
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2011

Finding acronyms and their definitions using HMM Finding acronyms and their definitions using HMM

Lakshmi Vyas
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Theory and Algorithms Commons

Repository Citation Repository Citation
Vyas, Lakshmi, "Finding acronyms and their definitions using HMM" (2011). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 981.
http://dx.doi.org/10.34917/2317640

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/2317640
mailto:digitalscholarship@unlv.edu

FINDING ACRONYMS AND THEIR DEFINITIONS USING HMM

by

Lakshmi Vyas

Bachelor of Engineering, Computer Science
Visvesvaraya Technological University, India

2006

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2011

Copyright by Lakshmi Vyas 2011
All Rights Reserved

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Lakshmi Vyas

entitled

Finding Acronyms and Their Definitions using HMM

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Venkatesan Muthukumar, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

May 2011

iv

ABSTRACT

Finding Acronyms and Their Definitions using HMM

by

Lakshmi Vyas

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

In this thesis, we report on design and implementation of a Hidden Markov Model

(HMM) to extract acronyms and their expansions. We also report on the training of this

HMM with Maximum Likelihood Estimation (MLE) algorithm using a set of examples.

 Finally, we report on our testing using standard recall and precision. The HMM

achieves a recall and precision of 98% and 92% respectively.

v

ACKNOWLEDGEMENTS

There are many people who have had a significant influence on my thesis research work.

While it is not possible to list every contribution, I make an attempt to express my

gratitude to those who have helped make my work a success.

 Dr. Kazem Taghva, my thesis advisor, has been an immense source of knowledge and

motivation. I am eternally grateful for his support, patience and guidance throughout my

thesis study. I have learned so much in the last year of working with him.

 I would like to thank the graduate coordinator, Dr. Ajoy Datta, for his vote of

confidence on everything I have ventured to do during my Masters program. I would like

to convey my sincere appreciation and gratitude to the members of my thesis advisory

committee, Dr. Laxmi P Gewali, Dr. Venkatesan Muthukumar and Dr. Ajoy Datta. Their

ready acceptance to serve on my committee has been a great source of confidence. I

consider myself privileged for the opportunity to work under their guidance.

 My acknowledgements would be incomplete without a mention of the support my

husband and family have given me. I am humbled by their constant faith and

encouragement without which I wouldn’t be where I am today.

vi

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. vii

CHAPTER 1 INTRODUCTION .. 1
1.1 Outline ... 2

CHAPTER 2 INFORMATION EXTRACTION AND AFP EXAPLAINED 3

CHAPTER 3 ALGORITHMS .. 12
3.1 Hidden Markov Models .. 12
3.2 Viterbi Algorithm .. 17
3.3 Maximum Likelihood Estimation (MLE) ... 20

CHAPTER 4 DESIGN .. 22

CHAPTER 5 iMPLEMENTATION ... 30
5.1 Learning Module ... 31
5.2 Decoding Module .. 34

CHAPTER 6 EXPERIMENTS ... 39

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 43

BIBLIOGRAPHY ... 44

VITA ... 46

vii

LIST OF FIGURES
Figure 1 Dynamic Programming Algorithm for equation c�i, j� 10
Figure 2 State Transition Diagram .. 13
Figure 3 Trellis Diagram ... 18
Figure 4 HMM for Acronyms and their Definitions ... 23
Figure 5 Sample set of probabilities ... 26
Figure 6 Sample Data 1... 40
Figure 7 Sample Data 2... 40

1

CHAPTER 1

INTRODUCTION

The thesis discusses a method of Information Extraction called Hidden Markov Models

(HMMs) [6]. Information Extraction can be carried out by the use of HMMS and other

standard approaches such as hand-written regular expressions, Naïve Bayes [12] and

Conditional Random fields (CRF) [13]. The main focus of the thesis is to understand

Hidden Markov Models. It also looks into the working of the Viterbi algorithm and the

use of Maximum Likelihood Estimation (MLE) [14].

 Information Extraction is the task of retrieving structured information from

unstructured or semi-structured documents. More specifically it is the task of extracting

data that is relevant with respect to a category and context from a collection of documents

in a certain domain. We look into the problem of finding acronyms and their definition in

text using the formal method of information extraction i.e. Hidden Markov Models

(HMMs).

 Acronyms are a word formation that is composed of the first letters of words in a

series of words. These acronyms are known to cause considerable confusion to readers

who are unaware of its origins. It is therefore important to ascertain the acronym and

what it stands for. The problem is one that has been studied before [3]. The algorithm [3]

is based on an inexact pattern matching algorithm applied to text surrounding the possible

acronym. Evaluation shows that the algorithm performs well, however, we go on to show

that the use of HMMs for the same task overcomes some of the limitations of the ad-hoc

methodology such as the length of the acronym, use of special characters in the acronym

etc.

2

 The idea of using HMMs to the task of extracting acronyms and their definitions is

based on the significant success it has had to other language related tasks, including

speech recognition [Rabiner 1989], text segmentation and topic detection [van Mulbregt

1998]. Like finite state automaton HMMs are composed of a finite set of states. HMMs

are probabilistic tools that are used to model a sequence of most likely states given an

observation sequence and other model parameters. The probabilities associated with

every state in an HMM model are set using Maximum Likelihood Estimation (MLE) on

tagged documents and the most likely sequence of states for the input data is decided by

the Viterbi algorithm. We evaluate our results by using precision and recall.

1.1 Outline

Chapter 1 looks into Information Extraction in some detail and also explains the working

of the Acronym Finder algorithm [3]. Chapter 2 discusses the working of the Viterbi

algorithm and the statistical method of estimating model parameters using Maximum

Likelihood Estimates (MLE). A detailed account of the design of the HMM model used

for the task and other implementation specifics are discussed in Chapter 3. The methods

used to train the model, test it and an overview of the results obtained is in Chapter 4.

Chapter 5 summarizes and concludes this thesis.

3

CHAPTER 2

INFORMATION EXTRACTION AND AFP EXPLAINED

Information Extraction (IE) [15] can be defined as the task of extracting relevant

information from the actual text of documents. Information Extraction is of great

significance to companies that rely on drawing inferences from data, using transaction

histories and archives of other happenings. Information Retrieval (IR), on the other hand,

is the task of finding relevant documents from a collection of documents. It is likely that

an Information Extraction system built for a specific need is preceded by some

Information Retrieval task to categorize relevant documents from a larger collection.

 A clear distinction between these two processes can be drawn by looking into an

example. A system that classifies incoming emails as ‘Spam’ or ‘Not Spam’ is an

example of an Information Retrieval system. These systems are quintessential in today’s

day and age and categorize email messages into the above mentioned categories by

looking into information encapsulated in the email headers.

