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ABSTRACT 

Finding Acronyms and Their Definitions using HMM 

by 

Lakshmi Vyas 

Dr. Kazem Taghva, Examination Committee Chair 
Professor of Computer Science  

University of Nevada, Las Vegas 

In this thesis, we report on design and implementation of a Hidden Markov Model 

(HMM) to extract acronyms and their expansions. We also report on the training of this 

HMM with Maximum Likelihood Estimation (MLE) algorithm using a set of examples.  

     Finally, we report on our testing using standard recall and precision. The HMM 

achieves a recall and precision of 98% and 92% respectively. 

  



v 

 

ACKNOWLEDGEMENTS 

There are many people who have had a significant influence on my thesis research work. 

While it is not possible to list every contribution, I make an attempt to express my 

gratitude to those who have helped make my work a success. 

     Dr. Kazem Taghva, my thesis advisor, has been an immense source of knowledge and 

motivation. I am eternally grateful for his support, patience and guidance throughout my 

thesis study. I have learned so much in the last year of working with him. 

     I would like to thank the graduate coordinator, Dr. Ajoy Datta, for his vote of 

confidence on everything I have ventured to do during my Masters program. I would like 

to convey my sincere appreciation and gratitude to the members of my thesis advisory 

committee, Dr. Laxmi P Gewali, Dr. Venkatesan Muthukumar and Dr. Ajoy Datta. Their 

ready acceptance to serve on my committee has been a great source of confidence. I 

consider myself privileged for the opportunity to work under their guidance. 

     My acknowledgements would be incomplete without a mention of the support my 

husband and family have given me. I am humbled by their constant faith and 

encouragement without which I wouldn’t be where I am today. 

  



vi 

 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGEMENTS ................................................................................................ v 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF FIGURES .......................................................................................................... vii 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 
1.1 Outline ....................................................................................................................... 2 

CHAPTER 2 INFORMATION EXTRACTION AND AFP EXAPLAINED ................... 3 

CHAPTER 3 ALGORITHMS .......................................................................................... 12 
3.1 Hidden Markov Models .......................................................................................... 12 
3.2 Viterbi Algorithm .................................................................................................... 17 
3.3 Maximum Likelihood Estimation (MLE) ............................................................... 20 

CHAPTER 4 DESIGN ...................................................................................................... 22 

CHAPTER 5 iMPLEMENTATION ................................................................................. 30 
5.1 Learning Module ..................................................................................................... 31 
5.2 Decoding Module .................................................................................................... 34 

CHAPTER 6 EXPERIMENTS ......................................................................................... 39 

CHAPTER 7 CONCLUSION AND FUTURE WORK ................................................... 43 

BIBLIOGRAPHY ............................................................................................................. 44 

VITA ................................................................................................................................. 46 

 
  



vii  

 

LIST OF FIGURES  
Figure 1 Dynamic Programming Algorithm for equation c�i, j� ....................................... 10 
Figure 2 State Transition Diagram .................................................................................... 13 
Figure 3 Trellis Diagram ................................................................................................... 18 
Figure 4 HMM for Acronyms and their Definitions ......................................................... 23 
Figure 5 Sample set of probabilities ................................................................................. 26 
Figure 6 Sample Data 1..................................................................................................... 40 
Figure 7 Sample Data 2..................................................................................................... 40 

 

  



1 

 

CHAPTER 1 

INTRODUCTION 

The thesis discusses a method of Information Extraction called Hidden Markov Models 

(HMMs) [6]. Information Extraction can be carried out by the use of HMMS and other 

standard approaches such as hand-written regular expressions, Naïve Bayes [12] and 

Conditional Random fields (CRF) [13]. The main focus of the thesis is to understand 

Hidden Markov Models. It also looks into the working of the Viterbi algorithm and the 

use of Maximum Likelihood Estimation (MLE) [14]. 

     Information Extraction is the task of retrieving structured information from 

unstructured or semi-structured documents. More specifically it is the task of extracting 

data that is relevant with respect to a category and context from a collection of documents 

in a certain domain. We look into the problem of finding acronyms and their definition in 

text using the formal method of information extraction i.e. Hidden Markov Models 

(HMMs). 

     Acronyms are a word formation that is composed of the first letters of words in a 

series of words. These acronyms are known to cause considerable confusion to readers 

who are unaware of its origins. It is therefore important to ascertain the acronym and 

what it stands for. The problem is one that has been studied before [3]. The algorithm [3] 

is based on an inexact pattern matching algorithm applied to text surrounding the possible 

acronym. Evaluation shows that the algorithm performs well, however, we go on to show 

that the use of HMMs for the same task overcomes some of the limitations of the ad-hoc 

methodology such as the length of the acronym, use of special characters in the acronym 

etc. 
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     The idea of using HMMs to the task of extracting acronyms and their definitions is 

based on the significant success it has had to other language related tasks, including 

speech recognition [Rabiner 1989], text segmentation and topic detection [van Mulbregt 

1998]. Like finite state automaton HMMs are composed of a finite set of states. HMMs 

are probabilistic tools that are used to model a sequence of most likely states given an 

observation sequence and other model parameters. The probabilities associated with 

every state in an HMM model are set using Maximum Likelihood Estimation (MLE) on 

tagged documents and the most likely sequence of states for the input data is decided by 

the Viterbi algorithm. We evaluate our results by using precision and recall. 

1.1 Outline 

Chapter 1 looks into Information Extraction in some detail and also explains the working 

of the Acronym Finder algorithm [3]. Chapter 2 discusses the working of the Viterbi 

algorithm and the statistical method of estimating model parameters using Maximum 

Likelihood Estimates (MLE). A detailed account of the design of the HMM model used 

for the task and other implementation specifics are discussed in Chapter 3. The methods 

used to train the model, test it and an overview of the results obtained is in Chapter 4. 

Chapter 5 summarizes and concludes this thesis.   
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CHAPTER 2 

INFORMATION EXTRACTION AND AFP EXPLAINED 

Information Extraction (IE) [15] can be defined as the task of extracting relevant 

information from the actual text of documents. Information Extraction is of great 

significance to companies that rely on drawing inferences from data, using transaction 

histories and archives of other happenings. Information Retrieval (IR), on the other hand, 

is the task of finding relevant documents from a collection of documents. It is likely that 

an Information Extraction system built for a specific need is preceded by some 

Information Retrieval task to categorize relevant documents from a larger collection. 

     A clear distinction between these two processes can be drawn by looking into an 

example. A system that classifies incoming emails as ‘Spam’ or ‘Not Spam’ is an 

example of an Information Retrieval system. These systems are quintessential in today’s 

day and age and categorize email messages into the above mentioned categories by 

looking into information encapsulated in the email headers.  

