to have 71% reduction of the initial perchlorate load.  

Assuming that the degradation of perchlorate obeys first-order kinetics, using the 

biodegradation rate constant, k, from the data for perchlorate biodegradation in water 

from Cox et al. (2000), Logan (2001a), and Logan et al. (2005) as 1.61×10-5, 7.66×10-5, 

and 4.69×10-6 1/s, respectively, the time needed to reach 71% reduction of the initial 

perchlorate load (i.e. 7 mg/L) can be calculated as: kteCC −= 0 , where, C is the 

concentration at a certain time (mg/L), C0 is the initial concentration (mg/L), k is the 

biodegradation rate constant (1/s), and t is time (s).  Accordingly, about 11 hours is 

needed to have 71% degradation of initial perchlorate concentration of 7 mg/L.  
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However, in the bioregeneration experiments a significant amount of perchlorate was still 

present in the resin after 8 days of bioregeneration (Figure 4.8).  Hence, there is a 

controlling step involved in the bioregeneration process that slows it down as compared 

to perchlorate degradation in water.  The perchlorate degradation rate, however, 

significantly improved by increasing the ratio between the external surface area per 

volume of the resin bead 











=









mmd

d 1

6/3

2

π

π  of resin brad (Figure 4.9), suggesting that resin 

bead size have a significant effect on biodegradation rates. 
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Figure 4.9. The Effect of Increasing External Surface Area per Volume of Resin 
Sphere on Biodegradation of Resin-attached Perchlorate. 

 

 

Shrinking core modeling (Arevalo et al., 1998; Pritzker, 2005; Venkatesan et al., 

2010) was used to study the effect of resin bead size on the bioregeneration process.  

Based on the shrinking core model, in the bioregeneration process, RAP ions in the outer 
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region of the resin are utilized prior to the RAP ions that are located deep inside the resin 

bead.  For resin bead sizes of 0.924, 0.778, 0.652, 0.547, and 0.128 mm, respectively, 

36.1%, 37.3%, 38.8%, 40.6%, and 70.8% of the initial perchlorate load was degraded 

after 8 days of bioregeneration.  According to the shrinking core model the unused core 

containing RAP ions within the resin for theses resin sizes has the radius of 0.398, 0.333, 

0.277, 0.229, and 0.042 mm, respectively.  Figure 4.10 shows the results of shrinking 

core model analysis as resins bead size versus radius of unused core within the resin 

bead.  As shown in Figure 4.10, reducing the resin bead size has a direct effect on 

decreasing the ratio of radius of unused core to the radius of resin bead (r/r0).  In Figure 

4.10, the volume of outer region of the resin bead, %1001
3

0

3

×







−

r

r , in which the perchlorate 

load is depleted has been calculated as 36.1%, 37.3%, 38.8%, 40.6%, and 70.8% for the 

resin bead sizes of 0.924, 0.778, 0.652, 0.547, and 0.128 mm, respectively. 

 

 

 

Figure 4.10. Changing the Unused Core Containing Perchlorate within the Resin 
Bead Based on Shrinking Core Model, r is Radius of Unused Core and r0 is the Total 

Radius of Resin Bead. 
 

r r r r 

       0.924 mm                      0.778 mm                0.652 mm           0.547 mm    0.128 mm 

     r/r0 = 0.861                    r/r0 = 0.856               r/r0 = 0.849         r/r0 = 0.839    r/r0 = 0.656 
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The results of analysis of mass transfer controlling step in resin bioregeneration 

process are shown in Table 4.9.  The results specify that for the resin sizes of 0.924, 

0.778, 0.652, and 0.547 mm, pore diffusion is about equally fast as film diffusion since 

the 








+ )25(

0

A
B

CDr

DX
α

δ  value is about 1.  Thus both film and pore diffusion influence the rate 

of mass transfer.  However, bioregeneration process for the resin size 0.128 mm is film 

diffusion controlled.  Hence, for the resin sizes of 0.924, 0.778, 0.652, and 0.547 mm 

both mass transfer mechanisms (i.e. pore diffusion and film diffusion) influence the rate 

of mass transfer, and any change in the process that enhances either pore diffusion or film 

diffusion enhances the overall bioregeneration rate.  It is well-established that in an ion 

exchange process controlled by pore diffusion, decreasing the resin bead size enhances 

the overall rate of exchange (Helfferich, 1962; Weber, 1972).  Accordingly, since the 

overall performance of the bioregeneration process was improved by increasing 

decreasing the resin bead size, mass transfer of ions through the pores seems to play an 

important role in the bioregeneration process.  However, decreasing the resin size 

increases the relative magnitude of film diffusion on the process.  Yet, film diffusion is 

not as significant as pore diffusion, because in the case of a resin bead size of 0.128 mm, 

although the process is film diffusion controlled, the overall biodegradation is superior 

compared to the other sizes (Figure 4.10).  Therefore, the influence of pore diffusion is 

more considerable than the influence of film diffusion in determining the rate of the 

process.   
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Table 4.9. Mathematical Expression of the Mass Transfer Controlling Step in the 
Bioregeneration Process 

X 
(eqp/Lr) 

D  (cm2/s) 
δ 

(cm) 
C 

(eqCl/Ls) 
D 

(cm2/s) 

Resin 
size 

(mm) 
r0 (cm) 

Selectivity 
Coef. 

)25(
0

A
B

CDr

DX
α

δ
+  

0.78 4.67 × 10-9 10-3 0.056 10-5 0.924 0.0462 3500 0.99 

0.78 4.67 × 10-9 10-3 0.056 10-5 0.778 0.0389 3500 1.17 

0.78 4.67 × 10-9 10-3 0.056 10-5 0.652 0.0326 3500 1.40 

0.78 4.67 × 10-9 10-3 0.056 10-5 0.547 0.0273 3500 1.67 

0.78 4.67 × 10-9 10-3 0.056 10-5 0.128 0.0064 3500 7.12 

 

 

The results of calculation of Thiele modulus are shown in Table 4.10.  Since the 

effect of pore diffusion is similar to the effect of film diffusion for the resin sizes of 

0.924, 0.778, 0.652, and 0.547 mm, diffusivity coefficient, De, for both pore diffusion and 

film diffusion was used to calculate the Thiele modulus.  For resin size of 0.128 mm, 

diffusivity coefficient, De, for film diffusion was used.   

 

 

Table 4.10. Calculation of Thiele Modulus for the Bioregeneration Process 

Resin size (mm) r0 (cm) 
MT for De = 4.67 × 10-9 (cm2/s) 

(pore diffusivity coefficient) 
MT for De = 10-5 (cm2/s) 

(film diffusivity coefficient) 

0.924 0.0462 1.97a – 0.28b 4.26E-02a – 5.96E-3b 

0.778 0.0389 1.66 – 0.23 3.59E-02 – 5.02E-3 

0.652 0.0326 1.39 – 0.19 3.01E-02 – 4.21E-3 

0.547 0.0273 1.17 – 0.16 2.52E-02 – 3.53E-3 

0.128 0.0064 NA 5.90E-03 – 8.28E-4 

a  The highest perchlorate biodegradation rate constant as of 7.66 × 10-5 1/s was used to calculate MT 
b  The lowest perchlorate biodegradation rate constant as of 1.50 × 10-6 1/s was used to calculate MT    
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The results show that bioregeneration process is not governed by kinetics of 

biodegradation of desorbed perchlorate ions by PRB.  The calculation shows that 

bioregeneration process is controlled by diffusion, since Thiele modulus was found less 

than 3 (Helfferich, 1962).   

4.4.3. Effect of Ion-exchange Resin Structure on the Bioregeneration Process 

Perchlorate degradation curves of gel-type (i.e. SIR-110HP and ASB-1) and 

macroporous (i.e. SIR-110HP-MACRO and SR-7) resins with uniform resin bead size of 

0.778 mm are shown in Figures 4.11.a and b.  In Figure 4.11.a, the degradation curves 

start at different initial RAP load because of the differences in the loading stage (Table 

4.4).   

Table 4.11 shows the average observed resin-attached perchlorate degradation rate for 

the batch bioregeneration experiments.  Figure 4.11.b shows concentration of RAP to 

initial concentration of RAP (C/C0), since in Figure 4.11.a, initial concentration of RAP 

in the resin is different in different resins.  The average observed resin-attached 

perchlorate degradation rate for ASB-1 and SIR-110HP resins which are gel-type is 0.607 

and 0.419 mgp/d, respectively, while it is 0.688 and 0.681 mgp/d for SIR-110HP-

MACRO and SR-7 macroporous resins, respectively.   

The average observed free-perchlorate degradation rate from other studies is also 

shown in Table 4.11.  The average observed resin-attached perchlorate degradation rate is 

about one order of magnitude lower than the average observed free perchlorate 

degradation rate.  As it was discussed in section 4.4.2, the resin-attached perchlorate 

degradation is likely limited by mass transfer in the pores of the resin beads.  Statistical 

analysis revealed that perchlorate biodegradation in macroporous resins was significantly 
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more effective than that of gel-type resins, although all the employed resins had uniform 

resin bead size (Table 4.7).  However, no significant difference in perchlorate 

biodegradation between perchlorate-selective (i.e. SIR-110HP and SIR-110HP-MACRO) 

and non-selective (i.e. ASB-1 and SR-7) resins was found.   
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Figure 4.11. Residual Resin-attached Perchlorate Concentration in Gel-type (ASB-1 
and SIR-110HP) and Macroporous (SR-7 and SIR-110HP-MACRO) Resins. 
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Table 4.11. Resin-attached Perchlorate Degradation in Gel-type and Macroporous 
Resins  

Resin name, 
structur type 

ClO4
- ion 

situation 

Observed 
perchlorate 

biodegradation 
rate (mgp/mgss/d) 

Observed 
perchlorate 

biodegradation 
rate (mgp/d) 

Reference 

ASB-1, 
gel 

Attached to 
resin 

0.031 0.607 This Study 

SIR-110HP, 
gel 

Attached to 
resin 

0.022 0.419 This Study 

SIR-110HP-MACRO, 
macroporous 

Attached to 
resin 

0.035 0.688 This Study 

SR-7, 
macroporous 

Attached to 
resin 

0.035 0.681 This Study 

NA Free in water 1.68 NA 
Korenkov et 

al., 1976 

NA Free in water 2.57 NA 
Attaway and 
Smith., 1993 

NA Free in water 0.36 NA 
Logan et al., 

2001 

NA Free in water 0.64 NA 
Shrout and 

Parkin, 2006 
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Figure 4.12. Resin-attached Perchlorate Biodegradation Rate Verses Water Content 
for ASB-1 and SIR-110HP (i.e. Gel-type Resins), and SR-7 and SIR-110HP-MACRO 

(i.e. Macroporous Resins) 
 

 



 169

The results of section 4.4.2 suggest the pore diffusion of the desorbed perchlorate 

ions to the surface of the resin bead is likely the main controlling step in the 

bioregeneration process.  Macroporous resins have macropores which contributes to 

higher water content compared to gel-type resins (Table 4.3) (Sherman et al., 1986).  

Considering the overall biodegradation rates of macroporous and gel-type resins and the 

difference among their water content (Figure 4.12), it appears that mass transfer control is 

stronger in gel-type resins than that of macroporous resins.  Table 4.11 shows the RAP 

biodegradation rate in tested resins with different water contents.  The possible reason for 

stronger mass transfer limitation in gel-type resins and as a result lower RAP 

biodegradation rate could be the resin structure.  It is likely that smaller pore size in gel-

type resins results in stronger pore diffusion limitation, due to less availability of liquid 

phase to carry hydrated perchlorate ions, and makes the bioregeneration process slower in 

the case of gel-type resins. 