 Every email message consists of two parts – the body and the header, used by servers

on the Internet as they deliver the message. The header tells us where the email is coming

from, which route it has come through and the name of the different routing points. The

names of some of these fields are Return-Path, Message ID, X-IP, X-UIDL. The IR

system first tokenizes the header and analyzes these fields in some detail to ascertain if

they are genuine and reliable. Ones that are inferred as Spam are categorized accordingly.

 The system described above does not categorize emails based on the semantics of the

body of content. Features such as Multiple Inboxes, provided by Google, allows a Gmail

user to segregate their inbox. The segregation criteria can be a myriad of things such as

4

the Sender of the email message, the subject line, the priority, the domain name of the

sender’s email ID etc. Such a task is difficult for an IR system but not for an Information

Extraction system. Information Extraction is not a stand-alone task that analysts engage

in. It is an abstraction over a larger task intended to produce results without human

intervention.

 Extracting information from text to understand implicit patterns dates back to the early

days of Natural Language Processing (NLP). In 1979, DeJong from Yale University

developed a system called FRUMP. This NLP system analyzed news stories to generate a

summary for users logged into the system. This system is reminiscent of modern day IE,

since the generated summaries are essentially templates filled in by Fast Reading

Understanding and Memory Program (FRUMP) [16]. DeJong’s system uses hand-coded

rules and the data structure that was populated by the system was called ‘script’, a term

coined by his advisor, Schank. Other early attempts to extract information include the

work of Silva and Dwiggins [17] for identifying information about satellite flights from

multiple text reports. The system that was developed for this was Prolog based.

 To encourage the development of IE techniques, in the late 1980s and early 1990s the

US Government, DARPA, organized a series of Message Understanding Conferences

(MUC) as a competitive task with standard data and evaluation procedures. IE was

separated into several different tasks in later conferences, such as Named Entity (NE)

task, Relation Extraction (RE) task and Scenario Template (ST) task. These conferences

established a competitive environment that enabled rapid transfer of ideas and techniques

and thus benefitted IE research. In the later years of the conference the government

5

focused its efforts on reducing the amount of human undertaking involved in generating

rules for IE. Much success was achieved in this area.

 Research in IE has continued to grow over the years since MUC. The definition of IE

has broadened gradually to include many types of tasks that differ in their complexity,

amount of resources used, training methodologies, etc. Recent approaches to IE also

include incorporating machine-learning, including global information into IE systems

than was possible with hand-crafted pattern based approaches.

 Tim Bernes-Lee, inventor of the World Wide Web WWW, refers to the existing

Internet as a document web. The Internet has a vast amount of data available but is very

hard to manipulate and analyze by computers as it is in unstructured form. The task of IE

is to transform this unstructured data into something that can be understood and

manipulated. IE, therefore, is the process of extracting sub-sequences of text from this

human-readable text form to populate some sort of a data base.

 There are many approaches to IE, some of which are Hand-written regular

expressions, pattern matching, use of classifiers such as Naïve Bayes, sequence models

like Hidden Markov Models, Chained Markov Models, Conditional random fields, etc.

 In this thesis, we use Hidden Markov Models for Information Extraction (IE). The

inspiration to use HMMs came from Dayne Freitag and Andrew McCallum [1]. Their

experiments were based on two real world data sets; on-line seminar announcements and

Reuter’s newswire articles on company acquisitions. As HMMs have strong foundations

in statistical theory there are many established techniques for learning the parameters of

the HMM from labeled training data. Freitag and McCallum [1] got impressive results

6

when using HMMs for their specific tasks. The design of the HMM models used by them

have the following characteristics:

• Each HMM extracts just one type of field. When multiple fields are to be

extracted from the same document, a separate HMM is constructed for each field.

• The entire document is modeled without any pre-processing to segment the

document into smaller parts. The entire text of the training document is used to

train transition and emission probabilities.

• They contain two kinds of states – background states and target states. Target

states are intended to produce the tokens we want to extract.

• The models of the HMM are not fully connected. The restricted structure captures

the context that helps improve extraction accuracy.

 The problem discussed in this thesis is to extract acronyms and their definitions

(available in the same text) from a collection of documents (not necessarily from the

same context). An HMM is designed for this specific purpose and the model is trained

using labeled training data.

 The problem is one that has been done before using an inexact pattern matching

algorithm applied to text surrounding the possible acronym [3]. A lexicon is not used to

validate words that are picked up by the program which essentially means that the

spelling of the word is of little consequence to us. The Acronym Finder program consists

of four phases namely initialization, input filtering, parsing the remaining input into

words, and the application of the acronym algorithm.

7

Initialization

 The input of the algorithm is composed of several lists of words, with the text of the

document as the final input stream. These inputs are:

• A list of stopwords – words like “the”, “and”, “of”, that are insignificant parts of

an acronym. These need to be distinguished from other words that make good

matches for the acronym definitions.

• A list of reject words – words in the document that resemble acronyms but are

words that are frequent in any document and that are known not to be acronyms.

For e.g. “TABLE”, “FIGURE”, Roman Numerals.

• The text of the document to be searched.

Filtering the input

 The input stream is preprocessed to remove lines of text that consists of words that are

all uppercase (e.g. headings, titles). Identify a candidate acronym and compare it against

the list of reject words. Once it is elected as a candidate a context window is selected

around it. The text window is divided into two sub-windows, the pre-window and the

post-window. The length of the sub-window is twice the number of characters in the

acronym.

Word parsing

 In order for the algorithm to work efficiently different types of words have to be

identified and a priority should be assigned to each one of them. Stopwords (s) are

normally ignored in traditional text but they can sometimes be part of the acronym.

Precedence should be given to non-stopwords over stopwords in the matching process.

Hyphenated words are a special case of words in which either the first letter of the word

8

(H) or every first letter of the hyphenated set of words (h) correspond to the acronym.

Both cases need to be tested to find the best match. Acronyms (a) can themselves be part

of the definitions of other acronyms. It is therefore necessary to see if the acronym that is

part of the definition is the same or a different one. Words apart from the ones that have

been defined are normal words (w).

 When parsing the subwindow two symbolic arrays are generated; the leader array

consisting of the first letter of every word and the type array that is composed of the type

(defined above) of every word.

Applying the algorithm

 The algorithm identifies a common subsequence of the letters of the acronym and the

leader array to find a probable definition. For two sequences X and Y, we say that a

sequence Z is a common subsequence of both X and Y. For example, X = ��	
�	� and

Y =	
��	�� , then
	� is a common subsequence of X and Y of length 3. Notice that the

subsequence need not necessarily be together, there can be characters in between. It must

be ensured while deriving the subsequence, the order of occurrence of the characters

should be maintained as in the original strings. Observe that 	
	� and 	
�	 are also

common subsequences of length greater than 4. The longest common subsequence (LCS)

of any two strings is a common subsequence with the maximum length among all

common subsequences. The length of the longest subsequence c[i,j]; where ‘i’ is the

length of the prefix of a string, say X and ‘j’ is the length of the prefix of the comparison

string, say Y; can be found recursively using the formula

�
, �� � � 0
�
 � 0, � � 0
�
 � 1, � � 1� � 1
�
, � � 0 	�� �� � ��max �
�
, � � 1�,
�
, � � 1�
�
, � � 0 	�� �� ��
!