     Every email message consists of two parts – the body and the header, used by servers 

on the Internet as they deliver the message. The header tells us where the email is coming 

from, which route it has come through and the name of the different routing points. The 

names of some of these fields are Return-Path, Message ID, X-IP, X-UIDL. The IR 

system first tokenizes the header and analyzes these fields in some detail to ascertain if 

they are genuine and reliable. Ones that are inferred as Spam are categorized accordingly. 

     The system described above does not categorize emails based on the semantics of the 

body of content. Features such as Multiple Inboxes, provided by Google, allows a Gmail 

user to segregate their inbox. The segregation criteria can be a myriad of things such as 
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the Sender of the email message, the subject line, the priority, the domain name of the 

sender’s email ID etc. Such a task is difficult for an IR system but not for an Information 

Extraction system. Information Extraction is not a stand-alone task that analysts engage 

in. It is an abstraction over a larger task intended to produce results without human 

intervention. 

     Extracting information from text to understand implicit patterns dates back to the early 

days of Natural Language Processing (NLP). In 1979, DeJong from Yale University 

developed a system called FRUMP. This NLP system analyzed news stories to generate a 

summary for users logged into the system. This system is reminiscent of modern day IE, 

since the generated summaries are essentially templates filled in by Fast Reading 

Understanding and Memory Program (FRUMP) [16]. DeJong’s system uses hand-coded 

rules and the data structure that was populated by the system was called ‘script’, a term 

coined by his advisor, Schank. Other early attempts to extract information include the 

work of Silva and Dwiggins [17] for identifying information about satellite flights from 

multiple text reports. The system that was developed for this was Prolog based. 

     To encourage the development of IE techniques, in the late 1980s and early 1990s the 

US Government, DARPA, organized a series of Message Understanding Conferences 

(MUC) as a competitive task with standard data and evaluation procedures. IE was 

separated into several different tasks in later conferences, such as Named Entity (NE) 

task, Relation Extraction (RE) task and Scenario Template (ST) task. These conferences 

established a competitive environment that enabled rapid transfer of ideas and techniques 

and thus benefitted IE research. In the later years of the conference the government 
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focused its efforts on reducing the amount of human undertaking involved in generating 

rules for IE. Much success was achieved in this area. 

     Research in IE has continued to grow over the years since MUC. The definition of IE 

has broadened gradually to include many types of tasks that differ in their complexity, 

amount of resources used, training methodologies, etc. Recent approaches to IE also 

include incorporating machine-learning, including global information into IE systems 

than was possible with hand-crafted pattern based approaches.  

     Tim Bernes-Lee, inventor of the World Wide Web WWW, refers to the existing 

Internet as a document web. The Internet has a vast amount of data available but is very 

hard to manipulate and analyze by computers as it is in unstructured form. The task of IE 

is to transform this unstructured data into something that can be understood and 

manipulated. IE, therefore, is the process of extracting sub-sequences of text from this 

human-readable text form to populate some sort of a data base. 

     There are many approaches to IE, some of which are Hand-written regular 

expressions, pattern matching, use of classifiers such as Naïve Bayes, sequence models 

like Hidden Markov Models, Chained Markov Models, Conditional random fields, etc.  

     In this thesis, we use Hidden Markov Models for Information Extraction (IE). The 

inspiration to use HMMs came from Dayne Freitag and Andrew McCallum [1]. Their 

experiments were based on two real world data sets; on-line seminar announcements and 

Reuter’s newswire articles on company acquisitions. As HMMs have strong foundations 

in statistical theory there are many established techniques for learning the parameters of 

the HMM from labeled training data. Freitag and McCallum [1] got impressive results 
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when using HMMs for their specific tasks. The design of the HMM models used by them 

have the following characteristics: 

• Each HMM extracts just one type of field. When multiple fields are to be 

extracted from the same document, a separate HMM is constructed for each field. 

• The entire document is modeled without any pre-processing to segment the 

document into smaller parts. The entire text of the training document is used to 

train transition and emission probabilities. 

• They contain two kinds of states – background states and target states. Target 

states are intended to produce the tokens we want to extract. 

• The models of the HMM are not fully connected. The restricted structure captures 

the context that helps improve extraction accuracy. 

     The problem discussed in this thesis is to extract acronyms and their definitions 

(available in the same text) from a collection of documents (not necessarily from the 

same context). An HMM is designed for this specific purpose and the model is trained 

using labeled training data. 

     The problem is one that has been done before using an inexact pattern matching 

algorithm applied to text surrounding the possible acronym [3]. A lexicon is not used to 

validate words that are picked up by the program which essentially means that the 

spelling of the word is of little consequence to us. The Acronym Finder program consists 

of four phases namely initialization, input filtering, parsing the remaining input into 

words, and the application of the acronym algorithm. 
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Initialization  

     The input of the algorithm is composed of several lists of words, with the text of the 

document as the final input stream. These inputs are: 

• A list of stopwords – words like “the”, “and”, “of”, that are insignificant parts of 

an acronym. These need to be distinguished from other words that make good 

matches for the acronym definitions. 

• A list of reject words – words in the document that resemble acronyms but are 

words that are frequent in any document and that are known not to be acronyms. 

For e.g. “TABLE”, “FIGURE”, Roman Numerals. 

• The text of the document to be searched. 

Filtering the input 

     The input stream is preprocessed to remove lines of text that consists of words that are 

all uppercase (e.g. headings, titles). Identify a candidate acronym and compare it against 

the list of reject words. Once it is elected as a candidate a context window is selected 

around it. The text window is divided into two sub-windows, the pre-window and the 

post-window. The length of the sub-window is twice the number of characters in the 

acronym. 

Word parsing 

     In order for the algorithm to work efficiently different types of words have to be 

identified and a priority should be assigned to each one of them. Stopwords (s) are 

normally ignored in traditional text but they can sometimes be part of the acronym. 

Precedence should be given to non-stopwords over stopwords in the matching process. 

Hyphenated words are a special case of words in which either the first letter of the word 
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(H) or every first letter of the hyphenated set of words (h) correspond to the acronym. 

Both cases need to be tested to find the best match. Acronyms (a) can themselves be part 

of the definitions of other acronyms. It is therefore necessary to see if the acronym that is 

part of the definition is the same or a different one. Words apart from the ones that have 

been defined are normal words (w).  

     When parsing the subwindow two symbolic arrays are generated; the leader array 

consisting of the first letter of every word and the type array that is composed of the type 

(defined above) of every word. 