4.5. Discussion 

A conceptual model for resin bioregeneration process was envisioned in this research 

involving detachment of perchlorate from the resin functional site, its diffusion through 

the resin pores and liquid film, and its biodegradation inside the PRB cells.  Accordingly, 

the objectives of this research were defined to be: study the effect of different initial 

concentrations of chloride as the envisioned desorbing agent for RAP release; investigate 

the effect of resin size and different resin structures (i.e. gel-type and macroporous) in the 

bioregeneration process; and explore the controlling step in the conceptual model of resin 

bioregeneration process.   
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The results showed that chloride is likely to be the desorbing agent for desorption of 

RAP ions in the bioregeneration process. Also it was found that increasing the initial 

chloride concentration significantly improves the bioregeneration performance in both 

perchlorate-selective (i.e. SIR-110HP) and non-selective (i.e. ASB-1) resins.  Based on 

the results, even in very low concentrations of chloride (i.e. 1 mg/L of chloride) 

bioregeneration process can be initiated.  However, increasing the chloride concentration 

from 500 mg/L to 5000 mg/L as NaCl only slightly enhances bioregeneration 

performance.  Chloride, as the product of perchlorate biodegradation, is the anion which 

is always present in all perchlorate-reducing cultures grown using perchlorate.  As 

mentioned before, the minimum of 730 mg/Lculture of chloride occurs if a minimum of 

2040 mg/L of perchlorate is used as the electron acceptor to grow 1000 mg/L of PRB 

suspended solids.  Therefore, any PRB culture grown in perchlorate as the electron 

acceptor contains sufficient chloride concentration, and can be used in the IX resin 

bioregeneration process.   

Increasing the chloride concentration by adding NaCl salt to PRB to boost the 

performance of bioregeneration process can be considered in IX resin bioregeneration 

plants.  However, very high concentrations of chloride have inhibitory effects on the 

biological path of perchlorate biodegradation (Logan et al., 2001, Gingras and Batista 

2002).  NaCl concentrations of 1-1.5% (10,000-15000mg/L) can reduce perchlorate 

biodegradation rates over 90% (Gingras and Batista 2002).  Thus, chloride concentration 

levels should be monitored at all times, especially when NaCl salt is used to boost the 

performance of the bioregeneration process.   
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The results indicated that decreasing the resin size from 0.924 mm to 0.128 mm has a 

significant positive effect on the bioregeneration performance.  Except for very small 

resin size (i.e. 0.128 mm), the effects of pore diffusion were found to be about as equal to 

film diffusion in the mass transfer process of bioregeneration.  For the very fine resin 

bead size (i.e. 0.128 mm), the mass transfer rate was film diffusion limited.   

The bioregeneration process was found to be mass transfer limited rather than 

biodegradation kinetics limited due to the following four evidences: First, the results of 

the experiments in this research showed that in the resin size of 0.128 mm, 71% of initial 

perchlorate load can be degraded after 8 days.  However, if the perchlorate load was 

dissolved in the liquid phase, 71% reduction of initial perchlorate would be obtained after 

about 11 hours.  This evidence shows that the bioregeneration process is not 

biodegradation kinetic limited.  Second, resin size reduction improved the performance of 

bioregeneration process, showing that pore diffusion was improved while the resin bead 

size was reduced.  Third, macroporous resins were found to be more effective in the 

bioregeneration process, due to their higher water content and pore size which lead to 

higher pore diffusion rate in macroporous resins compared to pore diffusion rate in gel-

type resins.  Forth, the Thiele modulus calculations showed that the process is mass 

transfer limited rather than biodegradation rate limited.   

The typical sizes of ion-exchange resin beads mostly vary between 1.1 mm to 0.3 mm 

(ResinTech, West Berlin, NJ), however, most commonly used IX resins are about 0.7 mm 

in size.  For bioregeneration, employing smaller resin bead sizes would be preferable due 

to higher pore mass transfer flux.  Using smaller resin beads, however, increases the 

potential chance of losing resin in the loading-bioregeneration process.  Film diffusion 
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can be controlled by increasing the turbulence in the bioregeneration reactor.  Increasing 

the flow rate in the bioregeneration process results in higher turbulence and a thinner 

quiescent liquid film (boundary layer) surrounding the resin beads.  If bioregeneration is 

performed in a fluidized bed reactor (FBR) (Venkatesan et al., 2010), higher flow rates 

constitute a greater expansion of the resin bed, which corresponds to larger FBR volume 

needed.  Additionally, higher flow results in a higher pressure drop since a very fine 

screen is needed to keep the small resin beads in the FBR, leading to a higher energy 

consumption in the FBR.  Temperature also should be monitored in the bioregeneration 

process, since even slight temperature drops contribute to increasing the viscosity and 

higher film diffusion control.   

Macroporous resins (i.e. SIR-110HP-MACRO and SR-7) with higher water content 

and larger pore sizes were found to be more effective in the bioregeneration process when 

compared to gel-type resin (i.e. SIR-110HP and ASB-1).  Mass transfer flux in 

macroporous resins is known to be higher than that of gel-type resins.  Thus, employing 

macroporous resins is recommended due to higher bioregeneration performance.  In 

addition, macroporous resins are more resistant to oxidation and less vulnerable to 

fouling when compared to gel-type resins.  However, using macroporous resins 

contributes to higher capital costs due to higher price compared to gel-type resins.   

The overall recommendations are as follows: a) use initial NaCl concentrations 

between 1000 mg-NaCl/L and 5000 mg-NaCl/L, b) monitor salt level in the PRB culture 

to keep it below the inhibitory level for PRB microbial activities, c) use IX resin with 

smaller resin bead size to increase pore mass transfer, d) enhance turbulence in the 
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reactor to minimize negative effects of film diffusion, e) use of macroporous resins to 

have higher pore mass transfer rates. 

4.6. Conclusions 

The specific conclusions of this work can be summarized as follows: 

1) Chloride ion, which is the product of perchlorate biodegradation 

and available in all PRB cultures fed with perchlorate, is likely the 

desorbing agent of RAP in IX bioregeneration process.   

2) Increasing the concentration of chloride in the microbial solution 

has a positive effect on perchlorate desorption from the resin.  Degradation 

rates for selective and non-selective resins respectively were 0.375 and 

0.370 mgp/d when no chloride was added as compared to 0.535 and 0.583 

mgp/d when 5,000 mg/l chloride was present.   

3) The results show that decreasing the resin bead size from 0.924 

mm to 0.128 mm has a significant positive effect on IX resin 

bioregeneration process (i.e. 55% improvement in the overall perchlorate 

biodegradation rate), while, decreasing the resin size from 0.778 mm to 

0.652 mm and from 0.652 mm to 0.547 mm was not significant positive 

effect on IX resin bioregeneration process.   

4) Bioregeneration is mass transfer controlled rather than 

biodegradation kinetic controlled.  Both the kinetics of desorption of RAP 

ions and kinetics of biodegradation of desorbed perchlorate ions were found 

not to control the overall rate of bioregeneration. 
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5) For the resin sizes of 0.924, 0.778, 0.652, and 0.547 mm, which are 

the common sizes of resins available in the market, both mass transfer 

mechanisms (i.e. pore diffusion and film diffusion) were found to control 

the bioregeneration process.  For small resin size of 0.128 mm, film 

diffusion was found to be the controlling step in bioregeneration. 

6) Macroporous resins were more effectively bioregenerated 

compared to gel-type resins.  This result can be explained by larger water 

content and larger average pore size in macroporous compared to gel-type 

resins.   
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CHAPTER 5 

MULTI-CYCLE BIOREGENERATION OF SPENT PERCHLORATE CONTAINING 

MACROPOROUS SELECTIVE ANION EXCHANGE RESIN  

5.1. Abstract 

Ion-exchange (IX) using perchlorate-selective resin is possibly the most feasible 

technology for perchlorate removal.  However, commercially available gel and 

macroporous resins cannot be regenerated using traditional brine desorption.  The use of 

macroporous resins compared to gel-type resins is expanding because of their stability 

and greater resistance to fouling.  In water treatment applications, selective resins are 

currently used once and then incinerated, making the IX process economically and 

environmentally unsustainable.  A new concept has been developed involving biological 

regeneration of resin containing perchlorate.  This concept involves directly contacting 

perchlorate-containing resins with a perchlorate-reducing microbial culture.  In this study, 

the feasibility of multi-cycle loading and bioregeneration of a macroporous perchlorate-

selective resin was investigated.  Loading and bioregeneration cycles, using a bench-scale 

fermenter and a fluidized bed reactor (FBR), followed by fouling removal and 

disinfection of the resin were performed.  The results revealed that selective macroporous 

resin can be successfully employed in a consecutive loading-bioregeneration IX process.  

Resin capacity loss stabilized after a few cycles of bioregeneration indicating that the 

number of loading and bioregeneration cycles that can be performed is likely greater than 

the five cycles tested.  The results also revealed that most of the capacity loss in the resin 

is due to perchlorate buildup in the resin as a consequence of clogging of the pores of the 

resin beads.  Perchlorate buildup was found to be the major drawback of the 
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bioregeneration process.  Perchlorate buildup may limit the reuse of the resin after 

bioregeneration, if the treated resin cannot produce a water quality that meets the desired 

standards or if the amount of bed volumes processed is significantly reduced.  The results 

further indicate that as bioregeneration progresses, clogging of the resin pores results in 

the decrease in mass transfer flux from the inner portion of the resin to the bulk microbial 

culture contributing to stronger mass transfer limitation in the bioregeneration process. 

5.2. Introduction 

Perchlorate (ClO4
-) contamination has been detected in several surface and 

groundwater sources in 26 states in the United States, particularly in the arid 

Southwestern region (USEPA, 2003; Brandhuber and Clark, 2005), and it has been on the 

United States Environmental Protection Agency’s (USEPA’s) drinking water 

Contaminant Candidate List (CCL) since 1998 (Brandhuber and Clark, 2005).  Most of 

the perchlorate contamination in the environment is due to rocket fuel manufacturing and 

use (Urbansky et al., 2000).  In addition, perchlorate is used in other industries to produce 

explosives, matches, firework supplements, air bags, and other products. (Wu, et al., 

2008).  Recent studies show that electrical discharge through chloride aerosol in the 

atmosphere potentially can produce perchlorate and release it to the environment by rain 

and snow (Rao, et al., 2007, Dasgupta, et al., 2005).  Perchlorate in the human body 

interferes with the natural process of iodine adsorption by the thyroid gland, inhibits 

thyroid hormone production, and causes iodine accumulation in the gland (Wolff, 1998; 

Kirk, 2006).  The Interim Drinking Water Health Advisory level for perchlorate has been 

issued as 15 micrograms per liter (µg/L) in 2005 (NRC, 2005).   
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Biological reduction and IX are the most effective technologies to remove perchlorate 

from waters (Logan et al., 2001; Gingras and Batista, 2002).  Although bioremediation is 

a cost-effective technology for perchlorate removal, it is not an efficient technology for 

low concentrations because degradation rates slow down with decreasing perchlorate 

concentration (i.e. perchlorate biodegradation has relatively high half-saturation constants 

(Logan et al., 2001; Dudley et al., 2008) (Table 5.1)).  Ion-exchange is currently the 

technology of choice to remove low concentrations of perchlorate from drinking waters 

(Gingras and Batista, 2002; Lehman et al., 2008).  Morphologically, perchlorate-selective 

resins can be categorized into gel- and macroporous-type resins.  The average pore size 

of gel-type resins is about 0.0005 µm, while macroporous resins have an average pore 

size of about 0.6 µm (Kun and Kunin, 1968; Dale et al., 2001).  The percent crosslinking 

of the backbone polymer chains in gel-type and macroporous resins varies.  Gel-type 

resins have about 4-10% crosslinking, whereas macroporous resins have 20-25% 

crosslinking in average (Crittenden et al., 2005).  The use of macroporous resins 

compared to gel-type resins is expanding due to their stability, resistance to oxidation, 

and less vulnerability to fouling (Weber, 1972; Li and SenGupta, 2000).   