9

Example

Consider the text:

The displays use arrays of Organic Light Emitting Diodes OLED to project the image

onto a screen contained within the armor much like a rear projection TV.

The pre-window of the acronym OLED is:

displays use arrays of Organic Light Emitting Diodes

leader array [d u a o o l e d]

type array [w w w s w w w w]

acronym is [o l e d]

The length of the LCS obtained by the algorithm is 4 using the equation defined above.

Index for acronym is

o – 1

l – 2

e – 3

d– 4

Indices for the pre-window will be:

d – 1

u - 2

a - 3

o - 4

o - 5

l - 6

e - 7

10

d - 8

 j 0 1 2 3 4 5 6 7 8

I yj D u a o o l E d

0 xi 0 0 0 0 0 0 0 0 0

1 o 0 0 0 0 1 1 1 1 1

2 l 0 0 0 0 1 1 2 2 2

3 e 0 0 0 0 1 1 2 3 3

4 d 0 0 0 0 1 1 2 3 4

Figure 1: Dynamic Programming Algorithm for equation c�i, j�

The arrows in the figure indicate how the current value in the cell was selected i.e. if

value chosen was one among
�
 � 1, � � 1� � 1,
�
 � 1, �� or
�
, � � 1�.
 The acronym finder algorithm produces all ordered arrangements of indices for all

possible subsequences. In our example, the two possible ordered pairs are

(1,4), (2,6),(3,7),(4,8)

(1,5), (2,6),(3,7),(4,8)

 These indices are used to construct a vector notation of the possible definitions of the

acronym. The vectors of the example we have chosen will be:

[0 0 0 1 0 2 3 4]

[0 0 0 0 1 2 3 4]

 The last part of the algorithm selects the appropriate definition from the vectors that

were generated. This is done by evaluating the candidate definitions for the number of

stopwords that are part of the definition, the number of words in the acronym definition

11

that do not match the acronym, etc. The best possible match for the example we have

considered is the second vector [0 0 0 0 1 2 3 4].

 This is so as the first vector considers a stopword to be part of the acronym definition.

We have discussed that a stopword has lower precedence as compared with a normal

word. The definition of the acronym OLED is hence Organic Light Emitting Diode.

12

CHAPTER 3

ALGORITHMS

In statistics and machine learning, the most important decision to be made is the selection

of the model among different mathematical models to best describe the data set. Our

choice of Hidden Markov Models (HMM) to model data for the task of Information

Extraction was made easy by the study of Dayne Freitag and Andrew McCallum [1]. This

chapter explains HMM and also describes the algorithms that we used to extract

acronyms and their definitions.

3.1 Hidden Markov Models

Consider a system that has N distinct states S1, S2, S3….Sn. The system undergoes a change

of state at regularly spaced time intervals according to a set of probabilities associated

with that state. These probability distributions govern the manner in which the system

evolves over time. Such a system is referred to as a stochastic process. To predict the

probability of the next state that would be traversed, a full description of the system

would be required; that is the specification of the current state along with all the

predecessor states. This system is otherwise known as a Markov model.

"#�$% � &�|$%() � &� * $%(+ � &, * … * $. � &/0
 An order 0 Markov model is one that takes no consideration of the history. It is

commonplace to say that an Order 0 Markov model has “no memory”.

"#�$% � &�0 � "#�$%1 � &�0 for t and t’ in a sequence.

 A first order Markov model has a memory size of 1. So the probability of being in

state Si at a time t depends on the state Sj at time t-1.

13

"#�$% � &�|$%() � &�0

An order ‘m’ Markov model is said to have a memory size of m. So the probability of the

current state depends on m number of previous states.

 The processes explained above could be called observable Markov models since the

output is the set of states at each instant of time, where each state corresponds to an

observable or physical event. Such a model is very restrictive to be applicable to real

world problems. A Hidden Markov model is a Markov model where the stochastic

process produces a sequence of observations output from states of the model but the

states themselves are not seen. Consider a 3 state Markov model that models the weather

of a city [7].

Figure 2: State Transition Diagram

The weather on a particular day can be any one of the three states mentioned below

State 1: Snow

State 2: Rain

14

State 3: Sunny

The probabilities associated with the weather changing between these states can be

written in a matrix as follows

 Snow Rain Sunny

Snow 0.4 0.3 0.3

Rain 0.2 0.6 0.2

Sunny 0.1 0.1 0.8

Given these probabilities we can find the probability associated with a sequence of

weather states such as ‘sunny->sunny->snow->snow->sunny’. The probability is

evaluated for the observation sequence, 2 � 3&4, &4, &), &), &45
6�2|78��90 � 6�&4, &4, &), &), &4�
� 6�&4� : 6�&4|&4� : 6�&4|&)� : 6�&)|&)� : 6�&)|&4 �
� 0.4 : 0.8 : 0.3 : 0.4 : 0.1 �assuming that initial probability of S3 is 0.40
� 0.00384
To someone who is oblivious to the weather conditions, because he is confined to a small

closed space, it is possible to draw inferences on the weather based on the way his visitor

is dressed i.e. if the guest is wearing a coat (C) or not (D). Consider the probability that

the visitor wears a coat is 0.1 on a sunny day, 0.3 on a rainy day and 0.7 on the day it

snows. Finding the probability of a certain type of weather qi can be based on the

observation xi. The conditional probability 6�$�|M�0 can be written according to Bayes’

rule as

6�$�|M�0 � 6�M�|$�06�$�06�M�0

15

or for n days, the weather sequence N � 3$), … . , $O5, as well as the sequence of

observations � � 3M), … . , MO5 as

6�$), … . , $O|M), … . , MO0 � 6�M), … , MO|$), … . , $O06�$), … , $O06�M), … , MO0

using the probability 6�$), … , $O0 from above and 6�M), … , MO0 of seeing a particular

sequence of coat events. The probability 6�M), … , MO|$), … . , $O0 can be estimated as

∏ 6�M�|$�0Q�R) , when it is assumed for all i that qi, xi are independent of all xj and qj for all

j ≠ i. The probability of seeing the visitor wear a coat is independent of the weather that

we like to predict, so we can disregard 6�M), … , MO0. This measure is now referred to as

Likelihood.