Applying the algorithm 

     The algorithm identifies a common subsequence of the letters of the acronym and the 

leader array to find a probable definition. For two sequences X and Y, we say that a 

sequence Z is a common subsequence of both X and Y. For example, X = ��	
�	� and 

Y =	
��	�� , then 
	� is a common subsequence of X and Y of length 3. Notice that the 

subsequence need not necessarily be together, there can be characters in between. It must 

be ensured while deriving the subsequence, the order of occurrence of the characters 

should be maintained as in the original strings. Observe that 	
	� and 	
�	 are also 

common subsequences of length greater than 4. The longest common subsequence (LCS) 

of any two strings is a common subsequence with the maximum length among all 

common subsequences. The length of the longest subsequence c[i,j]; where ‘i’ is the 

length of the prefix of a string, say X and ‘j’ is the length of the prefix of the comparison 

string, say Y; can be found recursively using the formula 


�
, �� �  � 0 
� 
 � 0, � � 0
�
 � 1, � � 1� �  1  
� 
, � � 0 	�� �� � ��max �
�
, � � 1�, 
�
, � � 1� 
� 
, � � 0 	�� ��  ��
! 



9 

 

Example 

Consider the text:  

The displays use arrays of Organic Light Emitting Diodes OLED to project the image 

onto a screen contained within the armor much like a rear projection TV. 

The pre-window of the acronym OLED is: 

displays use arrays of Organic Light Emitting Diodes 

leader array [d u a o o l e d] 

type array [w w w s w w w w] 

acronym is [o l e d] 

The length of the LCS obtained by the algorithm is 4 using the equation defined above.  

Index for acronym is  

o – 1 

l – 2 

e – 3 

d– 4 

Indices for the pre-window will be: 

d – 1 

u - 2 

a - 3 

o - 4 

o - 5 

l - 6 

e - 7 



10 

 

d - 8 

 j 0 1 2 3 4 5 6 7 8 

I  yj D u a o o l E d 

0 xi 0 0 0 0 0 0 0 0 0 

1 o 0 0 0 0 1 1 1 1 1 

2 l 0 0 0 0 1 1 2 2 2 

3 e 0 0 0 0 1 1 2 3 3 

4 d 0 0 0 0 1 1 2 3 4 

Figure 1: Dynamic Programming Algorithm for equation c�i, j� 
 

The arrows in the figure indicate how the current value in the cell was selected i.e. if 

value chosen was one among 
�
 � 1, � � 1� �  1, 
�
 � 1, �� or 
�
, � � 1�. 
     The acronym finder algorithm produces all ordered arrangements of indices for all 

possible subsequences. In our example, the two possible ordered pairs are 

(1,4), (2,6),(3,7),(4,8) 

(1,5), (2,6),(3,7),(4,8) 

     These indices are used to construct a vector notation of the possible definitions of the 

acronym. The vectors of the example we have chosen will be: 

[0 0 0 1 0 2 3 4] 

[0 0 0 0 1 2 3 4] 

     The last part of the algorithm selects the appropriate definition from the vectors that 

were generated. This is done by evaluating the candidate definitions for the number of 

stopwords that are part of the definition, the number of words in the acronym definition 
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that do not match the acronym, etc. The best possible match for the example we have 

considered is the second vector [0 0 0 0 1 2 3 4].  

     This is so as the first vector considers a stopword to be part of the acronym definition. 

We have discussed that a stopword has lower precedence as compared with a normal 

word. The definition of the acronym OLED is hence Organic Light Emitting Diode. 
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CHAPTER 3 

ALGORITHMS 

In statistics and machine learning, the most important decision to be made is the selection 

of the model among different mathematical models to best describe the data set. Our 

choice of Hidden Markov Models (HMM) to model data for the task of Information 

Extraction was made easy by the study of Dayne Freitag and Andrew McCallum [1]. This 

chapter explains HMM and also describes the algorithms that we used to extract 

acronyms and their definitions. 

3.1 Hidden Markov Models 

Consider a system that has N distinct states S1, S2, S3….Sn. The system undergoes a change 

of state at regularly spaced time intervals according to a set of probabilities associated 

with that state. These probability distributions govern the manner in which the system 

evolves over time. Such a system is referred to as a stochastic process. To predict the 

probability of the next state that would be traversed, a full description of the system 

would be required; that is the specification of the current state along with all the 

predecessor states. This system is otherwise known as a Markov model.  

"#�$% �  &�|$%() � &� * $%(+ � &, * … * $. � &/0  
     An order 0 Markov model is one that takes no consideration of the history. It is 

commonplace to say that an Order 0 Markov model has “no memory”. 

"#�$% � &�0 �  "#�$%1 � &�0 for t and t’ in a sequence.  

     A first order Markov model has a memory size of 1. So the probability of being in 

state Si at a time t depends on the state Sj at time t-1.  
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"#�$% � &�|$%() � &�0 

An order ‘m’ Markov model is said to have a memory size of m. So the probability of the 

current state depends on m number of previous states. 

     The processes explained above could be called observable Markov models since the 

output is the set of states at each instant of time, where each state corresponds to an 

observable or physical event. Such a model is very restrictive to be applicable to real 

world problems. A Hidden Markov model is a Markov model where the stochastic 

process produces a sequence of observations output from states of the model but the 

states themselves are not seen. Consider a 3 state Markov model that models the weather 

of a city [7].  

 

Figure 2: State Transition Diagram 

 

The weather on a particular day can be any one of the three states mentioned below 

State 1: Snow 

State 2: Rain 
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State 3: Sunny 

The probabilities associated with the weather changing between these states can be 

written in a matrix as follows 

 Snow Rain Sunny 

Snow 0.4 0.3 0.3 

Rain 0.2 0.6 0.2 

Sunny 0.1 0.1 0.8 

Given these probabilities we can find the probability associated with a sequence of 

weather states such as ‘sunny->sunny->snow->snow->sunny’. The probability is 

evaluated for the observation sequence, 2 �  3&4, &4, &), &), &45  
6�2|78��90 � 6�&4, &4, &), &), &4� 
� 6�&4� : 6�&4|&4� : 6�&4|&)� : 6�&)|&)� : 6�&)|&4 �  
� 0.4 : 0.8 : 0.3 : 0.4 : 0.1 �assuming that initial probability of S3 is 0.40 
� 0.00384 
To someone who is oblivious to the weather conditions, because he is confined to a small 

closed space, it is possible to draw inferences on the weather based on the way his visitor 

is dressed i.e. if the guest is wearing a coat (C) or not (D). Consider the probability that 

the visitor wears a coat is 0.1 on a sunny day, 0.3 on a rainy day and 0.7 on the day it 

snows. Finding the probability of a certain type of weather qi can be based on the 

observation xi. The conditional probability 6�$�|M�0 can be written according to Bayes’ 

rule as 

6�$�|M�0 �  6�M�|$�06�$�06�M�0  
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or for n days, the weather sequence N �  3$), … . , $O5, as well as the sequence of 

observations � �  3M), … . , MO5 as 

6�$), … . , $O|M), … . , MO0 �  6�M), … , MO|$), … . , $O06�$), … , $O06�M), … , MO0  

using the probability 6�$), … , $O0 from above and 6�M), … , MO0 of seeing a particular 

sequence of coat events. The probability 6�M), … , MO|$), … . , $O0 can be estimated as 

∏ 6�M�|$�0Q�R) , when it is assumed for all i that qi, xi are independent of all xj and qj for all 

j ≠ i. The probability of seeing the visitor wear a coat is independent of the weather that 

we like to predict, so we can disregard 6�M), … , MO0. This measure is now referred to as 

Likelihood. 