There are many pilot and full scale operational and under-construction water supplies 

treatment plants using IX technology to remove perchlorate from drinking water 

throughout the United States.  These plants have capacities varying from 23 to 55,000 

m3/day (4 to 10,000 gpm) and influent perchlorate concentration varying from 7 to 350 

µg/L.  These plants can remove perchlorate to < 4 µg/L (NASA, 2006).  In recent years, 

IX resins with high affinity for perchlorate ion (i.e. perchlorate-selective) have been 

manufactured (Seidel et al., 2006).  Even though these resins can treat a large number of 
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bed volumes (BVs) of water before perchlorate breakthrough occurs, regeneration by 

traditional brine desorption technique cannot be employed, and the spent perchlorate-

selective resin is incinerated or disposed in a landfill after one time use.  Incineration of 

the resin produces greenhouse gases, and landfilling presents the potential for re-

contamination of the environment with perchlorate.  Although a regeneration method has 

been developed employing FeCl3-HCl solution as the regenerant for one type of 

perchlorate-selective gel-type resin (Gu et al., 2001), regeneration of most commercially 

available perchlorate-selective resins using NaCl brine is not feasible and is not currently 

practiced.   

 

 

Table 5.1. Half-saturation Constant and Maximum Perchlorate Utilization Rate for 
Degradation of Free Perchlorate Ion in Water 

Culture Kinetic parameters Reference 
qmax(d

-1) Ks (mg/L)  
PDX 0.41 12 ± 4 Logan et al., 2001 
KJ 1.32 33 ± 9 Logan et al., 2001 
INS 4.34 18 Waller et al., 2004 
ABL1 5.42 4.8 Waller et al., 2004 
SN1A 4.60 2.2 Waller et al., 2004 
RC1 6.00 12 Waller et al., 2004 
PC 1 3.09 0.14 Nerenberg et al., 2006 
HCAP-C 4.39 76.6 Dudley et al., 2008 
Mixed culture 0.49 <0.1 Wang et al., 2008a 

 

 

Resin bioregeneration as a new concept in IX technology has been developed and 

patented (Batista, 2006). This concept is based on directly contacting IX resin containing 

perchlorate with a perchlorate-reducing microbial culture under anoxic/anaerobic 

conditions.  The feasibility of this concept has been reported on perchlorate-selective and 

non-selective gel-type resins (Batista and Jensen, 2006; Batista et al., 2007b).   



 179

Although the biodegradation of free perchlorate ions in water has been well studied 

(Logan, 1998; Coates and Achenbach, 2004), the biological reduction of attached-

perchlorate ions to a medium such as IX resins has only recently been initiated (Wang et 

al., 2008b; Wang et al., 2009; Venkatesan et al., 2010).  Investigation has shown that 

biological degradation of resin-attached perchlorate has a slower degradation rate 

compared to biological degradation of free perchlorate (Venkatesan et al., 2010).   

A main concern in resin bioregeneration is capacity loss due to biological fouling of 

the resin beads (Batista et al., 2007a).  Macroporous resins are less susceptible to bio-

fouling than gel-type resins.  Although resin bioregeneration has several environmental 

benefits, to be economically viable, the cost of purchasing fresh resin must be equal or 

greater than costs of resin bioregeneration.  Therefore, resin bioregeneration is 

sustainable only if the process can be repeated for several consecutive exhaustion-

bioregeneration cycles.   

Bioregeneration of gel-type resins loaded with perchlorate has been investigated 

recently (Venkatesan et al., 2010).  Biodegradation of macroporous resins has not been 

fully investigated, to date.  In this research, the feasibility of multi-cycle bioregeneration 

of macroporous perchlorate-selective resin, which is thought to be less susceptible to 

fouling, has been investigated.  The specific objectives of this research were to: (1) 

evaluate the feasibility of multi-cycle bioregeneration of macroporous IX perchlorate-

selective resin, (2) estimate the capacity loss after the multi-cycle bioregeneration 

process, (3) evaluate the influence of resin fouling on mass transfer mechanism of 

bioregeneration process, and (4) compare the degradation rate of resin-attached 

perchlorate in the macroporous resin with degradation rate of soluble perchlorate in 
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water.  The findings of this research can be useful in determining potential capacity loss 

during bioregeneration.  Capacity loss is a major factor influencing economics and full-

scale application of bioregeneration as a technology for perchlorate treatment.   

5.3. Materials and Methods 

5.3.1. Experimental Approach 

A bioregeneration system that includes a fermenter and a FBR was designed and 

built.  The resin was loaded batchwise and placed in the FBR (Figure 5.1).  A 

perchlorate-reducing microbial culture present in the fermenter was passed through the 

FBR containing the resin.  At pre-determined time intervals, resin samples were taken 

from the FBR and residual perchlorate concentration in the resin was determined.  An 

oxygen Parr bomb method was developed to determine the amount of resin-attached-

residual perchlorate with time.  Following bioregeneration, the resin was defouled and 

disinfected with sodium hypochlorite and the resin capacity was measured.  This 

procedure was repeated for five consecutive cycles of loading and bioregeneration.  

5.3.2. Experimental Setup 

A small scale system was assembled to bioregenerate the selected resin for five 

cycles.  The set-up consisted of a 10-gallon (37.9 L) polyethylene fermenter and a 3-inch 

diameter (7.6 cm) x 50-inch (127 cm) tall plexiglass FBR.  Three ports were drilled along 

the FBR column to take resin samples (Figure 1).  The fermenter for cultivation of 

perchlorate-reducing bacteria (PRB) was equipped with automatic oxidation reduction 

potential (ORP), pH, dissolved oxygen (DO), and temperature probes.  A stirrer was used 

to gently mix the bacterial enrichment culture in the fermenter at 25-30 rpm rotational 

speed.  Before each bioregeneration cycle, the fermenter was purged with nitrogen gas 
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for 30 minutes to establish anaerobic conditions.  Perchlorate loaded resin (section 5.3.4) 

was placed in the FBR column and the bacterial enrichment culture was fed upflow using 

a peristaltic pump to achieve 30-40% expansion of the resin bed.  The microbial culture 

was then recirculated back to the fermenter where acetate (i.e. the electron donor), 

nutrient, and minerals were added to sustain bacterial growth.  After the bioregeneration 

cycle, the resin was rinsed, defouled, and disinfected.   

 

 

 
Figure 5.1. Schematic of the Resin Bioregeneration System Technology (Left: Loading of 
Resin with Perchlorate during Water Treatment; Right: Bioregeneration of Spent Resin 

Using a Microbial Culture). 
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5.3.3. Composition of the Enrichment Culture 

A mixed enrichment bacterial culture was used in this research. The sources of PRB 

inocula were waters from Lake Mead and the Las Vegas Wash in southern Nevada.  

These areas have been contaminated with ammonium perchlorate for the past five 

decades and were presumed likely sources of PRB.  The PRB were enriched under anoxic 

conditions in an acetate, perchlorate, and mineral/nutrient/buffer broth (Table 5.2).  

Although resin-attached nitrate was available in the FBR as the nitrogen source for PRB, 

NH4H2PO4 was added to the microbial culture to supply nitrogen needed through the 

bioregeneration process (Table 5.2).      

 

 

Table 5.2. Nutrient and Buffer Stock Solution for Feeding the Culture 

Stock solution Components Concentration of component (g/L) 

Nutrients 

MgSO4.7H2O 
EDTA 

ZnSO4.7H2O 
CaCl2.2H2O 
FeSO4.7H2O 

Na2MoO4.2H2O 
CuSO4.5H2O 
CoCl2.6H2O 
MnCl2.4H2O 
NiCl2.6H2O 

NaSeO3 

H3BO3 

5.500 
0.300 
0.200 
0.100 
0.400 
0.040 
0.020 
0.040 
0.100 
0.010 
0.010 
0.060 

Buffer 
K2HPO4 

NaH2PO4.H2O 
NH4H2PO4 

155.0 
97.783 
50.0 
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A 3:1 molar ratio for acetate/perchlorate was used during the enrichment phase.  The 

PRB enrichment culture was then characterized using two different molecular methods, 

Restriction Fragment Length Polymorphism (RFLP) and 16S rRNA sequencing 

(Kesterson et al., 2005).   

5.3.4. Resin Loading 

The resin used in this research was ResinTech SIR-110-MACRO which is a 

macroporous perchlorate-selective strong base anion-exchange resin has tri-n-butyl-

amine ((C4H9)3N) functional groups having a nominal resin capacity of 0.6 eq/L 

(ResinTech, Inc., West Berlin, NJ).  The resin bead size ranges from 1.18 mm to 0.30 

mm (i.e. from #16 to #50 U.S. standard mesh size).  This resin was specially 

manufactured for this research. 

The resin used for the bioregeneration tests was loaded batchwise instead of in a 

column.  Loading was performed batchwise because of the large volume of water needed 

to load the resin in a column and to shorten the time period required to load the resin.  

Additionally, in the batch loading process, the ions are distributed homogeneously 

through the resin beads.  The composition of the synthetic solution and residual 

concentrations used to load the resin for five cycles are given in Table 5.3.  The feed 

water composition was chosen to simulate the amount of anions that would be present in 

the resin when waters with high perchlorate concentrations, typically found in industrial 

sites, are treated with IX. 
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Table 5.3. Resin Loading Data through Five Cycles of the Experiment 
Cycle # Anion  Added feed 

conc., mg/L 
Residual 
conc. after 24 
hr, mg/L 

Capacity 
occupied, g/L 
resin 

Capacity 
occupied, 
meq/Lresin 

Percent 
capacity 
occupieda 

 ClO4
- 11061 0.257 11.06 111.16 17.5% 

 NO3
- 491 12.6 0.478 7.71 1.2% 

Cycle 1 Cl- 514 >2100 N/A N/A N/A 
 SO4

-2 532 251 0.281 5.85 0.9% 
 HCO3

- 500 800 N/A N/A N/A 
 ClO4

- 10151 0.265 10.15 102.01 16.1% 
 NO3

- 499 15.4 0.484 7.81 1.2% 
Cycle 2 Cl- 495 2988 N/A N/A N/A 

 SO4
-2 532 133 0.3987 8.31 1.3% 

 HCO3
- 500 750 N/A N/A N/A 

 ClO4
- 10229 0.502 10.23 102.79 16.2% 

 NO3
- 468 12.4 0.456 7.35 1.2% 

Cycle 3 Cl- 511 2891 N/A N/A N/A 
 SO4

-2 506 161.2 0.344 7.17 1.1% 
 HCO3

- 500 690 N/A N/A N/A 
 ClO4

- 10082 1.305 10.08 101.31 16.0% 
 NO3

- 464 12.8 0.451 7.27 1.1% 
Cycle 4 Cl- 508 2886 N/A N/A N/A 

 SO4
-2 516 163 0.353 7.35 1.2% 

 HCO3
- 500 635 N/A N/A N/A 

 ClO4
- 10018 1.061 10.02 100.67 15.9% 

 NO3
- 458 7.47 0.451 7.27 1.1% 

Cycle 5 Cl- 506 2964 N/A N/A N/A 
 SO4

-2 495 199.2 0.296 6.16 1.0% 
 HCO3

- 500 610 N/A N/A N/A 
a Total capacity = 0.64 eq/Lresin 

 

 

A volume of 1300 mL of resin was selected for use through five cycles of loading, 

bioregeneration, fouling removal, and disinfection.  In the loading step, the initial volume 

of resin was measured and added to a glass bottle.  An equal volume of feed solution 

(Table 5.3) was prepared and added to the bottle.  The bottle was then placed in a rotary 

mixer (Associated Design MFG Co., Alexandria, VA) at 30 rpm and 22±2ºC.  After 24 

hours, the mixture was allowed to settle for 3 min.  The supernatant was sampled for 

residual analysis of anion and the left over supernatant was decanted.  The initial and 

residual concentrations of anions in the solution were then submitted to Ion 

Chromatography (IC) analysis.  The loaded resin was rinsed 6 times with 2 BVs of de-
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ionized (DI) water to remove residual anions.  Conductivity measurements of the rinsate 

solution showed that rinsing six times with 2 BVs of DI water was effective to remove 

the excess ions from the loaded resin.  After the rinsing, the resin was stored in the 

refrigerator until the start of the bioregeneration experiments.   