 Assume that the person knows that the day he entered confinement was Sunny. The

visitor on the next day carries a coat with him. Using this information and the

probabilities it is not difficult to analyze what the weather most likely weather condition

outside is. This evaluation is done as follows:

Likelihood that the second day is sunny

� 6�M+ � S|$+ � &40. 6�$+ � &4|$) � &40

� 0.1 : 0.8 � 0.08

Likelihood that it is raining on the second day is

� 6�M+ � S|$+ � &+0. 6�$+ � &+|$) � &40

� 0.3 : 0.1 � 0.03

Likelihood that it is snowing on the second day is

� 6�M+ � S|$+ � &)0. 6�$+ � &)|$) � &40

� 0.1 : 0.7 � 0.07

16

The highest of these probabilities is 0.08. From the result obtained we find the highest

probability is associated with Sunny weather even though the visitor brings a coat with

him.

 Formally said, it is possible to find the sequence of physical events when a string of

observations generated by these events is available with the use of Hidden Markov

models. Now that we have understood the basic idea behind HMMs, we delve into some

of the specifics.

 An HMM is characterized by a 5-tuple (S, V, π, A, B0, where

• S is a finite set of N states 3X), … , XO5. Although the states are hidden, for many

practical applications there is some significance associated to the states of the

model.

• V is the set of M distinct symbols in the vocabulary of an HMM. The M

observation/emission symbols correspond to the physical output of the system

being modeled.

• Y � 3Y�5 are the initial state probabilities where Y� � 6�$) � &�� and 1 Z
 Z [

• \ �]	��^ are the state transition probabilities where

	�� � 6_$%`) � &�|$% � &�a, when 1 Z i, j Z N.

• c �]���8,0^ are the emission probabilities. The observation symbol probability

distribution in state
 is c � 3���d05, where ���d0 � 6�38, 	e e|$% � &�5� and

1 Z
 Z [and 1 Z d Z 7.

We use f � �\, c, Y0 to denote the complete parameter set of the HMM. The constraints

on the HMM are

17

g Y� � 1 �8# 1 Z
 Z [Q
�R)

g 	�� � 1 �8#
 � 1,2, … [Q
�R)

g ���8,0 � 1 �8#
 � 1,2, … [i
,R)

For the model to be useful in real world applications, three problems need to be

addressed. These problems are:

1. Evaluation: Evaluating the probability of an observed sequence of symbols 2 �
8)8+ … 8j �8�k l0, given a particular HMM, i.e. "�2|f0.

2. Decoding: Finding the most likely sequence of states for the observed sequence.

Let q = q1q2...qT be a sequence of states. We want to find

$: � 	#mn	Mo"�$|2, f0.

3. Training: Adjusting all the parameters λ to maximize the probability of

generating an observed sequence, i.e., to find f: � 	#mn	Mp"�2|f0.

In this thesis, we solve problem 2 with the help of the Viterbi algorithm and problem 3

using Maximum Likelihood Estimation (MLE). Problem 1 is not addressed in this study.

3.2 Viterbi Algorithm

The Viterbi algorithm is used closely with Hidden Markov Models (HMMs). It is most

useful when calculating the most likely path through the state transitions of these HMMs

over time. The motivation behind this algorithm arises from the fact that, given [states

and q moments in time, calculating the probabilities of all transitions over time would be

18

[j probability calculations. The observation made by Viterbi is that for any state at

time e there is only one likely path to that state. Therefore, if several paths converge at a

particular state at a time e, instead of recalculating them all when calculating the

transitions from this state to states at time e � 1, the less likely paths can be discarded

and the most likely paths used. When this is applied, it reduces the number of

calculations to q : [+ which is of lesser complexity than the method discussed earlier.

 To illustrate how the algorithm finds the shortest path, we need to represent the

process pictorially. This can be done in a trellis diagram (Figure 3). In a trellis, each node

corresponds to a distinct state at a given time $%, and each arrow represents a transition

	�� to some new state at the next instant of time. The most important aspect of the trellis

diagram is that for every possible state sequence there is a unique path through it.

Figure 3: Trellis Diagram

19

 The idea of the Viterbi algorithm is to find the most probable path for each

intermediate state and finally for the terminating state in the trellis. At each time only the

most likely path leading to each state survives. For an HMM with [states the Viterbi

algorithm has 4 phases namely Initialization, Recursion, Termination and Backtracking.

This makes requires us to define two variables:

rO�
0 is the highest likelihood of a single path among all the paths ending in state X� at a

time �.

rO�
0 � maxos,ot,…,ouvs,ou "�$), $+, … . , $O(), $O � X�, M), M+, … , MO|20

and a variable wO�
0 which allows us to keep track of the ‘best path’ ending in state X� at

a time �.

wO�
0 � argmaxos,ot,…,ouvs,ou "�$), $+, … . , $O(), $O � X�, M), M+, … , MO|20

1. Initialization

r)�
0 � Y�. ��,xs ,
 � 1, … . , [

w)�
0 � 0

where Y� is the probability of being in state
 at a time � � 1.

2. Recursion

rO��0 � max)y�yQ�rO()�
0. 	��0. ��,xu, 2 Z
 Z [and 1 Z � Z [

wO��0 � max)y�yQ�rO()�
0. 	��0 , where 2 Z
 Z [and 1 Z � Z [

3. Termination

":��|20 � max)y�yQ rQ�
0

$Q: � arg maxy�yQ rQ�
0

20

Find the best likelihood when the end of the observation sequence e � q is

reached.

4. Backtracking

N: � 3$):, … , $Q: 5 so that $O: � wO`)�$O`): 0, � � [� 1, [� 2, … ,1

In this phase the best sequence of states is got from the wO vectors.

An example of how the algorithm works in the HMM we have designed is explained later

in this chapter.

3.3 Maximum Likelihood Estimation (MLE)

The idea behind Maximum Likelihood estimate is to determine the parameters that

maximize the probability or likelihood of the sample data. MLE methods are considered

to be robust and versatile and so they are used for most models and for different types of

data. Using Maximum Likelihood estimation with HMMs to determine the parameters of

the model from labeled training data is also known as Supervised Training.

 The process of computing the statistical parameters of an HMM involves the

calculation of emission probabilities and the transition probabilities that are associated

with states. The underlying sequence of states associated with the data is known by the

trainer. It is possible to find the number of distinct states associated with the HMM by

parsing the file that is used for training purposes. To estimate the parameters of the HMM

we maintain a count of the transitions that are seen between states for all the possible

combinations of states and also maintain counts for the number of times symbols

belonging to the defined HMM vocabulary are generated from states. This count is later

used to estimate emission and transition probabilities.