     Assume that the person knows that the day he entered confinement was Sunny. The 

visitor on the next day carries a coat with him. Using this information and the 

probabilities it is not difficult to analyze what the weather most likely weather condition 

outside is. This evaluation is done as follows: 

Likelihood that the second day is sunny 

�  6�M+ � S|$+ � &40. 6�$+ � &4|$) � &40 

� 0.1 : 0.8 � 0.08 

Likelihood that it is raining on the second day is 

� 6�M+ � S|$+ � &+0. 6�$+ � &+|$) � &40 

� 0.3 : 0.1 � 0.03 

Likelihood that it is snowing on the second day is 

� 6�M+ � S|$+ � &)0. 6�$+ � &)|$) � &40 

� 0.1 : 0.7 � 0.07 
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The highest of these probabilities is 0.08. From the result obtained we find the highest 

probability is associated with Sunny weather even though the visitor brings a coat with 

him.  

     Formally said, it is possible to find the sequence of physical events when a string of 

observations generated by these events is available with the use of Hidden Markov 

models. Now that we have understood the basic idea behind HMMs, we delve into some 

of the specifics.  

     An HMM is characterized by a 5-tuple (S, V, π, A, B0, where  

• S is a finite set of N states 3X), … , XO5. Although the states are hidden, for many 

practical applications there is some significance associated to the states of the 

model. 

• V is the set of M distinct symbols in the vocabulary of an HMM. The M 

observation/emission symbols correspond to the physical output of the system 

being modeled. 

• Y �  3Y�5 are the initial state probabilities where Y� � 6�$) � &�� and 1 Z 
 Z [ 

• \ �  ]	��^ are the state transition probabilities where  

	�� � 6_$%`) � &�|$% � &�a, when 1 Z  i, j Z  N. 

• c �  ]���8,0^ are the emission probabilities. The observation symbol probability 

distribution in state 
 is c �  3���d05, where ���d0 � 6�38, 	e e|$% � &�5� and 

1 Z 
 Z [ and 1 Z d Z 7.  

We use f � �\, c, Y0 to denote the complete parameter set of the HMM. The constraints 

on the HMM are  
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g Y� � 1 �8# 1 Z 
 Z [Q
�R)  

g 	�� � 1 �8# 
 � 1,2, … [Q
�R)  

g ���8,0 � 1 �8# 
 � 1,2, … [i
,R)  

For the model to be useful in real world applications, three problems need to be 

addressed. These problems are: 

1. Evaluation: Evaluating the probability of an observed sequence of symbols 2 �
8)8+ … 8j �8�k l0, given a particular HMM, i.e. "�2|f0. 

2. Decoding: Finding the most likely sequence of states for the observed sequence. 

Let q = q1q2...qT be a sequence of states. We want to find 

$: � 	#mn	Mo"�$|2, f0. 

3. Training: Adjusting all the parameters λ to maximize the probability of 

generating an observed sequence, i.e., to find f: � 	#mn	Mp"�2|f0. 

In this thesis, we solve problem 2 with the help of the Viterbi algorithm and problem 3 

using Maximum Likelihood Estimation (MLE). Problem 1 is not addressed in this study.  

3.2 Viterbi Algorithm 

The Viterbi algorithm is used closely with Hidden Markov Models (HMMs). It is most 

useful when calculating the most likely path through the state transitions of these HMMs 

over time. The motivation behind this algorithm arises from the fact that, given [ states 

and q moments in time, calculating the probabilities of all transitions over time would be 
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[j probability calculations. The observation made by Viterbi is that for any state at 

time e there is only one likely path to that state. Therefore, if several paths converge at a 

particular state at a time e, instead of recalculating them all when calculating the 

transitions from this state to states at time e � 1, the less likely paths can be discarded 

and the most likely paths used. When this is applied, it reduces the number of 

calculations to q : [+ which is of lesser complexity than the method discussed earlier. 

     To illustrate how the algorithm finds the shortest path, we need to represent the 

process pictorially. This can be done in a trellis diagram (Figure 3). In a trellis, each node 

corresponds to a distinct state at a given time $%, and each arrow represents a transition 

	�� to some new state at the next instant of time. The most important aspect of the trellis 

diagram is that for every possible state sequence there is a unique path through it.  

 

Figure 3: Trellis Diagram 
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     The idea of the Viterbi algorithm is to find the most probable path for each 

intermediate state and finally for the terminating state in the trellis. At each time only the 

most likely path leading to each state survives. For an HMM with [ states the Viterbi 

algorithm has 4 phases namely Initialization, Recursion, Termination and Backtracking. 

This makes requires us to define two variables: 

rO�
0 is the highest likelihood of a single path among all the paths ending in state X� at a 

time �.  

rO�
0 �  maxos,ot,…,ouvs,ou "�$), $+, … . , $O(), $O � X�, M), M+, … , MO|20 

and a variable wO�
0 which allows us to keep track of the ‘best path’ ending in state X� at 

a time �. 

wO�
0 �  argmaxos,ot,…,ouvs,ou "�$), $+, … . , $O(), $O � X�, M), M+, … , MO|20 

 

1. Initialization 

r)�
0 �  Y�. ��,xs , 
 � 1, … . , [ 

w)�
0 �  0 

where Y� is the probability of being in state 
 at a time � � 1. 

2. Recursion 

rO��0 �  max)y�yQ�rO()�
0. 	��0. ��,xu, 2 Z 
 Z [ and 1 Z � Z [ 

wO��0 �  max)y�yQ�rO()�
0. 	��0 , where 2 Z 
 Z [ and 1 Z � Z [ 

3. Termination 

":��|20 �  max)y�yQ rQ�
0 

$Q: � arg maxy�yQ rQ�
0 
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Find the best likelihood when the end of the observation sequence e � q is 

reached. 