5.3.5. Resin Bioregeneration 

The resin bioregeneration process was continued until the residual perchlorate 

concentration in the resin remained constant.  The bioregeneration processes ran for a 

period of 9-14 days.  Daily, 4 mL of resin sample were taken from the ports along the 

FBR column using a 20-mL syringe.  The resin sample was then rinsed 6 times with 5 

BVs of DI water to remove microbial cells and excess anions, labeled, and stored in the 

refrigerator.  The residual perchlorate in the samples was then measured.   

During the bioregeneration cycles, the effluent line from FBR to the fermenter was 

monitored for perchlorate daily, and no perchlorate was detected.  Chemical oxygen 

demand (COD), suspended solids (SS), and conductivity analysis were performed on the 

samples taken form the fermenter on a daily basis.   

Through the bioregeneration cycles, the volume of the microbial solution was 30L.  

The SS in the fermenter was maintained at 1000-2000 mg/L.  Whenever the SS dropped 

too much owing to electron acceptor limitation, PRB cells originating from the stock 

enrichment culture were concentrated by centrifugation and added to the fermenter to 

increase the biomass.  The amount of electron donor (acetate) in the fermenter was 

measured as COD and maintained above 1500 mg/L.  After the bioregeneration process 

was complete, the microbial culture in the FBR was transferred from the bottom of FBR 

to the fermenter using a peristaltic pump.  The resin was then rinsed with 1 BV of DI 
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water 5 times to remove microbial cells.  The resin was then submitted to the fouling 

removal process.   

5.3.6. Bio-fouling Removal and Disinfection 

Biological fouling is a consequence of bioregeneration. The procedure used for 

fouling removal was developed in the Environmental Engineering Laboratory at 

University of Nevada Las Vegas (UNLV) (Batista et al., 2007a) (Table 5.4).  As shown 

in Table 5.4, fouling removal procedure includes 4 consecutive steps.  First, 1.5 BVs of 

fouling removal reagent (i.e. 12% NaCl / 2% NaOH mixture) was pumped up-flow to the 

FBR column containing resin.  After 12 hours, the rinsate solution was decanted and 

sampled.  Second, 1.5 BVs of fouling removal reagent (i.e. 12% NaCl / 2% NaOH 

mixture) was pumped up-flow to the FBR column, and after 4 hours, the rinsate solution 

was emptied and sampled.  Third, 1.5 BVs of fouling removal reagent (i.e. 12% NaCl) 

was pumped up-flow to the FBR column, and after 2 hours, the rinsate solution was 

decanted and sampled.  Last, the resin was rinsed with 3 BVs of DI water to remove 

excessive amount of ions.  The rinsate solution samples collected after each step of 

fouling removal were submitted for COD analysis.   

Following fouling removal procedure, the resin was disinfected using 1.5 BVs of 

sodium hypochlorite with the concentration of 100 mg/L as free chlorine which was 

pumped up-flow to the FBR column.  After 15-20 minutes contact time, the solution was 

decanted.  The resin then was rinsed until no residual chlorine was detected in the rinsate 

solution.  Residual chlorine measurement using Capital Controls Series 17T2000 

amperometric titrator (Steven Trent Services, Ft. Washington, PA) showed that rinsing 

with 2 BVs of DI water six times is sufficient to remove to remove all the residual 
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chlorine from resin.  Total coliform analysis using IDEXX Quanti-Tray method (IDEXX 

Laboratories, Inc., Westbrook, ME) was performed on the DI water rinsate solutions after 

disinfection step.  No coliform bacteria were detected in the rinsate solutions collected 

from the resin after disinfection procedure.  The bioregenerated, defouled, disinfected, 

and rinsed resin was then submitted to loading process again to initiate the next 

bioregeneration cycle.  

 

 

Table 5.4. Fouling Removal and Disinfection Procedure Used after Bioregeneration 
Process 

 Fouling removal / 
disinfection reagent  

Applied 
volume  

Retention time 

Fouling removal 
procedure 

12% NaCl +  
2% NaOH 

1.5 BV 12 hours 

12% NaCl +  
2% NaOH 

1.5 BV 4 hours 

12% NaCl 1.5 BV 2 hours 
DI water rinse 3 BV N/A 

Disinfection 
procedure 

100  mg/L free 
chlorine using 
sodium hypochlorite 

1.5 BV 15-20 min 

DI water rinse until no residual chlorine is detected 
in the rinsate 

 

 

5.3.7. Residual Perchlorate Analysis 

For this research, a method has been developed to measure resin-attached residual 

perchlorate remaining as bioregeneration progresses.  In this method, small samples of 

resin are ignited in an oxygen Parr bomb (Parr Instruments, Moline, IL) and the 

perchlorate present is converted to chloride ion (resin-ClO4
- + O2 → CO2 + Cl-).  The 

chloride concentration is then measured using IC.   
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Prior to ignition in the Parr bomb, 1 mL of resin sample was placed in 100 mL of 

concentrated nitrate solution and mixed for 24 hours in a rotary shaker.  This was 

performed to assure that all chloride ions attached to the resin functional groups were 

replaced by a nitrate ion.  Thus, chloride ions detected after ignition are associated with 

perchlorate load.  The resin was then separated from the supernatant by filtering through 

a filter paper and rinsed 6 times with DI water to remove anions not attached to the resin.  

Next, the resin was dried in a gravity oven (VWR, West Chester, PA) at 105ºC for 1 

hour.  Then, 50 to 200 mg of the dried resin sample and 400 mg of paraffin oil were 

weighed and placed in the Parr bomb.  Ten mL (10 mL) of 35 mM NaOH and 3 mL of 

3% H2O2 were also added to the Parr bomb.  The Parr bomb was then capped and 

pressurized with 500 psi (30-35 atm) oxygen gas.  The resin sample was then ignited 

using 10 cm of nickel fuse wire.  During the ignition, perchlorate was converted to 

chloride ion.  The Parr bomb cylinder was then opened and its content was rinsed with 

small portions of DI water and transferred to a 250 mL volumetric flask.  Chloride ion 

was then determined in the resulting ignition solution using ion chromatograph (IC).  

Because combustion of one mole of perchlorate will produce one mole of chloride, the 

amount of perchlorate in the resin sample can be calculated.  Ultimate coal (Alpha 

Resources Inc., Stevensville, MI) sample with a known chloride content was used as the 

chloride standard for quality assurance.  In this case a known amount of coal was ignited 

in the Parr bomb and the chloride concentration in the product solution was measured.  

Measurements were 99.73% accurate.   
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5.3.8. Resin Capacity Measurement 

It was expected that bioregeneration would result in decreased resin capacity after 

each cycle.  Therefore, the total capacity of fresh and bioregenerated resin was measured.  

To measure the capacity, 15 mL of wet resin was placed in a pipette filled with a 

stopcock.  One L of 4.0% HCl was passed through the resin bed to convert the resin to 

the chloride form.  Next the resin was rinsed with 1 L of DI water to rinse interstitial 

chloride.  One L of 1.0 N NaNO3 solution was then passed through the resin to replace 

the chloride ions with nitrate.  The effluent from the NaNO3 rinse was collected and 

titrated with AgNO3 to measure the chloride concentration.  Theoretically, each mole of 

detected chloride in the effluent corresponds one mole of nitrate exchanged by the active 

functional groups.  The resin capacity in equivalents/L is then calculated using the 

chloride measurements.   

5.3.9. Chemicals and Analyses 

All perchlorate concentrations and low concentrations of chloride were measured 

using a Dionex ICS-2000 IC (Dionex Corporation, Sunnyvale, CA), consisting of an Ion 

Suppressor-ULTRA II (4 mm), IonPac AS16 (4 mm) analytical, AG16 (4 mm) guard 

columns, and an AS16 autosampler.  For perchlorate, EPA method 314.0 was used with a 

current of 100 mA and a NaOH concentration of 35 mM with a flow rate of 1.0 mL/min.  

A calibration curve was established using perchlorate standard solutions with 

concentrations between 5 and 100 µg/L.  A coefficient of determination of 99.97% was 

used for calibration.  Similarly, a current of 100 mA and a NaOH concentration of 35 

mM with a flow rate of 1.0 mL/min were used to measure low-concentration chloride ion. 

Calibration curve for low-concentration chloride was plotted with standard solutions with 
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concentrations between 100 and 500 µg/L using a coefficient of determination of 

99.97%.  For nitrate, sulfate, and high concentrations of chloride anions, IonPac AS20 (4 

mm) analytical and AG16 (4 mm) guard columns were used on the same IC with a 

current of 110 mA and a NaOH concentration of 30 mM and a flow rate of 1.0 mL/min.  

The calibration curve for nitrate, sulfate, and high concentrations of chloride anions 

measurement was prepared for concentrations between 1 and 10 mg/L and a 99.99% 

coefficient of determination.   

Bicarbonate and suspended solids were measured according to Standard Methods 

4500-CO2-D and 2540-D, respectively (Greenberg et al., 2005).  Chemical oxygen 

demand (COD) was measured using high range (0-1500 mg/l) Hach COD digestion vials 

(Hach Co., Loveland, CO).  The pH values were measured using a Fisher Scientific 

model AR25 pH meter (Springfield, CO).  Conductivity was determined using YSI 

(Model # 30/10 FT) conductivity meter (YSI, Inc., Warm Springs, OH).  The DO in the 

FBR was measured using YSI Model 58 Dissolved Oxygen meter (YSI, Inc., Warm 

Springs, OH).  The % transmittance was measured using a Hach DR 5000 

Spectrophotometer at the wavelength of 600 nm.  DI water with a resistivity of 17.5 MΩ 

cm was obtained from a Barnstead water purification system (Dubuque, IA) and used in 

all steps, unless otherwise noted.  All the used salts were ACS grade and obtained from 

VWR (West Chester, PA). 

5.3.10. Scanning Electron Microscopy (SEM) 

Fresh resin and bioregenerated resin, sampled at the end of cycle 5, were rinsed with 

DI water and air-dried for 24 hours at 22±2ºC.  The resins were then glued on a metal 

surface and allowed to air-dry for 20 1 hour.  Then, the glued resins were scratched using 
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soft sandpaper to expose the inner portion of the beads for imaging.  The samples then 

rinsed with DI water air-dried for 24 hours at 22±2ºC.  Scanning electron microscopy 

imaging of the resin samples was performed using Jeol JSM-7500F SEM (JEOL Ltd., 

Tokyo, Japan) employing secondary electron detector at 1.00 kV.  After SEM imaging, 

the bioregenerated resin sample was then soaked in 100 mg/L sodium hypochlorite 

solution for 20 minutes.  The sample was then rinsed with DI water air-dried for 24 hours 

at 22±2ºC, and submitted for SEM imaging again.  

5.4. Results 

5.4.1. Enrichment Culture Characterization 

Previously published characterization of the PRB enrichment culture (Kesterson et 

al., 2005) revealed that the culture is composed of at least 6 bacterial genera, two of 

which are able to degrade perchlorate as an electron acceptor.  All 6 isolates are gram-

negative and facultative anaerobic bacteria.  The bacterial genera that have been 

identified in the culture include Pseudomonas, Azospira (formerly Dechlorosoma), 

Dechloromonas, Aeromonas, and Rhizobium, which are typically present in soils and 

waters (Kesterson et al., 2005).   

5.4.2. Fermenter Performance 

Typical values of COD, SS, pH, and conductivity of the microbial enrichment culture 

present in the fermenter through the bioregeneration cycles appears in Figure 5.2.a-d.  