21

q#	�X
e
8� 6#8�	�
9
ez, 	�� � �{n��# 8� e#	�X
e
8�X �#8n Xe	e� X� e8 Xe	e� X��{n��# 8� e#	�X
e
8�X �#8n Xe	e� X�

|n
XX
8� "#8�	�
9
ez, ���d0
� �{n��# 8� e
n�X e}� Xzn�89 d
X m���#	e�� �#8n Xe	e� X�e8e	9 �{n��# 8� Xzn�89X m���#	e�� �#8n Xe	e� X�

 Maximum Likelihood estimation assigns a zero probability to state transitions and

state-emission combinations that are unseen in the training data. This problem if left

unchecked can cause erroneous results. It is most often handled with the use of some type

of Smoothing technique. In this study, we use Absolute discounting and this is explained

in chapter 5.

 It must be noted that the restrictions in transition topology placed on the design are

reflected in the parameters of the model only if the document is tagged/labeled

appropriately.

22

CHAPTER 4

DESIGN

The design of the HMM to extract acronyms with their definitions is similar to the design

chosen by Frietag and McCallum [1] to model two data sets namely, online seminar

announcements and Reuter’s newswire articles on company acquisitions. The HMM

model for acronyms has 4 states:

• Prefix (0)

• Acronym (1)

• Definition (2)

• Suffix (3)

The states of special consequence are the Acronym and the Definition state. These states

are also called the target states; the words that are generated by them are candidate

acronyms and candidate definitions respectively. To capture context certain restrictions

have been placed on the transitions between states. This is illustrated in the figure below

23

Figure 4: HMM for Acronyms and their Definitions

 As can be seen from the figure, the HMM is not entirely ergodic. While tagging data

to train the HMM model (for calculating probabilities) it is important to keep the

topology of transitions in check. In the event that acronyms occur in quick succession the

target states can transition to the prefix state without traversing to suffix states. It is

however not possible to reach target states from the suffix state, the transition must

happen through the prefix state. The rules states above are what the model implies.

 It has been stated in section 3.1 that an essential part of an HMM is a definition of its

emission vocabulary. The vocabulary associated with the acronym finder HMM consists

of three symbols, each of which represents a type of word. The symbols are

• A – for the acronym that is made of all uppercase letters

24

• D – for possible definition of the acronym that starts with an uppercase letter

• n – for all other words in the text.

 The document collection is first pre-processed before it can be used in the learning

module or the decoding module. This processing is explained clearly in the next chapter.

When the document collection (pre-processed) is parsed by the routines; every word in

the document is translated to one of the above symbols. The routines that have been

written do not capture context or semantics; they are only concerned with the sequences

of symbols the words translate to.

 Maximum Likelihood Estimate (MLE) is calculated on a tagged document of words,

rather symbols with states. The probabilities that are calculated in this manner are

transition probabilities between all combinations of states and symbol emission

probabilities associated with every state. Initial probabilities are set by hand. Let us

consider the following statement

The example explains how Maximum Likelihood Estimate (MLE) works in our thesis.

Preprocessing and tagging this statement would result in a sequence such as the one

shown below.

The 0

example 0

explains 0

how 0

Maximum 2

Likelihood 2

Estimate 2

25

MLE 1

works 3

in 3

our 3

thesis 3

 The routine that uses Maximum Likelihood Estimation (MLE) reads this file one line

at a time. The very first thing that is done by the routine is the translation of words into

one of the defined emission symbols. The routine keeps track of the current state and the

previous state and keeps a count of the number of times the combination is encountered

in the file. In the example that is considered it can be seen that the transition from state 0

to state 0 happens 3 times and the total number of transitions from state 0 in the text is 4.

The probability associated with the transition from state 0 to state 0 is therefore 0.75. In a

manner similar to what is described the emission of symbol ‘n’ from state 0 happens 3

times in our example and the symbol ‘D’ is generated once from state 0. The probability

associate with the state 0 for emitting symbol ‘n’ is the number of times symbol ‘n’ is

emitted from state 0 divided by the total number of emissions from state 0 i.e. 0.75.

26

Figure 5: Sample set of probabilities

 The Viterbi algorithm uses these probabilities to find the best sequence of states for

the input string. Consider another example statement:

this example shows how the Acronym Finder Program AFP works.

Step 1: Initialization

n = 1, emission vocabulary = n

r.�00 � Y.. �~��0 � 0.7 : 0.870133 � �. ������� w.�00 � 0

r.�10 � Y). �)��0 � 0.15 : 3.06805 : 10(� � 0.4602075 : 10(� w.�10 � 0

r.�20 � Y+. �+��0 � 0.15 : 0.101324 � 0.0151986 w.�20 � 0

27

r.�30 � Y4. �4��0 � 0 : 0.900427 � 0 w.�30 � 0

Step 2: Recursion

n = 2, emission vocabulary = n

r)�00 � max�r.�00. 	.., r.�10.)., r.�20. 	+., r.�30. 	4.0. �.��0
� max�0.06497379 : 0.97688,0.4602075 : 10(� : 0.161549,0.13379775

: 0.00398397,0 : 0.6538650 0.870133

� max�0.063471, 0.074340 : 10(�, 0.000533, 00 0.870133

� �. �������

����0 � �

r)�10 � max�r.�00. 	.), r.�10.)), r.�20. 	+), r.�30. 	4)0. �)��0
� max�0.06497379 : 0.000740,0.4602075 : 10(� : 3.07654 : 10(�, 0.13379775

: 0.250497,0 : 2.5640 : 10(�0 3.06805 : 10(�

� max�0.0000480, 1.4158467 : 10()., 0.0335108, 00 3.06805 : 10(�

� 0.1028 : 10(�

w)�10 � 2

r)�20 � max�r.�00. 	.+, r.�10.)+, r.�20. 	++, r.�30. 	4+0. �+��0
� max�0.06497379 : 0.0223791,0.4602075 : 10(� : 0.0615617,0.13379775

: 0.741535,0 : 0.0006435830 0.101324

� max�0.001454, 0.0283311 : 10(�, 0.0992157, 00 0.101324

� 0.01005

w)�20 � 2

r)�30 � max�r.�00. 	.4, r.�10.)4, r.�20. 	+4, r.�30. 	440. �4��0

28

� max�0.06497379 : 7.3978 : 10(�, 0.4602075 : 10(� : 0.776898,0.13379775
: 0.00398397,0 : 0.9339670 0.900967

� max�0.48066 : 10(�, 0.357533 : 10(�, 0.0005330, 00 0.900967

� 0.00048045

w)�30 � 2

n=3, emission vocabulary = n

r+�00 � max�r)�00. 	.., r)�10.)., r)�20. 	+., r)�30. 	4.0. �.��0
� max�0.0552282 : 0.97688,0.1028 : 10(� : 0.161549,0.01005

: 0.00398397,0.00048045 : 0.6538650 0.870133

� �. ������

����0 � �

r+�10 � max�r)�00. 	.), r)�10.)), r)�20. 	+), r)�30. 	4)0. �)��0

� max�0.0552282 : 0.000740,0.1028 : 10(� : 3.07654 : 10(�, 0.01005
: 0.250497,0.00048045 : 2.5640 : 10(�0 3.06805 : 10(�

� 0.0077238 : 10(�

w+�10 � 2

r+�20 � max�r)�00. 	.+, r)�10.)+, r)�20. 	++, r)�30. 	4+0. �+��0
� max�0.0552282 : 0.0223791,0.1028 : 10(� : 0.0615617,0.01005

: 0.741535,0.00048045 : 0.0006435830 0.101324

� 0.0007551

w+�20 � 2

r+�30 � max�r)�00. 	.4, r)�10.)4, r)�20. 	+4, r)�30. 	440. �4��0

29

� max�0.0552282 : 7.3978 : 10(�, 0.1028 : 10(� : 0.776898,0.01005
: 0.00398397,0.00048045 : 0.9339670 0.900967

� 0.0004042

w+�30 � 3

The recursion step continues till n=10 for all emission symbols in the same manner as

above.