4. Backtracking 

N: � 3$):, … , $Q: 5 so that $O: �  wO`)�$O`): 0, � � [ � 1, [ � 2, … ,1 

In this phase the best sequence of states is got from the wO vectors. 

An example of how the algorithm works in the HMM we have designed is explained later 

in this chapter. 

3.3 Maximum Likelihood Estimation (MLE) 

The idea behind Maximum Likelihood estimate is to determine the parameters that 

maximize the probability or likelihood of the sample data. MLE methods are considered 

to be robust and versatile and so they are used for most models and for different types of 

data. Using Maximum Likelihood estimation with HMMs to determine the parameters of 

the model from labeled training data is also known as Supervised Training. 

     The process of computing the statistical parameters of an HMM involves the 

calculation of emission probabilities and the transition probabilities that are associated 

with states. The underlying sequence of states associated with the data is known by the 

trainer. It is possible to find the number of distinct states associated with the HMM by 

parsing the file that is used for training purposes. To estimate the parameters of the HMM 

we maintain a count of the transitions that are seen between states for all the possible 

combinations of states and also maintain counts for the number of times symbols 

belonging to the defined HMM vocabulary are generated from states. This count is later 

used to estimate emission and transition probabilities. 
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q#	�X
e
8� 6#8�	�
9
ez, 	�� �  �{n��# 8� e#	�X
e
8�X �#8n Xe	e� X� e8 Xe	e� X��{n��# 8� e#	�X
e
8�X �#8n Xe	e� X�  

|n
XX
8� "#8�	�
9
ez, ���d0
�  �{n��# 8� e
n�X e}� Xzn�89 d 
X m���#	e�� �#8n Xe	e� X�e8e	9 �{n��# 8� Xzn�89X m���#	e�� �#8n Xe	e� X�  

     Maximum Likelihood estimation assigns a zero probability to state transitions and 

state-emission combinations that are unseen in the training data. This problem if left 

unchecked can cause erroneous results. It is most often handled with the use of some type 

of Smoothing technique. In this study, we use Absolute discounting and this is explained 

in chapter 5.  

     It must be noted that the restrictions in transition topology placed on the design are 

reflected in the parameters of the model only if the document is tagged/labeled 

appropriately.  
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CHAPTER 4 

DESIGN 

The design of the HMM to extract acronyms with their definitions is similar to the design 

chosen by Frietag and McCallum [1] to model two data sets namely, online seminar 

announcements and Reuter’s newswire articles on company acquisitions. The HMM 

model for acronyms has 4 states: 

• Prefix (0) 

• Acronym (1) 

• Definition (2)  

• Suffix (3) 

The states of special consequence are the Acronym and the Definition state. These states 

are also called the target states; the words that are generated by them are candidate 

acronyms and candidate definitions respectively. To capture context certain restrictions 

have been placed on the transitions between states. This is illustrated in the figure below 
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Figure 4: HMM for Acronyms and their Definitions 

 

     As can be seen from the figure, the HMM is not entirely ergodic. While tagging data 

to train the HMM model (for calculating probabilities) it is important to keep the 

topology of transitions in check. In the event that acronyms occur in quick succession the 

target states can transition to the prefix state without traversing to suffix states. It is 

however not possible to reach target states from the suffix state, the transition must 

happen through the prefix state. The rules states above are what the model implies. 

     It has been stated in section 3.1 that an essential part of an HMM is a definition of its 

emission vocabulary. The vocabulary associated with the acronym finder HMM consists 

of three symbols, each of which represents a type of word. The symbols are 

• A – for the acronym that is made of all uppercase letters 



24 

 

• D – for possible definition of the acronym that starts with an uppercase letter 

• n – for all other words in the text. 

     The document collection is first pre-processed before it can be used in the learning 

module or the decoding module. This processing is explained clearly in the next chapter. 

When the document collection (pre-processed) is parsed by the routines; every word in 

the document is translated to one of the above symbols. The routines that have been 

written do not capture context or semantics; they are only concerned with the sequences 

of symbols the words translate to. 

     Maximum Likelihood Estimate (MLE) is calculated on a tagged document of words, 

rather symbols with states. The probabilities that are calculated in this manner are 

transition probabilities between all combinations of states and symbol emission 

probabilities associated with every state. Initial probabilities are set by hand. Let us 

consider the following statement 

The example explains how Maximum Likelihood Estimate (MLE) works in our thesis. 

Preprocessing and tagging this statement would result in a sequence such as the one 

shown below. 

The 0 

example 0 

explains 0 

how 0 

Maximum 2 

Likelihood 2 

Estimate 2 
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MLE 1 

works 3 

in 3 

our 3 

thesis 3 

     The routine that uses Maximum Likelihood Estimation (MLE) reads this file one line 

at a time. The very first thing that is done by the routine is the translation of words into 

one of the defined emission symbols. The routine keeps track of the current state and the 

previous state and keeps a count of the number of times the combination is encountered 

in the file. In the example that is considered it can be seen that the transition from state 0 

to state 0 happens 3 times and the total number of transitions from state 0 in the text is 4. 

The probability associated with the transition from state 0 to state 0 is therefore 0.75. In a 

manner similar to what is described the emission of symbol ‘n’ from state 0 happens 3 

times in our example and the symbol ‘D’ is generated once from state 0. The probability 

associate with the state 0 for emitting symbol ‘n’ is the number of times symbol ‘n’ is 

emitted from state 0 divided by the total number of emissions from state 0 i.e. 0.75.  
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Figure 5: Sample set of probabilities 

 

     The Viterbi algorithm uses these probabilities to find the best sequence of states for 

the input string. Consider another example statement: 

this example shows how the Acronym Finder Program AFP works. 