The SS varied between 1000-2000 mg/L during five cycles of bioregeneration.  As it is 

shown in Figure 5.2.a and 5.2.c, there was a decrease in the amount of biomass in the 

fermenter as bioregeneration progressed.  The likely reason for this decrease was 

shortage of electron acceptor (i.e perchlorate) for the microbial culture since the electron 
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donor (i.e. acetate, measured as COD) was available in the system.  At some points 

during bioregeneration (e.g. day-2 and day-3 in Figure 5.2.a), concentrated PRB cells 

originating from the master seed cultures were added to the fermenter to increase the 

biomass.  Figure 5.2.a and 5.2.c also show a drop in the COD values that was due to the 

consumption of acetate as the electron donor source by the bacteria.   
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Figure 5.2. Typical Fermenter Operating Conditions: (a) and (c) Decrease of COD and 
SS during Cycles 2 and 4,  (b) and (d) Increase of pH, and Conductivity in the Fermenter 

during Cycles 2 and 4. 
 

 

The pH of the fermenter was maintained between 7.1 and 8.0 using phosphate buffer. 

There was an increase in the pH values as the bioregeneration proceeded (Figures 5.2.b 

and 5.2.d).  The observed increase in pH is likely due to biodegradation of resin-attached 
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nitrate (i.e denitrification).  The loaded resin contained several anions, including nitrate 

and the bacterial culture used is known to degrade both nitrate and perchlorate.  Only 

perchlorate degradation was monitored in this study.  Figures 5.2.b and 5.2.d also show a 

slight increase of the conductivity in the microbial culture.  This increase in the 

conductivity in the microbial culture was due to the conversion of resin-attached residual 

perchlorate to chloride during bioregeneration.   

ORP and temperature of the fermenter also were monitored.  ORP varied from (-)390 

mV to (-)470 mV and temperature of the system varied between 22±2ºC.  DO 

concentrations were always below 0.2 mg/L.   

5.4.3. Resin Bioregeneration 

Perchlorate biodegradation for all five cycles of bioregeneration is shown in Figures 

5.3.a and 5.3.b.  Cycles 1, 2, and 3 were run for 14 days, while cycles 4 and 5 were run 

for 9 and 8 days, respectively.  The stabilization of the residual perchlorate concentration 

in the resin bed was the criterion to stop the bioregeneration cycle (Figure 5.3.a).  The 

data show that perchlorate biodegradation is fast during the first days, and then it slows 

down and stabilizes.  In Figure 5.3.a, all the data except day-0 are Parr-bomb 

measurements of resin-attached perchlorate remaining in the resin as bioregeneration 

progresses.  Initial perchlorate concentration (i.e. day-0) for each cycle is the amount of 

perchlorate loaded to the resin at the beginning of that cycle (Table 5.3) plus the 

remaining perchlorate in the resin from the previous cycle.  For cycle 1 the initial 

perchlorate concentration is the amount of perchlorate loaded to the resin at the beginning 

of the cycle.  Notice in Figure 5.3.a that the initial perchlorate concentration in the resin 

for each cycle differs.  The reason for that is perchlorate buildup in the resin after each 
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cycle.  At the end of bioregeneration, the remaining perchlorate values in cycles 1-5 are 

3.1 gperchlorate/Lresin, 5.4 gperchlorate/Lresin, 7.4 gperchlorate/Lresin, 8.5 gperchlorate/Lresin, and 8.8 

gperchlorate/Lresin.   
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Figure 5.3. Residual Perchlorate Concentration during Five Cycles of Bioregeneration: 
(a) Residual Resin-attached Perchlorate Concentration, and (b) Residual Perchlorate 

Content in the Resin per Liter of Microbial Culture. 
 

Table 5.5. Resin-attached Perchlorate and Free Perchlorate Biodegradation Rates 
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Cycle # ClO4
- ion 

situation 
Initial perchlorate 
concentration 
(mg/Lculture) 

Observed 
perchlorate 
biodegradation 
rate (mgp/mgss/d) 

Theoretical 
(Calculated) 
biodegradation 
rate (mgp/mgss/d) 
 

Reference 

1 (1st day) Attached 
to resin 

422 0.096 0.362a - 5.854b This Study 

2 (1st day) Attached 
to resin 

361 0.066 0.357 - 5.838 This Study 

3 (1st day) Attached 
to resin 

296 0.065 0.352 - 5.819 This Study 

4 (1st day) Attached 
to resin 

336 0.039 0.341 - 5.780 This Study 

5 (1st day) Attached 
to resin 

177 0.066 0.321 - 5.704 This Study 

NA Free in 
water 

298 1.68 0.338 – 5.768 Korenkov et 
al., 1976 

NA Free in 
water 

915 2.57 0.383 – 5.922 Attaway and 
Smith., 1993 

NA Free in 
water 

100 0.36 0.353 - 5.357 Logan et al., 
2001 

NA Free in 
water 

250 0.64 0.385 - 5.725 Shrout and 
Parkin, 2006 

a Calculated using Ks and qmax from Logan et al., 2001  
b 

Calculated using Ks and qmax from Waller et al., 2004 
c Not Applicable 

 

 

Figure 5.3.b depicts the resin-attached residual perchlorate mass as g of ClO4
- per liter 

of microbial culture.  In all five cycles depicted in Figure 5.3.b, the highest perchlorate 

biodegradation rate was obtained in the first days of bioregeneration, and then it was 

reduced throughout the rest of the experiment.  The initial perchlorate load at the start of 

cycles 1-5 was 481 mg/Lculture, 433 mg/Lculture, 385 mg/Lculture, 314 mg/Lculture, and 231 

mg/Lculture, respectively (Figure 5.3.b).  The reason for the reduction of the initial 

perchlorate load was the decrease of resin volume from 1305 mL in cycle 1 to 375 mL in 

cycle 5 due to sampling.  Samples were taken during bioregeneration for the Parr-bomb 

and resin capacity measurement while the volume of the microbial culture in the 

fermenter was kept constant at 30 L for all five cycles.   
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The observed degradation rate for resin-attached perchlorate expressed as mg of 

perchlorate biodegraded per mg of SS per day (mgp/mgss/d) for day 1 of  cycle 1-5 is 

shown in Table 5.5.  For comparison, the degradation rate for free perchlorate ion in 

water from other studies is also shown in Table 5.5.   

Theoretical degradation rates were calculated using Monod’s kinetics (Table 5.5) 

(Rittman and McCarty, 2001), which is an accepted model for perchlorate biodegradation 

in water (Waller et al., 2004):  

  
sKS

XSq

dt

dS

+
−= max                                                                                                       (5.1) 

where, S is concentration of perchlorate (mg/ Lculture); t is the time (d); qmax is the 

maximum perchlorate utilization rate (d-1); X is the SS in the system (mg/L); and Ks is 

the half-saturation constant for perchlorate (mg/L).  Nine pairs of Ks and qmax from other 

studies (Table 5.1) were used to calculate the degradation rates and the lowest and 

highest theoretical rates are reported in Table 5.5.   

In Chapter 4, a conceptual model for resin bioregeneration process was envisioned 

which involves four steps as follows: a) Desorption of resin-attached perchlorate from the 

functional groups located in the resin bead matrix; b) Diffusion of the desorbed 

perchlorate from the inner portion of the resin bead to the surface through the resin pores; 

c) Diffusion of perchlorate through the liquid film covering the surface of resin bead to 

the bulk microbial fluid; and d) Biodegradation of perchlorate in the periplasmic region 

of PRB.  In all five cycles of bioregeneration, the observed perchlorate biodegradation 

rate in the first day of the bioregeneration process was one order of magnitude smaller 

than the smallest calculated theoretical biodegradation rate of free perchlorate (Table 

5.5).  This observation could be attributed to two potential explanations: (1) kinetics 
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control: perchlorate biodegradation rate is concentration dependent and it slows down for 

perchlorate concentrations smaller that the half saturation constant for perchlorate (Cox et 

al., 2000; Logan, 2001, Tan et al., 2004; Hiremath et al., 2006), and/or (2) mass transfer 

control: perchlorate biodegradation rate depends on the diffusion of the desorbed 

perchlorate ions from the original functional groups located in the resin bead to the 

bacteria located outside the resin bead (i.e. steps c and d of the above-mentioned 

conceptual model).  Based on the results of Chapter 4, both pore diffusion and film 

diffusion mechanisms are controlling in resin bioregeneration process for perchlorate-

selective resins.  Hence, the reason for higher observed perchlorate biodegradation rate 

for free perchlorate compared to resin-attached perchlorate (Table 5.5) is the limitation in 

the mass transfer flux.   

5.4.4. Capacity Loss Evaluation 

Figure 5.4 depicts the amount of loaded perchlorate to the resin, initial perchlorate 

(i.e. loaded perchlorate plus remaining perchlorate from the previous cycle), remaining 

perchlorate in the resin, and biodegraded perchlorate in the resin in each cycle.  In cycles 

1-5, 72.0%, 59.2%, 52.7%, 51.4%, and 52.5% of the initial perchlorate (i.e. loaded 

perchlorate plus remaining perchlorate from previous cycle) was degraded during 

bioregeneration, respectively (Figure 5.4).  It is likely that every time the resin was 

loaded, there was a core in the resin (in the center of the bead) that was not 

bioregenerated.  It seems that the size of this core from cycle 1 to cycle 5 grew, and every 

time the resin was loaded, perchlorate was replaced in the outer portion of the resin bead, 

and permanent perchlorate in the center of bead was carried over to the next cycle.  

Notwithstanding the remaining perchlorate in the resin carried over from the previous 
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cycles, in cycles 1-5, 72.0%, 77.3%, 80.4%, 89.1%, and 97.0% of the perchlorate, which 

was loaded to the resin in each cycle (section 2.4), was utilized, respectively.  These 

results show that the amount of perchlorate load, loaded in the loading step, that was 

being bioregenerated in the bioregeneration process increased from cycle 1 (i.e. 72%) to 

cycle 5 (i.e. 97%).  Although the initial perchlorate load of the resin was almost the same 

during  all five cycles (i.e. 11.06 gperchlorate/Lresin, 10.15 gperchlorate/Lresin, 10.23 

gperchlorate/Lresin, 10.08 gperchlorate/Lresin, and 10.02 gperchlorate/Lresin for cycles 1-5, 

respectively), for cycle 1 and cycle 5, 72.0% and 97.% of the initial perchlorate load was 

biodegraded, respectively.  Figure 5.5 depicts that the undegraded perchlorate load 

buildup was fast through cycles 1 and 2, and began to stabilize in cycles 4 and 5.  The 

reason for this observation could be that some of the functional groups of the resin 

located in the center of resin bead could not be regenerated and were permanently 

occupied by perchlorate throughout the bioregeneration cycles.  These functional groups 

are occupied by perchlorate because the results of Parr bomb measurement of resin 

samples at the end of bioregeneration process show that perchlorate ion is available in the 

resin. 