From the values calculated this far, we can see that r.�00, r)�00 and r+�00 have the

highest probabilities in their group. So backtracking would give us the sequence w+�00 �
 0, w)�00 � 0 of states and the start state is 0. When we run the example through the

decoding module of our program we get:

this 0

example 0

shows 0

how 0

the 0

Acronym 2

Finder 2

Program 2

AFP 1

works 3

30

CHAPTER 5

IMPLEMENTATION

The program that was written to discover acronyms with their definitions was written

entirely in C++. The features that were implemented include a routine that strips the input

file off any punctuation, the decoding algorithm called Viterbi algorithm that finds the

best sequence of states for the input file, the algorithm that learns the parameters of the

HMM (Maximum Likelihood Estimation), the routine that ascertains the type of the input

word and also the function that estimates the smoothing constant for the purpose of

absolute discounting. In this chapter we explain the various modules of our program in

detail.

 The program consists of three C++ files; one is the main file that analyzes the

command line arguments and determines the action to be performed, the second file

contains all method and variable declarations and the other consists of the definitions of

the same. The program consists of two modules namely,

• Learning Module

• Decoding Module

Before we explore each of these modules in greater detail we talk about the aspects that

are common to both. To run the program certain command line arguments need to be

specified. They are:

• The first argument is a symbol that signifies the module to be invoked.

• The second is the number of states that are in the HMM.

• The third is the file that contains the probability distributions associated with the

HMM (determined while learning and used while testing).

31

• The fourth is the name of the test file or the tagged training file.

• The fifth argument specifies the name of the output file.

 The number of states of the HMM are determined during our design phase. The

documents that are used for training and testing/decoding require to be pre-processed by

a routine that removes punctuation marks and transcribes white space characters into new

line characters.

5.1 Learning Module

The main goal of this module is to use Maximum Likelihood estimation to determine the

transition probabilities between states of the HMM and symbol emission probabilities

associated with each state. The module is invoked by passing the right set of command

line arguments.

 Preparing the tagged training document file is the very first step. As has been

mentioned, the documents are collected and pre-processed. The file is manually tagged

with one of four states ensuring that the topology of transitions is not violated. This

completed tagged file is uploaded into the directory where our code is placed.

 The document is parsed one line at a time. Every line of the tagged document has two

entries – the word and the state that it corresponds to. The word is translated into one of

the emission symbols in the following manner:

• If the word starts with a capital letter and is followed by smaller case letters, it is

translated to the symbol ‘D’

• If the word comprises of only capital letters, it is translated to the symbol ‘A’

• Any other word is translated to the symbol ‘l’

32

 The symbols and the state are assigned to a character and an integer variable

respectively. Counters are set up to keep an account of the number of times the

combination of the symbol and the state are encountered and the number of times the

transition from the previous state to the current state is seen in the training document. The

counters are incremented by 1 every time. The routine also keeps track of counters that

are used to normalize the probabilities. This runs till all the lines of the input training file

are read.

 A function is called after counting the number of transitions encountered and the

number of times the symbols are emitted from states. This function calculates the actual

probabilities by using the formulas we have discussed in Chapter 3.

These formulae are implemented as they have been discussed but the code would only be

useful for a very short sequence of symbols. This is because many quantities would get

extremely small as the sequence gets longer. This problem could be addressed in two

ways:

• Normalization, and

• Working on the logarithm domain

Working with logarithm would mean conversion of the product of small quantities into a

sum of the same small probabilities. The logarithm domain is not the best alternative for

counting, normalization is an easier method to solve the underflow problem for

Maximum Likelihood estimate. A smoothing constant is calculated depending on the

number of states that are in our HMM. The smoothing constant is one-thousandth of the

number of states. The probabilities are calculated by adding this calculated constant to the

counter and dividing this sum by a sum of the product of the number of states and

33

smoothing constant and the normalization counter for every state. The formulae are

written below:

State transition probability, A[i][j] between state i and j is calculated as

\�
���� � Xn88e}
8�Xe	�e � S8{�e�#\�
����[: Xn88e}
8�Xe	�e � [8#n\�
�

Symbol emission probability of symbol ‘j’ from state ‘i’ is

c����
� � Xn88e}
8�Xe	�e � S8{�e�#c����
�&�7[�7 : Xn88e}
8�Xe	�e � [8#nc�
�
SYMNUM is a constant that is defined in the header file that is assigned to an integer

number 94. The symbol ‘j’ in the above formula corresponds to the ASCII value of the

character. The list of symbols we consider is shown in Table 1. Symbol emission

probabilities are calculated for each of these symbols in our code although the symbols

that are relevant to us are only just 3 as we have explained. The code is built to

accommodate other HMM designs with a different number of states and different

emission vocabulary sets.

 The probabilities that are calculated are written to the file whose name is specified in

one of the command line arguments. The initial probabilities were later added in the file

manually after making assumptions about the most probable initial states. It was decided

that these probabilities would be set by hand as most often the initial state is a prefix state

in a document which would result in zero probabilities for the other states.

34

5.2 Decoding Module

The main objective of this module is to find the best possible sequence of states for the

sequence of words belonging to documents that are isolated for the

Decimal ASCII Decimal ASCII Decimal ASCII Decimal ASCII Decimal ASCII

33 ! 53 5 73 I 93] 113 Q

34 “ 54 6 74 J 94 ^ 114 R

35 # 55 7 75 K 95 _ 115 S

36 $ 56 8 76 L 96 ` 116 T

37 % 57 9 77 M 97 a 117 U

38 & 58 : 78 N 98 b 118 V

39 ‘ 59 ; 79 O 99 c 119 W

40 (60 < 80 P 100 d 120 X

41) 61 = 81 Q 101 e 121 Y

42 * 62 > 82 R 102 f 122 Z

43 + 63 ? 83 S 103 g 123 {

44 , 64 @ 84 T 104 h 124 |

45 - 65 A 85 U 105 i 125 }

46 . 66 B 86 V 106 j 126 ~

47 / 67 C 87 W 107 k

48 0 68 D 88 X 108 l

49 1 69 E 89 Y 109 m

50 2 70 F 90 Z 110 n

51 3 71 G 91 [111 o

52 4 72 H 92 \ 112 p

Table 1: Characters and their ASCII codes

35

purpose of testing. The decoding algorithm used is the Viterbi algorithm and the

probabilities required by it, state transitions and symbol emission probabilities for every

state, are calculated in the previous module. The inputs required are the name of the file

in which the number of states and probabilities associated with the HMM are present

along with the name of the file that needs to be tested against the model. The names of

these files are passed as command line arguments when the module is invoked.