Step 1: Initialization 

n = 1, emission vocabulary = n 

r.�00 �  Y.. �~��0 �  0.7 : 0.870133 � �. �������     w.�00 �  0 

r.�10 �  Y). �)��0 �  0.15 : 3.06805 :  10(� � 0.4602075 : 10(�    w.�10 �  0 

r.�20 �  Y+. �+��0 �  0.15 : 0.101324 � 0.0151986    w.�20 �  0 



27 

 

r.�30 �  Y4. �4��0 �  0 : 0.900427 � 0    w.�30 �  0 

Step 2: Recursion 

n = 2, emission vocabulary = n 

r)�00 �  max�r.�00. 	.., r.�10. 	)., r.�20. 	+., r.�30. 	4.0. �.��0      
� max�0.06497379 : 0.97688,0.4602075 : 10(� : 0.161549,0.13379775

: 0.00398397,0 : 0.6538650 0.870133 

� max�0.063471, 0.074340 : 10(�, 0.000533, 00 0.870133 

� �. ������� 

����0 �  � 

r)�10 �  max�r.�00. 	.), r.�10. 	)), r.�20. 	+), r.�30. 	4)0. �)��0      
� max�0.06497379 : 0.000740,0.4602075 : 10(� : 3.07654 : 10(�, 0.13379775

: 0.250497,0 : 2.5640 : 10(�0 3.06805 : 10(� 

� max�0.0000480, 1.4158467 : 10()., 0.0335108, 00 3.06805 : 10(� 

� 0.1028 : 10(� 

w)�10 �  2 

r)�20 �  max�r.�00. 	.+, r.�10. 	)+, r.�20. 	++, r.�30. 	4+0. �+��0      
� max�0.06497379 : 0.0223791,0.4602075 : 10(� : 0.0615617,0.13379775

: 0.741535,0 : 0.0006435830 0.101324 

� max�0.001454, 0.0283311 : 10(�, 0.0992157, 00 0.101324 

� 0.01005 

w)�20 �  2 

r)�30 �  max�r.�00. 	.4, r.�10. 	)4, r.�20. 	+4, r.�30. 	440. �4��0      
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� max�0.06497379 : 7.3978 : 10(�, 0.4602075 : 10(� : 0.776898,0.13379775
: 0.00398397,0 : 0.9339670 0.900967 

� max�0.48066 :  10(�, 0.357533 : 10(�, 0.0005330, 00 0.900967 

� 0.00048045 

w)�30 �  2 

n=3, emission vocabulary = n 

r+�00 �  max�r)�00. 	.., r)�10. 	)., r)�20. 	+., r)�30. 	4.0. �.��0      
� max�0.0552282 : 0.97688,0.1028 :  10(� : 0.161549,0.01005

: 0.00398397,0.00048045 : 0.6538650 0.870133 

� �. ������ 

����0 �  � 

r+�10 �  max�r)�00. 	.), r)�10. 	)), r)�20. 	+), r)�30. 	4)0. �)��0 

� max�0.0552282 : 0.000740,0.1028 : 10(� : 3.07654 :  10(�, 0.01005
: 0.250497,0.00048045 : 2.5640 :  10(�0 3.06805 :  10(� 

� 0.0077238 : 10(� 

w+�10 �  2 

r+�20 �  max�r)�00. 	.+, r)�10. 	)+, r)�20. 	++, r)�30. 	4+0. �+��0      
� max�0.0552282 : 0.0223791,0.1028 : 10(� : 0.0615617,0.01005

: 0.741535,0.00048045 : 0.0006435830 0.101324 

� 0.0007551 

w+�20 �  2 

r+�30 �  max�r)�00. 	.4, r)�10. 	)4, r)�20. 	+4, r)�30. 	440. �4��0      
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� max�0.0552282 : 7.3978 : 10(�, 0.1028 : 10(� : 0.776898,0.01005
: 0.00398397,0.00048045 : 0.9339670 0.900967 

� 0.0004042 

w+�30 �  3 

The recursion step continues till n=10 for all emission symbols in the same manner as 

above.  

From the values calculated this far, we can see that r.�00, r)�00 and r+�00 have the 

highest probabilities in their group. So backtracking would give us the sequence w+�00 �
 0, w)�00 �  0 of states and the start state is 0. When we run the example through the 

decoding module of our program we get: 

this 0 

example  0 

shows  0 

how  0 

the  0 

Acronym  2 

Finder  2 

Program  2 

AFP  1 

works  3 
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CHAPTER 5 

IMPLEMENTATION 

The program that was written to discover acronyms with their definitions was written 

entirely in C++. The features that were implemented include a routine that strips the input 

file off any punctuation, the decoding algorithm called Viterbi algorithm that finds the 

best sequence of states for the input file, the algorithm that learns the parameters of the 

HMM (Maximum Likelihood Estimation), the routine that ascertains the type of the input 

word and also the function that estimates the smoothing constant for the purpose of 

absolute discounting. In this chapter we explain the various modules of our program in 

detail. 

     The program consists of three C++ files; one is the main file that analyzes the 

command line arguments and determines the action to be performed, the second file 

contains all method and variable declarations and the other consists of the definitions of 

the same. The program consists of two modules namely, 

• Learning Module 

• Decoding Module 

Before we explore each of these modules in greater detail we talk about the aspects that 

are common to both. To run the program certain command line arguments need to be 

specified. They are: 

• The first argument is a symbol that signifies the module to be invoked. 

• The second is the number of states that are in the HMM. 

• The third is the file that contains the probability distributions associated with the 

HMM (determined while learning and used while testing). 
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• The fourth is the name of the test file or the tagged training file. 

• The fifth argument specifies the name of the output file. 

     The number of states of the HMM are determined during our design phase. The 

documents that are used for training and testing/decoding require to be pre-processed by 

a routine that removes punctuation marks and transcribes white space characters into new 

line characters. 

5.1 Learning Module 

The main goal of this module is to use Maximum Likelihood estimation to determine the 

transition probabilities between states of the HMM and symbol emission probabilities 

associated with each state. The module is invoked by passing the right set of command 

line arguments.  

     Preparing the tagged training document file is the very first step. As has been 

mentioned, the documents are collected and pre-processed. The file is manually tagged 

with one of four states ensuring that the topology of transitions is not violated. This 

completed tagged file is uploaded into the directory where our code is placed. 

     The document is parsed one line at a time. Every line of the tagged document has two 

entries – the word and the state that it corresponds to. The word is translated into one of 

the emission symbols in the following manner: 

• If the word starts with a capital letter and is followed by smaller case letters, it is 

translated to the symbol ‘D’ 

• If the word comprises of only capital letters, it is translated to the symbol ‘A’ 

• Any other word is translated to the symbol ‘l’ 
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     The symbols and the state are assigned to a character and an integer variable 

respectively. Counters are set up to keep an account of the number of times the 

combination of the symbol and the state are encountered and the number of times the 

transition from the previous state to the current state is seen in the training document. The 

counters are incremented by 1 every time. The routine also keeps track of counters that 

are used to normalize the probabilities. This runs till all the lines of the input training file 

are read. 

     A function is called after counting the number of transitions encountered and the 

number of times the symbols are emitted from states. This function calculates the actual 

probabilities by using the formulas we have discussed in Chapter 3.  