Bio-fouling and as a result clogging of the resin pores can be the potential reason for 

perchlorate permanent load build-up in the resin.  A SEM analysis of the rinsed and air-

dried fresh resin and bioregenerated resin that was sampled after cycle 5 revealed that 

some of the pores of the bioregenerated resin were clogged, while the pores in the fresh 

resin bead were clearly accessible (Figures 5.6.a and 5.6.b).  After SEM imaging, the 

bioregenerated resin sample was soaked in 100 mg/L sodium hypochlorite solution for 20 

minutes, rinsed with DI water, and air-dried.  A SEM analysis of the treated-
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bioregenerated resin sample showed that most the pores were unclogged after treatment 

with sodium hypochlorite solution (Figure 5.6.c), suggesting that the clogging materials 

are likely organics that can be removed using sodium hypochlorite solution.  Although, 

the substance that is clogging the pores has not been characterized because it was difficult 

to remove it from the pores in significant amount for an analysis, it is likely that the pores 

are clogged by bacterial debris or biodegradation byproducts.  The perchlorate load 

buildup may be due to slowing down of mass transfer in the resin pores because of 

clogging. 
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Figure 5.4. Initial Perchlorate (i.e. Loaded Perchlorate plus Remaining Perchlorate 
from the Previous Cycle); Loaded Perchlorate to the Resin; Biodegraded Perchlorate; 

and Remaining Perchlorate for Each Cycle of Bioregeneration.  However Loaded 
Perchlorate Stayed Approximately Constant through Different Cycles, Total Initial 
Perchlorate-Load at the Beginning of Each Cycle Increased from Cycles 1 through 

Cycle 5 Due to Residual Perchlorate Leftover from the Previous Cycle.  The Amount 
of Biodegraded Perchlorate Also Increased from Cycle 1 to Cycle 5.   
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The results of Chapter 4 revealed that bioregeneration process is controlled by mass 

transfer.  Since the desorbed perchlorate must somehow diffuse through the pore matrix 

of the resin bead and reach the bacteria, any decrease in the pore diffusion flux due to 

clogging affects bioregeneration process.  The SEM imaging showed that after the resin 

was fouled some of the pores in the resin were clogged.  Thus, during the establishement 

of clogging in the resin through the bioregeneration process, pore diffusion flux 

decreased.  It appears that establishment of fouling, and as result, clogging causes lower 

mass transfer flux compared to mass transfer  flux in not-fouled resin.  Therefore slower 

perchlorate biodegradation rate at the end of bioregeneration process can be expected as 

Figure 5.3.a, since: a) just because of pore diffusion, it takes longer for perchlorate 

located deep into the bead to arrive to the surface (Venkatesan et al., 2010) independent 

on pore clogging, and b) if there are clogged pores then the mass transfer slows down 

even more.   
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Figure 5.5. Permanent Perchlorate Load Buildup through 5 Cycles of 
Bioregeneration: The Load Buildup is Stabilized in the Last Cycles 
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Figure 5.6. SEM Images of the (a) Fresh Resin (with Normal Pores), (b) 
Bioregenerated Resin Sampled after Cycle 5 (Arrows Show the Clogged Pores), and 

(c) Bioregenerated Resin Which is Treated with 100 mg/L Sodium Hypochlorite 
(Arrows Show the Unclogged Pores). 

 

 

a 

b 

c 
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Resin was treated for biological fouling after each bioregeneration cycle (as 

expressed in Table 5.4), and the COD of the rinsate was measured (Figure 5.7).  Prior to 

the fouling removal procedure, the resin was rinsed with 1 BV of DI water for 5 times to 

remove the remaining microbial cells and organics which might remain in the resin.  

Table 5.6 shows the typical data of the % transmittance of the rinsate solutions, indicating 

that the employed rinsing procedure removed the remaining microbial cells from the resin 

effectively.  Even though the resin was rinsed with 1 BV of DI water for 5 times prior to 

the bio-fouling treatment, significant amounts of organics were detected in the fouling 

removal rinsate solutions (Figure 5.7).  In cycles 1-5, 3840 mg.COD/Lresin, 4778 

mg.COD/Lresin, 5745 mg.COD/Lresin, 4650 mg.COD/Lresin, and 3465 mg.COD/Lresin of 

organic substances, resulting from biodegradation, were removed from the resin.  The 

nature of the organic substance removed was not investigated, but it is thought to be 

byproducts of biodegradation.   

The resin treated by the fouling removal and disinfection procedure had a yellowish 

brown color which made the resin look different from the fresh resin.  Though applying 

higher concentrations of the disinfectant agent may be able to retrieve the original light 

color of the resin, treatment with concentrated disinfectant reagent potentially increases 

the risk of oxidation of the active functional groups of the resin beads, which may result 

in capacity loss of the resin.   
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Figure 5.7. COD of Eluate Obtained during Fouling Removal Process Applied on the 
Resin. 

 

 

Table 5.6. Typical Data for Rinsing the Resin with 1 BV of DI Water for 5 Times Prior to 
the Biofouling Removal Procedure  

Number of rinsing % transmittance of the rinsate at 600 nm 

1 79.8% 

2 97.6% 

3 100.0% 

4 100.0% 

5 100.0% 

 

 

Resin capacity was measured before bioregeneration, before disinfection, and after 

disinfection in each cycle.  Table 5.7 shows the resin capacity measurements from cycle 1 

through cycle 5 of bioregeneration.  The resin capacity measurement method (section 2.8) 

was not able to account for perchlorate load build-up in the resin.  The reason is the 
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method uses Cl- ion to convert the resin to the chloride form, and due to the higher 

affinity of the perchlorate-selective resin for perchlorate than chloride, perchlorate cannot 

be replaced by chloride during the first step of the capacity measurement method.  Hence, 

the observed capacity loss reported in Table 5.7 is due in part to perchlorate load build-up 

in the resin in addition to other possible factors such as disinfection and microbial activity 

effects.  Capacity measurement at different steps shows that the capacity loss is not 

cumulative throughout the consecutive loading-bioregeneration cycles.  Capacity loss did 

not increase with each cycle of bioregeneration.  Comparing pre-disinfection and post-

disinfection values from Table 5.7, it appears that the applied disinfection step had very 

little effect on the resin capacity.   

Table 5.7 indicates that after five cycles of loading, bioregeneration, fouling removal, 

and disinfection of the resin, the total capacity loss was about 15.6%, which corresponds 

to 9.93 g ClO4
-/Lresin, if the total capacity of the resin is 0.64 eq/ Lresin.  There is 1.13 g 

ClO4
-/Lresin difference between 9.93 g ClO4

-/Lresin capacity loss (Table 5.7) and the 

permanent perchlorate load of 8.80 g of ClO4
-/Lresin (Figure 5.4, Cycle 5).   

A significant finding of this study is that the bioregeneration process can be 

performed as a multi-cycle process.  The capacity loss was mostly due to remaining 

perchlorate load, and it was stabilized after a few bioregeneration cycles.  Although after 

cycle 5 there was about 9 g of ClO4
-/Lresin permanent perchlorate load in the resin, it is 

only about 15% of the total capacity and the resin still can be used in the loading-

bioregeneration process.  
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Table 5.7. Resin Capacity Measurement and Capacity Loss for Five Cycles of 
Bioregeneration 

Cycle # Sampling point Capacity (eq/L) Capacity loss (%)a 

Cycle 1 

Pre-bioregeneration 0.64 0.0 

Pre-disinfection 0.61 4.7% 

Post-disinfection NA NA 

Cycle 2 

Pre-bioregeneration 0.52 18.8% 

Pre-disinfection NA NA 

Post-disinfection 0.54 15.6% 

Cycle 3 

Pre-bioregeneration 0.54 15.6% 

Pre-disinfection 0.54 15.6% 

Post-disinfection 0.54 15.6% 

Cycle 4 

Pre-bioregeneration NA NA 

Pre-disinfection NA NA 

Post-disinfection 0.56 12.5% 

Cycle 5 

Pre-bioregeneration NA NA 

Pre-disinfection 0.54 15.6% 

Post-disinfection 0.55 14.1% 
a Virgin resin capacity was assumed 0.64 eq/L  

 

 

5.5. Discussion 

A main concern in resin bioregeneration is capacity loss of the resin.  The results 

showed that there is a perchlorate load buildup, thought to be in the center of resin, 

through cycle 1 to cycle 5.  The perchlorate load buildup is a major reason for resin 

capacity loss through bioregeneration cycles.  The capacity loss resulting from 

perchlorate load buildup is more significant through the first cycles and stabilizes after a 

few cycles.  It is thought that there is a region in the center of resin bead where some the 

functional groups of the resin are unavailable and permanently occupied by perchlorate 
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throughout the bioregeneration cycles.  The possible reason for unavailability of the 

functional groups in that region of resin bead is likely to be clogging of the resin pores, 

which has been observed by SEM imaging.  However, in a broader view, capacity loss of 

the resin can have another potential reason in addition to clogging of pores in the resin 

structure which is oxidation of some of functional groups in the resin due to exposure to 

disinfectant agent (i.e. sodium hypochlorite).  

Perchlorate buildup was found to be the major drawback of the bioregeneration 

process.  Evaluation is needed to determine whether bioregenerated resins, containing 

some residual perchlorate, can be used to produce water that meets the regulatory levels 

for perchlorate.  Clearly, since capacity loss is involved in the bioregeneration process, 

lower bed volumes of water can be processed to reach breakthrough point.  If perchlorate 

leakage occurs when using bioregenerated resin, another IX column containing fresh 

resin can be used to polish the effluent.   This polishing IX column can last for a very 

long time since the leakage of the IX column containing bioregenerated resin is expected 

to be much less than the influent perchlorate concentration to the water treatment plant.   

Obviously one has to evaluate the economical feasibility of the bioregeneration 

process.  Two factors play main roles in the economical evaluation of IX resin 

bioregeneration process.  On the one hand, there is cost of purchasing fresh resin in the 

places where spent resin is incinerated.  On the other hand, there are costs associated with 

resin bioregeneration process.  Capital costs include building fermenter, the FBR, pumps, 

and pipelines. Operating costs include personnel, energy, and purchasing electron donor, 

nutrients/minerals, and buffer chemical costs.  In addition there is a reduction in the 

volume of processed water because of capacity loss of the resin due to bioregeneration. 
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Considering the number of loading-bioregeneration cycles and the 15% capacity loss due 

to bioregeneration process, bioregeneration is feasible only if its costs are less than the 

costs of replacing the spent resin with fresh resin.  The results of economical assessment 

of the trade-off between bioregeneration and use of fresh resin (Appendix B) showed that 

from economical point of view employing resin bioregeneration process decreases the 

cost of perchlorate removal from water about $70.  There are also environmental costs to 

be considered when spent resins are incinerated.  Depending on regulations concerning 

minimizing greenhouse gases, in some states, carbon credits could be awarded to water 

utilities that stop resin incineration.  In the long-term, resin bioregeneration can be the 

technology of choice for water utilities dealing with perchlorate contamination.   

Biodegradation of resin-attached perchlorate ions is slower than biological 

degradation of free perchlorate ions.  It has been shown that resin bioregeneration process 

is mass transfer controlled.  Results of resin bioregeneration from different studies 

showed that at first the biodegradation rates are fast and then slow down and stabilize.  

There are two reasons involved in slowing down of the degradation of resin-attached 

perchlorate ions: a) pore diffusion itself independent on pore clogging: it takes longer for 

perchlorate ions located deep into the bead to arrive to the surface, and b) pore clogging: 

SEM imaging showed that as bioregeneration progresses, pore clogging establishes in the 

resin bead which causes the mass transfer slows down even more.   

5.6. Conclusions 

The objective of this research was to determine whether macroporous perchlorate-

selective resins can be bioregenerated for many cycles. The results obtained from this 

study revealed that macroporous perchlorate-selective IX resins can be bioregenerated 



 208

and reloaded for five cycles.  However, the capacity loss is significant (i.e. about 15%) 

but not cumulative after multi-cycle loading-bioregeneration process.  Capacity loss is 

mostly due to permanent perchlorate load buildup in the resin.  This perchlorate load 

buildup is fast through the first two cycles and almost stabilizes through cycles 4 and 5.  

The following can be concluded from the results of this research: 

7) The reason for perchlorate load buildup could be unavailability of 

some of the functional groups located in the center of resin due to clogging 

of the pores of the resin.  The applied fouling treatment and disinfection 

methods were effective during the regeneration cycles, and could remove 

significant amount of organics from the resin.   

8) As bioregeneration progresses, establishment of fouling causes 

lower mass transfer flux in the resin compared to mass transfer flux in 

unfouled resin.   