 It must be ensured that the test file is preprocessed in the manner that has been

described before it is used in further processing. The probabilities associated with the

HMM model must first be saved into appropriate data structures. The number of states is

read and assigned to an integer variable. The initial probability associated with each state

is stored in a one-dimensional array, while the transition probabilities and symbol

emission probabilities are placed in two-dimensional arrays.

 Maximum Likelihood Estimation assigns a probability of zero to unseen emission –

state combinations in the training file. This is potentially harmful to the decoding process

and requires to be addressed. The problem is resolved by using a concept called absolute

discounting. Absolute discounting involves subtracting a small amount of probability p

from all symbols assigned a non-zero probability at a state s. Probability p is then

distributed equally over symbols given zero probability by the Maximum Likelihood

estimate. If v is the number of symbols that are assigned non-zero probability at a state s

and N is the total number of symbols, emission probabilities are calculated by

6��|X0 � � 6��|X0�/ � "
� 6��|X0�/ � 0�"[� � 8e}�#�
X� !

36

There is no best way to calculate the value of p. We calculate a value proportional to the

non-zero emission probability MLE assigned to the state. The manner in which the

concept is implemented in our code is explained below.

 Once all the values are read from the probabilities file, we iterate through the arrays

making note of the indices of the values that are assigned a zero probability. Similar to

the calculation that is used in the learning module, a function is called and the smoothing

constant is determined. The arrays are iterated through once again and for every entry we

calculate the portion that is to be subtracted from itself. A function is called to calculate

this portion and the parameters we pass to this function are the current probability

associated with the state and the smoothing constant that was determined in the previous

step. The function returns a value of type ‘double’ which is then subtracted from the

current probability. The returned values are added to a variable to record the overall sum..

This sum is then evenly distributed among the entries that were observed to have zero

entries.

 Absolute discounting is also used to smooth the transition probabilities as well as

initial probabilities to ensure that zero entries have no negative effects on the code. The

process is the same as the one described above. The program is built to handle large

amounts of data and to overcome the problem of underflow (explained in the learning

module). The decoding algorithm is done entirely in the logarithm domain as opposed to

the use of normalization.

 The working of the Viterbi algorithm is already discussed in chapter 3. The

implementation of the algorithm is done in much the same way. Two composite data

types: struct data types are declared to handle the complex nature of the task involved.

37

One struct type is used to keep track of the path that has been taken to get to the current

state. It has an integer member variable that stores the current state and another member

of the same struct type that holds the path; that is, the best sequence of states to get to the

state previous to s. Another struct type is used for the implementation of the trellis

diagram (The significance trellis diagram has been explained in Chapter 3). This

composite data type keeps track of the best path, the probability of the best path and the

probability once the path is extended to include the current state.

 As we are working on the logarithmic domain, the product of two values is converted

to the sum of the logarithm of the same values. Two arrays of objects are created for each

of the struct types. One keeps track of the current best path till the current state and the

other records trellis information for every state. The input file is read one line at a time.

Once a word is read the first task is to translate these words into one of our emission

symbols. The default character is the symbol set aside for a normal word; this is used

when the input word does not fall into any one of our defined categories.

 The very first step in the algorithm is to determine the best possible start state. The

sum of the logarithms of the initial probability for every state and the emission

probability of the symbol associated with the same state results in a probability. This

value is assigned to the member variable of the trellis data type that records the

probability of the path. In this manner start probabilities of every state are recorded.

 e#�99
X�
�. "# � 98m10���
�0 � 98m10�c�
����M��
�0 where I[i] is the probability

that i is the start state and B[cIndex][i] is the emission probability of cIndex (ASCII value

of symbol) associated with state i.

38

 In the recursion phase of the Viterbi algorithm we build our trellis diagram to find the

best way to get from one state to the next for the observed data. A temporary variable is

used to store the best ‘From’ state; this is required to resolve contention. Nested ‘for’

loops are used to find the best sequence of states and the probability associated with

every combination of the same to determine the most likely transition. The value is a sum

of the logarithms of the probability calculated in the previous step, the transition

probability between the previous state and the current state and the emission probability

associated with the symbol (type of next word that is read) from the current state. The

new probability and the best ‘From’ state are recorded in the object that is created to hold

the best possible values for the states in question. All the words in the document are put

through the same process with the use of a while loop.

 e}
X6# � e#�99
X���. "# � 98m10�\����
�0 � 98m10�c�
����M��
�0 where trellis[j].pr

is the probability associated with the current path till state j, A[j][i] is the transition

probability from state j to state i and B[cIndex][i] is the same as in the equation above.

 The best path is extracted from the array of trellis objects created, by using an iterator

object on it. The result of the decoding process is a file (if specified) that has the string of

words and the state to which they belong listed adjacent to them.

 The output file is then analyzed to determine how well the HMM model performed.

The evaluation measures and findings of our experiment are explained in the next

chapter.

39

CHAPTER 6

EXPERIMENTS

Following the phases of the software development life cycle the problem description was

provided in Chapter 1, the design was explained in Chapter 3 and the code explained in

Chapter 4. This chapter talks about the experiments that were conducted to evaluate the

performance of the HMM model.

 To build an HMM model that generalizes well and has high accuracy it is important to

gather large amounts of data for training. The better trained the model is, the better the

model performs against new data sets. As there are no pattern matching algorithms and

regular expression matching algorithms in place, it is not possible to work with context

windows for possible acronym occurrences. There is therefore a requirement for large

amounts of data across different domains for the Maximum Likelihood Estimate (MLE)

to provide the set of probabilities that are associated with HMMs. Different domains

ensure the use of acronyms with their definitions in various patterns. Every author has

their own pattern of writing and when these authors are picked from different domains,

their writing styles seldom coincide; this allows the HMM to train on different types of

data sets.