These formulae are implemented as they have been discussed but the code would only be 

useful for a very short sequence of symbols. This is because many quantities would get 

extremely small as the sequence gets longer. This problem could be addressed in two 

ways: 

• Normalization, and 

• Working on the logarithm domain 

Working with logarithm would mean conversion of the product of small quantities into a 

sum of the same small probabilities. The logarithm domain is not the best alternative for 

counting, normalization is an easier method to solve the underflow problem for 

Maximum Likelihood estimate. A smoothing constant is calculated depending on the 

number of states that are in our HMM. The smoothing constant is one-thousandth of the 

number of states. The probabilities are calculated by adding this calculated constant to the 

counter and dividing this sum by a sum of the product of the number of states and 
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smoothing constant and the normalization counter for every state. The formulae are 

written below:  

State transition probability, A[i][j] between state i and j is calculated as 

\�
���� �  Xn88e}
8�Xe	�e �  S8{�e�#\�
����[ : Xn88e}
8�Xe	�e � [8#n\�
�  

Symbol emission probability of symbol ‘j’ from state ‘i’ is 

c����
� �  Xn88e}
8�Xe	�e � S8{�e�#c����
�&�7[�7 : Xn88e}
8�Xe	�e � [8#nc�
� 
SYMNUM is a constant that is defined in the header file that is assigned to an integer 

number 94. The symbol ‘j’ in the above formula corresponds to the ASCII value of the 

character. The list of symbols we consider is shown in Table 1. Symbol emission 

probabilities are calculated for each of these symbols in our code although the symbols 

that are relevant to us are only just 3 as we have explained. The code is built to 

accommodate other HMM designs with a different number of states and different 

emission vocabulary sets. 

     The probabilities that are calculated are written to the file whose name is specified in 

one of the command line arguments. The initial probabilities were later added in the file 

manually after making assumptions about the most probable initial states. It was decided 

that these probabilities would be set by hand as most often the initial state is a prefix state 

in a document which would result in zero probabilities for the other states. 
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5.2 Decoding Module 

The main objective of this module is to find the best possible sequence of states for the 

sequence of words belonging to documents that are isolated for the  

Decimal ASCII Decimal ASCII Decimal ASCII Decimal ASCII Decimal ASCII 

33 ! 53 5 73 I 93 ] 113 Q 

34 “ 54 6 74 J 94 ^ 114 R 

35 # 55 7 75 K 95 _ 115 S 

36 $ 56 8 76 L 96 ` 116 T 

37 % 57 9 77 M 97 a 117 U 

38 & 58 : 78 N 98 b 118 V 

39 ‘ 59 ; 79 O 99 c 119 W 

40 ( 60 < 80 P 100 d 120 X 

41 ) 61 = 81 Q 101 e 121 Y 

42 * 62 > 82 R 102 f 122 Z 

43 + 63 ? 83 S 103 g 123 { 

44 , 64 @ 84 T 104 h 124 | 

45 - 65 A 85 U 105 i 125 } 

46 . 66 B 86 V 106 j 126 ~ 

47 / 67 C 87 W 107 k   

48 0 68 D 88 X 108 l   

49 1 69 E 89 Y 109 m   

50 2 70 F 90 Z 110 n   

51 3 71 G 91 [ 111 o   

52 4 72 H 92 \ 112 p   

Table 1: Characters and their ASCII codes 
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purpose of testing. The decoding algorithm used is the Viterbi algorithm and the 

probabilities required by it, state transitions and symbol emission probabilities for every 

state, are calculated in the previous module. The inputs required are the name of the file 

in which the number of states and probabilities associated with the HMM are present 

along with the name of the file that needs to be tested against the model. The names of 

these files are passed as command line arguments when the module is invoked. 

     It must be ensured that the test file is preprocessed in the manner that has been 

described before it is used in further processing. The probabilities associated with the 

HMM model must first be saved into appropriate data structures. The number of states is 

read and assigned to an integer variable. The initial probability associated with each state 

is stored in a one-dimensional array, while the transition probabilities and symbol 

emission probabilities are placed in two-dimensional arrays. 

     Maximum Likelihood Estimation assigns a probability of zero to unseen emission – 

state combinations in the training file. This is potentially harmful to the decoding process 

and requires to be addressed. The problem is resolved by using a concept called absolute 

discounting. Absolute discounting involves subtracting a small amount of probability p 

from all symbols assigned a non-zero probability at a state s. Probability p is then 

distributed equally over symbols given zero probability by the Maximum Likelihood 

estimate. If v is the number of symbols that are assigned non-zero probability at a state s 

and N is the total number of symbols, emission probabilities are calculated by 

6��|X0 �  � 6��|X0�/ �  "      
� 6��|X0�/ � 0�"[ � �                      8e}�#�
X�             ! 
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There is no best way to calculate the value of p. We calculate a value proportional to the 

non-zero emission probability MLE assigned to the state. The manner in which the 

concept is implemented in our code is explained below. 

     Once all the values are read from the probabilities file, we iterate through the arrays 

making note of the indices of the values that are assigned a zero probability. Similar to 

the calculation that is used in the learning module, a function is called and the smoothing 

constant is determined. The arrays are iterated through once again and for every entry we 

calculate the portion that is to be subtracted from itself. A function is called to calculate 

this portion and the parameters we pass to this function are the current probability 

associated with the state and the smoothing constant that was determined in the previous 

step. The function returns a value of type ‘double’ which is then subtracted from the 

current probability. The returned values are added to a variable to record the overall sum.. 

This sum is then evenly distributed among the entries that were observed to have zero 

entries. 

     Absolute discounting is also used to smooth the transition probabilities as well as 

initial probabilities to ensure that zero entries have no negative effects on the code. The 

process is the same as the one described above. The program is built to handle large 

amounts of data and to overcome the problem of underflow (explained in the learning 

module). The decoding algorithm is done entirely in the logarithm domain as opposed to 

the use of normalization. 

     The working of the Viterbi algorithm is already discussed in chapter 3. The 

implementation of the algorithm is done in much the same way. Two composite data 

types: struct data types are declared to handle the complex nature of the task involved. 
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One struct type is used to keep track of the path that has been taken to get to the current 

state. It has an integer member variable that stores the current state and another member 

of the same struct type that holds the path; that is, the best sequence of states to get to the 

state previous to s. Another struct type is used for the implementation of the trellis 

diagram (The significance trellis diagram has been explained in Chapter 3). This 

composite data type keeps track of the best path, the probability of the best path and the 

probability once the path is extended to include the current state. 

     As we are working on the logarithmic domain, the product of two values is converted 

to the sum of the logarithm of the same values. Two arrays of objects are created for each 

of the struct types. One keeps track of the current best path till the current state and the 

other records trellis information for every state. The input file is read one line at a time. 

Once a word is read the first task is to translate these words into one of our emission 

symbols. The default character is the symbol set aside for a normal word; this is used 

when the input word does not fall into any one of our defined categories.  