9) Slower perchlorate biodegradation at the end of the 

bioregeneration process can be attributed to: a) pore diffusion independent 

of pore clogging: it takes longer for perchlorate located deep in the bead to 

arrive at the surface, and b) pore clogging: a combination of slower 

diffusion due to location within the bead and clogging of the pores by 

bacteria causes the mass transfer slows down even more.   

10)  The perchlorate biodegradation rate of resin-attached perchlorate 

is significantly slower than the biodegradation rate of soluble perchlorate.   
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CHAPTER 6 

CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS FOR FURTHER 

RESEARCH 

6.1.   Conclusions 

Resin bioregeneration as a new concept in IX technology has been developed and 

patented (Batista, 2006).  This concept is based on directly contacting perchlorate-

containing IX resin with a PRB culture under anoxic/anaerobic conditions.  Generally, 

the process consists of a fermenter, which holds perchlorate-reducing microbial culture, 

and a fluidized bed reactor (FBR), which holds the perchlorate-laden resin.  In this 

process, first the fresh resin is used to treat water.  After the capacity of the ion exchange 

resin is exhausted, the resin is transferred to the FBR column.  Next, the perchlorate-

reducing microbial culture is pumped from the fermenter to the FBR upward.  In this 

process, perchlorate-selective and non-selective ion-exchange resins can be directly 

bioregenerated by perchlorate-reducing bacteria (PRB), leading to the conversion of 

perchlorate ions to innocuous chloride.   An electron donor such as acetate needs to be 

provided to the bacteria.  Although the feasibility of perchlorate-laden IX bioregeneration 

process has previously been proven (Batista and Jensen, 2006; Batista et al., 2007b; 

Wang et al., 2008b; Venkatesan et al., 2010), the mechanism of resin-attached 

perchlorate reduction has not been elucidated thus far.  The objectives of this research 

were:  

a) to understand the mechanisms of degradation of resin-attached perchlorate, and 

b) to investigate the feasibility of bioregeneration of ion-exchange resin for several 

exhaustion-bioregeneration cycles.   
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Bioregeneration tests using both batch and fluidized bed reactor were performed to 

investigate these two issues.  The results of this research revealed that there is a 

desorption step involved in biodegradation of resin-attached perchlorate (RAP).  Chloride 

ion, which is the product of perchlorate biodegradation present in all PRB cultures grown 

using perchlorate, is likely the desorbing agent of RAP in the bioregeneration process.  

Increasing the concentration of chloride in the PRB culture, below the chloride inhibitory 

level to PRB, enhances the IX resin bioregeneration process.  It was also found that 

macroporous resins, which have higher water contents and larger average pore sizes 

bioregenerate better than gel-type resins.  Larger pore sizes in macroporous resins result 

in higher pore diffusion.  The results further showed that decreasing the resin bead size 

has a significant positive effect on resin bioregeneration process.  Mass transfer of 

desorbed perchlorate from the original functional group in the resin to the bulk microbial 

liquid was found to be the controlling step in the IX bioregeneration process.   

Another goal of this research was to study the feasibility of multi-cycle 

bioregeneration and estimate the capacity loss due to resin bioregeneration.  A significant 

finding of this study is that the bioregeneration process can be performed several times.  

Perchlorate-selective macroporous IX resins can be successfully employed in consecutive 

loading-bioregeneration IX process.  It was found that capacity loss is significant (i.e. 

about 15%) after five multi-cycle loading-bioregeneration process.  However, this loss is 

not cumulative.  Capacity loss is mostly due to permanent perchlorate load build-up.  

Perchlorate load buildup is fast in the first cycles and it stabilizes through the rest of the 

cycles.  The results showed that bioregeneration results in resin fouling.  Although there 

is no knowledge of the exact composition of the organics that cause fouling, fouling 
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removal procedure and disinfection methods used in this research were effective to 

remove significant amount of organics from the resin.  Chlorine worked very well as a 

disinfectant and a fouling removal agent.  Establishment of fouling during 

bioregeneration causes lower mass transfer flux in the resin compared to mass transfer 

flux in unfouled resin.  The results further showed that slower perchlorate biodegradation 

at the end of bioregeneration process can be attributed to: a) pore diffusion; it takes 

longer for perchlorate located deep into the bead to arrive to the surface, and b) pore 

clogging; slower diffusion due to clogging of the pores by bacterial debris causes mass 

transfer to slow down.   

6.2.   Implications 

In general, the results of this research revealed that it is possible to bioregenrate resins 

laden with perchlorate and that the process is limited by mass transfer.   However, the 

accumulation of un-degraded perchlorate is a serious issue and may lead to economically 

unfavorable outcome.  The results of this research can be applied for future development 

of IX resin bioregeneration as a new technology in water treatment industry.  According 

to the results, chloride solution can be applied to facilitate bioregeneration.  However, 

designers of such systems should assure that chloride concentration does not exceed 

toxicity levels for PRB microbial activities (i.e salinity > 1.5%).  Smaller resin bead sizes 

are recommended if resins are to be bioregenerated.  However, designers should account 

for excessive hydraulic head loss in the FBR reactor caused by smaller bead sizes.  In 

addition, operators should be mindful of the negative effects of the boundary liquid film 

for resin sizes smaller than 0.5 mm that may control the biodegradation rate of resin-

attached perchlorate, if the hydraulic loading rate (i.e. fluidization) of the resin bed is not 
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sufficient.  Higher surface loading rate (i.e. higher flow rate) should be used to increase 

film diffusion.  However, potential resin loss due to high hydraulic loading should also be 

minimized.  Macroporous resins should be used to enhance pore diffusion.  However, 

there is a trade-off involved in using macroporous resins which have relatively smaller 

capacity compared to gel-type resins.  Fouling removal is a vital step  in bioregeneration 

and should be incorporated to any bioregeneration design.  Fouling can be removed 

satisfactory by soaking the resins in mixtures of sodium chloride and sodium hydroxide 

and by rinsing with chlorine solutions.   

6.3.   Recommendations for Future Research 

This research could be followed with additional work that would contribute to further 

understanding of the mechanisms for biodegradation of resin-attached perchlorate: 

1. Investigating other monovalent anions such as bromide, and iodide as the 

desorbing agent of resin-attached perchlorate on the resin bioregeneration process 

and comparing the results with those of resin bioregeneration process using 

chloride ion.   

2. Investigating the effect of divalent anions such as sulfate as the desorbing agent 

for resin-attached perchlorate on the bioregeneration process and comparing the 

results of resin bioregeneration process using monovalent anions. 

3. Studying the bioregeneration of resin loaded with nitrate and the effect of initial 

concentrations of chloride, bromide, sulfate, and iodide on bioregeneration 

process. 
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4. Investigating the feasibility of bioregeneration of either gel-type or macroporous 

resins for more than five consecutive cycles and investigate ways of minimizing  

accumulation of perchlorate in the resin.. 

5. Evaluating the economic feasibility of bioregeneration considering cost of 

purchasing fresh resin, and costs associated with the resin bioregeneration process 

(i.e. capital costs and operating costs). 

6. Determining whether bioregenerated resins, containing some residual perchlorate, 

can be used to produce water that meets the regulatory levels for perchlorate.   

7. Studying the specific composition of organics that cause resin fouling. 

8. Studying the changes of resin water content and resin pore clogging (as important 

factors on mass transfer) during multi-cycle bioregeneration of ion-exchange 

resins. 

6.4. Contributions of this Research to the Field of Perchlorate Removal Using Ion-

Exchange Process 

Providing clean water is one of the major challenges in the world.  Sustainable 

development of communities requires reliable methods to provide clean water.  

Perchlorate (ClO4
-) ion as a water contaminant is known to affect the functioning of the 

thyroid gland of humans.  Ion exchange is the technology of choice to remove perchlorate 

from drinking waters and its use for this purpose has been increased significantly during 

the last decade.  Since the spent perchlorate-contaminated ion-exchange resin is not 

currently regenerable using the common regeneration methods, the incineration/disposal 

of spent resin is the major challenge and cost to drinking water utilities.  In case of 

incineration, it produces significant amounts of greenhouse gases, and in case of 
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landfilling, it has potential to re-contaminate the environment.  Bioregeneration, which 

uses perchlorate-reducing bacterial culture, is an environmentally sustainable technology 

because it allows reusing of ion-exchange resin and presents a major innovation in water 

treatment technology.  The goal of this research was to study the mechanism, controlling 

factors, and feasibility of multi-cycle bioregeneration of ion-exchange resin.  Therefore, 

the results of this research have direct value to applications of ion-exchange technology 

in water treatment utilities to treat waters contaminated with perchlorate.   

The water treatment industry can employ the results presented here to further develop 

bioregeneration as a technology for water treatment. If the technology can be developed 

successfully, the cost of treating perchlorate contaminated waters can be reduced 

significantly.  Furthermore, such a technology would result in less generation of 

greenhouse gases because it would make incineration of loaded resin unfeasible.  

Depending on regulations concerning minimizing greenhouse gases, in some states, 

carbon credits could be awarded to water utilities that stop resin incineration.   
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APPENDIX A 

PROCEDURE TO MEASURE RESIDUAL PERCHLORATE IN ION-EXCHANGE 

SAMPLES USING OXYGEN PARR-BOMB 

Introduction 

 In the past, UNLV developed a potassium iodine (KI) extraction method to measure 

perchlorate contained in ion-exchange resins.  This method works well for nitrate-

selective resins, but it does not remove perchlorate well from gel-type perchlorate-

selective resins.  In order to measure the residual amount of perchlorate in the ion-

exchange resin samples, a procedure has been developed in UNLV Environmental 

Laboratory using oxygen Parr Bomb.  The method is based on conversion of perchlorate 

to chloride when a resin sample is combusted in a closed combustion chamber.  The 

chloride resulting in the combustion is then measured by ion-chromatography.  The 

method uses an oxygen Parr Bomb apparatus as it is shown in Figure 3.3.   

Materials and Instruments 

The materials and instruments needed for the procedure are listed below:  

1) Parr Bomb or Oxygen Combustion Bomb apparatus: UNLV Environmental 

Laboratory uses Parr Bomb apparatus number 101A -C20 09C507 M17210; from 

the Parr Instrument Company. 

2) Ion-chromatograph (IC) system. UNLV uses a Dionex ICS-2000 (Dionex 

Corporation, Sunnyvale, CA) consisting of an Ion Suppressor-ULTRA II (4 mm), 

IonPac AS16 (4 mm) analytical, AG16 (4 mm) guard columns, and AS16 auto-

sampler. 

3) Bench-top orbital shaker (Cole-Parmer, Series 51704) 
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4) 105ºC oven (Thermo Fisher Scientific, Waltham, MA) 

5) 10,000 mg NO3-/L nitrate solution 

6) Paraffin oil (EMD Chemicals, Inc., San Diego, CA) 

7) Aluminum dish (Thermo Fisher Scientific, Waltham, MA) 

8) A 500-ml volumetric flask 

9) A 500-ml Erlenmeyer flask 

10) 3% hydrogen peroxide solution 

11) 35 mM sodium hydroxide solution 

12) Compressed pure oxygen cylinder with a regulator 

13)  A 5-L water bucket that fits the Parr-Bomb 

 Safety Warning:  Heat is generated during combustion.  The Parr-Bomb must be 

placed inside a water bucket during combustion.  The Parr bomb uses compressed 

oxygen.  The oxygen cylinder must be securely fastened to a bench to avoid falling. 