 To achieve what has been explained, a set of 200 documents were randomly collected

from various articles available on the Internet. The only pre-requisite that was to be

satisfied by every file was the occurrence of at least one acronym with the definition in its

vicinity. The collection of documents was divided into two categories. One set of 100

documents were used to train the HMM model and the other was used to test the same

model so as to evaluate the performance of the HMM model that was designed. In this

40

study we discovered that one of the easiest ways to collect data was with the help of the

glossary of acronyms defined for a specific area of study. For example, from the Glossary

of Education Terms and Acronyms we gathered acronyms and assimilated data as shown

below.

Figure 6: Sample Data 1

Figure 7: Sample Data 2

 Before either set of documents were used further, each of the set of documents were

put through a pre-process phase. Pre-processing of the training documents and the set of

41

testing documents were conducted separately although the process involved was

essentially the same. The decision to make the tradeoff between saving time and accuracy

makes the results of the experiments credible. A routine was written to do two tasks; strip

the document collections of any punctuation and special characters, white space

characters were replaced with new line characters in order to allow easy tagging and easy

scanning of the result set. The output of the pre-processing step is a file that has no

punctuations, no special characters and has only one word per line.

 The file obtained after pre-processing the 100 documents set aside for training are

tagged in a simple text editor such as notepad or wordpad. Tagging involves the

assignment of one of the 4 states to every word in the file which is just writing the state

adjacent to the word. The decision of the assignment is made by the trainer who is well

aware of the topology of transitions that the HMM model allows. The tagged file is saved

as a simple text file with a .txt extension and saved in ASCII encoding. Transition and

Emission probabilities are calculated by the use of MLE on this file. Initial probabilities

are set by hand so that all states have a fair chance of being the start state. If MLE were to

decide these initial probabilities, only the prefix state would be assigned a large

probability while the others would have a probability closer to zero as documents start at

the prefix state most often. The output of the learning phase is a file with probabilities

associated with the HMM model.

 The 100 documents set aside for testing use the probabilities calculated in the previous

step. The output of the decoding phase is a file similar in appearance to the training file.

This file is analyzed by a human observer (not necessarily aware of the design) for words

42

that are tagged with state 1 and 2 as they are candidate acronyms and definitions

respectively. The file is checked for True Positives, False Positives and False Negatives.

 Standard measures of Precision, Recall and F1 measure are used to evaluate the

performance of the HMM.

Precision is defined as

6#�

X
8� � [{n��# 8� q#{� 68X
e
��X[{n��# 8� q#{� 68X
e
��X � �	9X� 68X
e
��X

Recall is defined as

��
	99 � [{n��# 8� q#{� 68X
e
��X[{n��# 8� q#{� 68X
e
��X � �	9X� [�m	e
��X

F1 measure is

�1 � 11��
	99 � 16#�

X
8�

The results obtained as shown in table below.

True Positive False Positive False Negative Precision Recall F1

196 16 4 0.9245 0.98 0.95144

Table 2: Results

43

CHAPTER 7

CONCLUSION AND FUTURE WORK

The main objective of this thesis is to elucidate that HMMs can be used for the task of

Information Extraction. Here, we addressed the problem of finding acronyms and their

definitions using HMMs. We designed an HMM, implemented Viterbi algorithm and

Maximum Likelihood Estimator in C++ and compared our findings to the Acronym

Finder Program [3]. The experiment can be concluded as successful and hence it

establishes that HMMs can be used for the task of extracting relevant information from

documents.

 The experiments in this thesis were conducted on a small set of 200 documents. To

build an HMM that generalizes well and has high accuracy a large amount of data is

required. Testing the model on a large collection of data and comparing results against

the ad-hoc algorithm can be performed to establish which of the two methods performs

better.

44

BIBLIOGRAPHY

1. Dayne Freitag and Andrew Kachites McCallum, “Information extraction with HMMs and

Shrinkage,” In Proceedings AAAI-99 Workshop Machine Learning and Information

Extraction, 1999.

2. Kazem Taghva, Jeffrey Coombs, Ray Pereda and Thomas Nartker, “Address Extraction

Using Hidden Markov Models”, Proc. IS&T/SPIE 2004 Intl. Symp. on Electronic

Imaging Science and Technology

3. Kazem Taghva and Jeff Gilbreth, “Recognizing Acronyms and their definitions”,

International Journal on Document Analysis and Recognition, Volume 1, Number 4, 191-

198, DOI: 10.1007/s100320050018

4. Wayne Grixti, Charlie Abela and Matthew Montebello, “Name Finding From Free Text

Using HMMs”

5. ChengXiang Zhai, “A Brief Note on the Hidden Markov Models”, University of Illinois

at Urbana-Champaign, March 16, 2003

6. Lawrence R Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition”, Proceedings of the IEEE, Vol 77, No. 2, pp. 257-286, February

1989

7. Barbara Resch, “Hidden Markov Models”

8. Kazem Taghva, Russell Beckley and Jeffrey Coombs, “The Effects of OCR Error on the

Extraction of Private Information,” Document Analysis Systems 2006: 348-357

9. Daniel M Bikel, Scott Miller, Richard Schwarts and Ralph Weishedel, “Nymble: A High-

Performance Learning Name Finder,” Proceedings of the Fifth Conference on Applied

Natural Language Processing, 1997, pp. 194-201

45

10. Daniel M Bikel, “An Algorithm that Learns What’s in an Name”, Machine Learning,

BBN Systems and Technologies, Cambridge 1999

11. M. Banko, M. Cafarella, S. Soderland, M. Broadhead and O. Etzioni, “Open Information

Extraction from the Web,” Magazine Communications of the ACM - Surviving the data

deluge Volume 51 Issue 12, December 2008

12. Harry Zhang, “The Optimality of Naïve Bayes”, American Association for Artificial

Intelligence 2004

13. Charles Sutton and Andrew McCallum. “An introduction to conditional random fields for

relational learning”. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical

Relational Learning. MIT Press, 2006.

14. ReliaSoft Corporation, “ MLE (Maximum Likelihood) Parameter Estimation”,

Accelerated Life Testing Reference Appendix B : Parameter Estimation

15. Christopher D Manning, Prabhakar Raghavan and Hinrich Schutze, “Introduction to

Information Retrieval”, Cambridge University Press. 2008.

16. Gerald DeJong, “ Skimming Newspaper Stories By Computer”, Yale University 1977

17. Georgette Silva and Don Dwiggins, “Towards a Prolog Text Grammar”, ACM SIGART

Bulletin 73 October 1980, Page 20-25.

46

VITA

Graduate College
University of Nevada, Las Vegas

Lakshmi Vyas

Degrees:
Bachelor of Engineering in Computer Science, 2006
Visvesvaraya Technological University

Thesis Title: Finding Acronyms and Their Definitions using HMM

Thesis Examination Committee:
Chair Person, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D
Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

	Finding acronyms and their definitions using HMM
	Repository Citation

	Microsoft Word - $ASQ89184_supp_undefined_7A0473C4-6B6A-11E0-AEC6-B485F0E6BF1D.docx