     The very first step in the algorithm is to determine the best possible start state. The 

sum of the logarithms of the initial probability for every state and the emission 

probability of the symbol associated with the same state results in a probability. This 

value is assigned to the member variable of the trellis data type that records the 

probability of the path. In this manner start probabilities of every state are recorded.  

   e#�99
X�
�. "# �  98m10���
�0  �  98m10�c�
����M��
�0 where I[i] is the probability 

that i is the start state and B[cIndex][i] is the emission probability of cIndex (ASCII value 

of symbol) associated with state i. 
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     In the recursion phase of the Viterbi algorithm we build our trellis diagram to find the 

best way to get from one state to the next for the observed data. A temporary variable is 

used to store the best ‘From’ state; this is required to resolve contention. Nested ‘for’ 

loops are used to find the best sequence of states and the probability associated with 

every combination of the same to determine the most likely transition. The value is a sum 

of the logarithms of the probability calculated in the previous step, the transition 

probability between the previous state and the current state and the emission probability 

associated with the symbol (type of next word that is read) from the current state. The 

new probability and the best ‘From’ state are recorded in the object that is created to hold 

the best possible values for the states in question. All the words in the document are put 

through the same process with the use of a while loop.  

 e}
X6# �  e#�99
X���. "# �  98m10�\����
�0  �  98m10�c�
����M��
�0  where trellis[j].pr 

is the probability associated with the current path till state j, A[j][i] is the transition 

probability from state j to state i and B[cIndex][i] is the same as in the equation above. 

     The best path is extracted from the array of trellis objects created, by using an iterator 

object on it. The result of the decoding process is a file (if specified) that has the string of 

words and the state to which they belong listed adjacent to them.  

     The output file is then analyzed to determine how well the HMM model performed. 

The evaluation measures and findings of our experiment are explained in the next 

chapter.  
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CHAPTER 6 

EXPERIMENTS 

Following the phases of the software development life cycle the problem description was 

provided in Chapter 1, the design was explained in Chapter 3 and the code explained in 

Chapter 4. This chapter talks about the experiments that were conducted to evaluate the 

performance of the HMM model. 

     To build an HMM model that generalizes well and has high accuracy it is important to 

gather large amounts of data for training. The better trained the model is, the better the 

model performs against new data sets. As there are no pattern matching algorithms and 

regular expression matching algorithms in place, it is not possible to work with context 

windows for possible acronym occurrences. There is therefore a requirement for large 

amounts of data across different domains for the Maximum Likelihood Estimate (MLE) 

to provide the set of probabilities that are associated with HMMs. Different domains 

ensure the use of acronyms with their definitions in various patterns. Every author has 

their own pattern of writing and when these authors are picked from different domains, 

their writing styles seldom coincide; this allows the HMM to train on different types of 

data sets. 

    To achieve what has been explained, a set of 200 documents were randomly collected 

from various articles available on the Internet. The only pre-requisite that was to be 

satisfied by every file was the occurrence of at least one acronym with the definition in its 

vicinity. The collection of documents was divided into two categories. One set of 100 

documents were used to train the HMM model and the other was used to test the same 

model so as to evaluate the performance of the HMM model that was designed. In this 
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study we discovered that one of the easiest ways to collect data was with the help of the 

glossary of acronyms defined for a specific area of study. For example, from the Glossary 

of Education Terms and Acronyms we gathered acronyms and assimilated data as shown 

below. 

 

Figure 6: Sample Data 1 

 

 

Figure 7: Sample Data 2 

 

     Before either set of documents were used further, each of the set of documents were 

put through a pre-process phase. Pre-processing of the training documents and the set of 
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testing documents were conducted separately although the process involved was 

essentially the same. The decision to make the tradeoff between saving time and accuracy 

makes the results of the experiments credible. A routine was written to do two tasks; strip 

the document collections of any punctuation and special characters, white space 

characters were replaced with new line characters in order to allow easy tagging and easy 

scanning of the result set. The output of the pre-processing step is a file that has no 

punctuations, no special characters and has only one word per line. 

     The file obtained after pre-processing the 100 documents set aside for training are 

tagged in a simple text editor such as notepad or wordpad. Tagging involves the 

assignment of one of the 4 states to every word in the file which is just writing the state 

adjacent to the word. The decision of the assignment is made by the trainer who is well 

aware of the topology of transitions that the HMM model allows. The tagged file is saved 

as a simple text file with a .txt extension and saved in ASCII encoding. Transition and 

Emission probabilities are calculated by the use of MLE on this file. Initial probabilities 

are set by hand so that all states have a fair chance of being the start state. If MLE were to 

decide these initial probabilities, only the prefix state would be assigned a large 

probability while the others would have a probability closer to zero as documents start at 

the prefix state most often. The output of the learning phase is a file with probabilities 

associated with the HMM model. 

     The 100 documents set aside for testing use the probabilities calculated in the previous 

step. The output of the decoding phase is a file similar in appearance to the training file. 

This file is analyzed by a human observer (not necessarily aware of the design) for words 
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that are tagged with state 1 and 2 as they are candidate acronyms and definitions 

respectively. The file is checked for True Positives, False Positives and False Negatives. 

     Standard measures of Precision, Recall and F1 measure are used to evaluate the 

performance of the HMM.  

Precision is defined as  

6#�

X
8� �  [{n��# 8� q#{� 68X
e
��X[{n��# 8� q#{� 68X
e
��X � �	9X� 68X
e
��X 

Recall is defined as 

��
	99 �  [{n��# 8� q#{� 68X
e
��X[{n��# 8� q#{� 68X
e
��X � �	9X� [�m	e
��X 

F1 measure is  

�1 �  11��
	99 � 16#�

X
8� 

The results obtained as shown in table below. 

True Positive False Positive False Negative Precision Recall F1 

196 16 4 0.9245 0.98 0.95144 

Table 2: Results 

 

  



43 

 

CHAPTER 7 

CONCLUSION AND FUTURE WORK 

The main objective of this thesis is to elucidate that HMMs can be used for the task of 

Information Extraction. Here, we addressed the problem of finding acronyms and their 

definitions using HMMs. We designed an HMM, implemented Viterbi algorithm and 

Maximum Likelihood Estimator in C++ and compared our findings to the Acronym 

Finder Program [3]. The experiment can be concluded as successful and hence it 

establishes that HMMs can be used for the task of extracting relevant information from 

documents. 

     The experiments in this thesis were conducted on a small set of 200 documents. To 

build an HMM that generalizes well and has high accuracy a large amount of data is 

required. Testing the model on a large collection of data and comparing results against 

the ad-hoc algorithm can be performed to establish which of the two methods performs 

better.  
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