 To operate the Parr Bomb for residual perchlorate measurement the following 

procedure has been developed: 

Step 1:  Measure approximately 1 mL of resin sample; 

Step 2:  Rinse the resin sample gently using DI water to remove suspended solids and 

organic/inorganic materials (e.g. microbes, silt, etc.); 

Step 3:  Place the rinsed resin sample in a 500 mL Erlenmeyer and add 100 mL of 

10,000 mg NO3
-/L.  The goal of this step is to exchange each chloride still remaining 

in the resin’s functional group with a nitrate ion.  In this manner, the only chloride 

ions that will result from the combustion are those related to perchlorate; 
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Step 4:  Place the Erlenmeyer containing the resin sample and the nitrate solution on a 

bench-top orbital shaker (Cole-Parmer, Series 51704) at 50-60 rpm for 24 hours; 

Step 5: After 24 hours, carefully decant the nitrate solution, measure the amount of 

desorbed perchlorate in the solution, and rinse the resin sample six times with 100 mL 

of DI water; 

Step 6: Drain the residual water from the sample by placing it on a filter paper.  Air-

dry the sample for 30 minutes; 

Step 7:  Place the sample in a pre-weighed clean aluminum dish (Thermo Fisher 

Scientific, Waltham, MA) and weigh the aluminum dish containing resin sample.  

Record the measurement; 

Step 8:  Place the aluminum dish in 105ºC ovens (Thermo Fisher Scientific, Waltham, 

MA) for 60 minutes to completely dry the resin sample; 

Step 9:  Weigh the aluminum dish containing the dried sample in order to calculate 

the water content of the resin; 

Step 10:  Weigh 100 mg of the sample carefully inside the pre-heated Parr-Bomb 

crucible; 

Step 11:   Add 400 mg paraffin oil (EMD Chemicals, Inc., San Diego, CA) to the 

crucible; 

Step 12:  Place the crucible inside the cradle (loop electrode) which is attached to the 

bomb cap; 

Step 13: connect the two electrodes present in the Parr Bomb cap using a 10 cm of 

nickel-chromium fuse wire;  
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Step 14:  Add 3 mL of 3% hydrogen peroxide and 10 mL of 35 mM sodium 

hydroxide solution to the bottom of Parr Bomb apparatus.  Sodium hydroxide 

(NaOH) is used to match the eluent solution (i.e. NaOH) that is used in the Dionex 

ICS-2000 Ion Chromatograph (IC) (Dionex Corporation, Sunnyvale, CA); 

Step 15: Close the Parr Bomb properly make sure it is air tight; 

Step 16: Inject the oxygen gas inside the Parr Bomb apparatus up to 500 psi (30-35 

atm) pressure; 

Step 17: Completely immerse the Parr Bomb apparatus in water in a 5-L water 

bucket; 

Step 18:  Ignite the sample.  During combustion all attached perchlorate anions are 

converted to chloride anion.  The chloride dissolves into the NaOH solution inside the 

apparatus; 

Step 19:  Thirty minutes (30 min) after the ignition, open the cap of the Parr-Bomb 

and use 250 ml of DI water, in small portions each time, to transfer the contents of the 

bomb to a 250-ml glass volumetric flask; 

Step 20: Measure the concentration of the chloride ion in the rinsate from the Parr-

Bomb using Ion-chromatograph (IC) analysis; and 

Step 21: Convert the measured concentration of chloride in the solution to residual 

perchlorate in the resin sample. 
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APPENDIX B 

ECONOMIC ASSESSMENT FOR THE TRADE-OFF BETWEEN 

BIOREGENERATION AND USE OF FRESH RESIN 

Introduction 

Two factors play main roles in the economical evaluation of ion-exchange resin 

bioregeneration process.  On the one hand, there is cost of purchasing fresh resin in the 

places where spent resin is incinerated.  On the other hand, there are costs associated with 

the resin bioregeneration process.  Capital costs associated with bioregeneration include 

design and construction cost for the fermenter and FBR, purchase of pumps, pipelines, 

and instrumentation.  Operating costs include personnel, energy to fluidize the FBR, 

transportation of resin from the source to the bioregeneration facility, and purchasing of 

electron donor, nutrients/minerals, and buffer. 

Because the resin is not fully regenerated every cycle due to mass transfer limitations 

and biofouling, bioregenerated resins have less capacity than fresh resins.  Therefore, the 

volume of perchlorate-contaminated water that is processed, when bioregenerated resin is 

used, will be less than when fresh resin is used.  Considering the number of loading-

bioregeneration cycles and the 15% resin capacity loss observed in this research, 

bioregeneration is feasible only if its costs are less than the costs of replacing the spent 

resin with fresh resin. There are also environmental costs to be considered when spent 

resins are incinerated.  Depending on regulations concerning minimizing greenhouse 

gases, in some states, carbon credits could be awarded to water utilities that stop resin 

incineration.   
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In the following example, operating costs including personnel, energy, transportation, 

and purchasing chemical costs are compared to the costs associated with purchasing fresh 

resin.  All the calculations are for 1 ft3 of perchlorate-selective resin.  Table B.1 shows 

the total costs to replace perchlorate laden resin with fresh resin.   

 

 

Table B.1. Total Costs to Replace Perchlorate Laden Resin with Fresh Resin 

Item Cost 

Purchasing fresh perchlorate-selective resin $250 per ft3 of resin 

Disposal (incineration) of perchlorate laden resin 
(typical incineration cost for California from 
Cameron Environment Inc., Torrance CA) 

$14 per ft3 of resin 

Total $264.00 per ft3 of resin 

 

 

Capital costs and operating / maintenance costs are involved in the bioregeneration 

process.  According to a study performed in Civil and Environmental Engineering 

Department at UNLV, total capital costs to design and build a bioregeneration plant with 

a capacity of 4900 ft3 of resin per year is approximately $4,100,000.  The expected life of 

the bioregeneration plant is 20 years.  Assuming interest rate of 6% and 20 years 

investment time period, the bioregeneration plant costs $358,000 per year.  Hence, the 

capital costs for 1 ft3 of resin would be $43.06 per ft3 of resin.  The other costs associated 

to bioregeneration process are operating and maintenance costs.  Table B.2 shows the 

operating costs involved in bioregeneration of IX resin.   
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Table B.2. Total Costs Associated with Bioregeneration of IX Resin  

Item Cost 

Transportation to 
bioregeneration facility 

$0.50 per ft3 of resin 

Macro and Micronutrient 
for bioregeneration  

$0.06 per ft3 of resin 
Estimated assuming DAP (diammonium phosphate) and urea as the 
sources of nitrogen and phosphate and can be purchased from 
Brenntag Pacific, Santa Fe Springs, CA).  Micronutrient media is the 
same used in this research (Table 4.6)  

NaCl salt needed for 
fouling removal  

Salt price = $100 per ton,  1 Bed volume (BV) = 28 L 
Salt needed for steps 1 and 2 of fouling removal (Table 5.4) = 28 L × 
1.5 BV × 60 g/L × 2 = 5040 g of NaCl 
Salt needed for step 3 of fouling removal (Table 5.4) = 28 L × 1.5 
BV × 120 g/L = 5040 g of NaCl 
Total Salt = 10 kg of NaCl 
Salt cost = $1.10 per ft3 of resin 

NaOH needed for fouling 
removal  

NaOH price = $1/L (conc. of 50%),  1 BV = 28 L 
NaOH needed for step 1 of fouling removal (Table 5.4) = 28 L × 1.5 
BV × 20 mL = 840 mL of 50% NaOH 
NaOH needed for step 2 of fouling removal (Table 5.4) = 28 L × 1.5 
BV × 20 mL = 840 mL of 50% NaOH 
Total NaOH = 1.68 L of NaOH 
NaOH cost = $1.68 per ft3 of resin 

NaOCl needed for 
disinfection  

NaOCl price = $0.25/L (conc. of 6%),   1 BV = 28 L 
NaOCl needed (Table 5.4) = 28 L × 1.5 BV × 16 mL = 700 mL of 
6% NaOCl 
Total NaOCl = 0.7 L of NaOCl 
NaOCl cost = $0.175 per ft3 of resin 

Water rinsing  

Water price = $0.005/ gal 
Water needed = 6 BV 
Total water cost = 6 BV × 28 L/BV × 0.264 gal/L × $0.005/ gal = 
$0.22 per ft3 of resin 

Electricity cost 

Estimate #1: Electricity as was used in the experimental FBR reactor 
(Chapter 5) 
Power needed to obtain 40% expansion per ft3 of resin = 0.9 hp 
Bioregeneration time = 10 days 
Electricity price = $0.1/kw-hr  
Energy needed to run the pump for 10 days = 0.9 hp × 0.7456 kw/hp 
× 24 hr/day × 10 day = 160.2 kw-hr 
Electricity cost = 160.2 kw-hr × 0.1/ kw-hr = $16.02 per ft3 of resin 
Estimate #2: Utilities cost  = 0.02 × capital cost (Anderson, 2009) 
Utilities cost = 0.02 × 4,100,000 = $82,000 per year  
Utilities cost per ft3 of resin = 82,000 / 4900 = $16.73 per ft3 of resin 

Maintenance and labor 
costs 

Labor cost = $76,000 per year (Anderson, 2009) 
Labor cost = $76,000 per year/4900 ft3 of resin = $15.51 per ft3 of 
resin 
Maintenance cost = 0.02 × capital cost (Anderson, 2009) 
Maintenance cost = 0.02 × 4,100,000 = $82,000 per year  
Maintenance cost per ft3 of resin = 82,000 / 4900 = $16.73 per ft3 of 
resin 

Total operating  and 
maintenance cost 

$53.63 per ft3 of resin 
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As it is shown in Table B.2, operating costs includes transportation to bioregeneration 

facility site, costs associated with purchasing nutrient chemical, salt (NaCl), sodium 

hydroxide (NaOH), and sodium hypochlorite (NaOCl), electricity, labor, and 

maintenance costs.   

The results of this research (i.e. Chapter 5) showed that perchlorate-selective resin 

can be successfully bioregenerated for five consecutive times.  The economical feasibility 

of bioregeneration process here can be estimated using the results of Table B.1 and B.2.  

Using perchlorate-selective resin, it is expected that 100,000 BV of water contaminated 

with 50 µg/L of perchlorate can be processed before breakthrough of 4µg/L occurs 

(Seidel et al., 2006).  Two different situations are assumed to treat a water contaminated 

with 50 µg/L of perchlorate (Table B.3).  In situation #1, after the capacity of the resin is 

exhausted, the resin is transferred to a facility and incinerated.  In situation #2, after the 

capacity of the resin is exhausted, the resin is transferred to a bioregeneration facility.   

For situation #2, the bioregeneration process is repeated five times.  Although the 

results of this research showed that after five times loading and bioregeneration, resin 

capacity loss is about 15%, here it is assumed that after each cycle of bioregeneration, the 

volume of water that can be treated using the bioregenerated resin reduces by 10,000 BV.  

It is important to emphasize that column loading of bioregeneration resins was not 

performed in this research.  Therefore, the 10,000 BV reduction is an assumption used for 

illustration purposes only.   Tests should be performed to determine the actual reduction 

in BVs to breakthrough.   

As it is shown in Table B.3, the volume of treated water generated in situation #1 is 

larger than the volume of water treated using situation #2.  However, in situation #1, the 



 223

cost of the treatment process is $0.0036 per gallon of treated water, while for situation #2 

it is $0.0016 per gallon of treated water, which shows that using bioregeneration, the 

costs of perchlorate removal reduce by approximately 55%.   

 

 

Table B.3. Total Costs for 1 ft3 of Perchlorate-Selective Resin in: a) A Process 
Involving Purchasing New Resin, and b) A Process Involving Resin Bioregeneration 

Situation #1 
Resin Incineration 

Situation #2 
Resin Bioregeneration 

Volume of treated 
water, BV 

Cumulative cost 
Volume of treated 

water, BV 
Cumulative cost 

100,000 
(cycle 1) 

$264 100,000 $250 

200,000 
(cycle 2) 

$528a 190,000 $347b 

400,000 
(cycle 3) 

$792 270,000 $444 

300,000 
(cycle 4) 

$1056 350,000 $541 

500,000 
(cycle 5) 

$1320 410,000 $637 

a $528 = $264 + $264 
b $276 = $250 + $43.06 + $53.63 ($43.06 is the capital and $12.49 is the operating and maintenance 

costs associated with the bioregeneration process) 
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