l lb II /‘ 7 | UNIVERSITY
LIBRARIES

UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2011

Finding acronyms and their definitions using HMM

Lakshmi Vyas
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

b Part of the Theory and Algorithms Commons

Repository Citation

Vyas, Lakshmi, "Finding acronyms and their definitions using HMM" (2011). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 981.

http://dx.doi.org/10.34917/2317640

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/2317640
mailto:digitalscholarship@unlv.edu

FINDING ACRONYMS AND THEIR DEFINITIONS USING HMM

by

Lakshmi Vyas

Bachelor of Engineering, Computer Science
Visvesvaraya Technological University, India
2006

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degreein Computer Science
School of Computer Science
Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas
May 2011

Copyright by Lakshmi Vyas 2011
All Rights Reserved

UNIVERSITY OF NEVADA LAS VEGAS

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

L akshmi Vyas

entitled

Finding Acronymsand Their Definitionsusing HMM

be accepted in partial fulfillment of the requirements for the degree of

Master of Sciencein Computer Science
School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Venkatesan Muthukumar, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

May 2011

ABSTRACT

Finding Acronyms and Their Definitionsusing HMM

by
Lakshmi Vyas

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science
University of Nevada, Las Vegas
In this thesis, we report on design and implementation of a Hidden Mafkalel
(HMM) to extract acronyms and their expansions. We also repdheotraining of this
HMM with Maximum Likelihood Estimation (MLE) algorithm using a set of exaraple

Finally, we report on our testing using standard recall and jmeci$he HMM

achieves a recall and precision of 98% and 92% respectively.

ACKNOWLEDGEMENTS
There are many people who have had a significant influence on sy teeearch work.
While it is not possible to list every contribution, | make annaeto express my
gratitude to those who have helped make my work a success.

Dr. Kazem Taghva, my thesis advisor, has been an immense gbkinosviedge and
motivation. | am eternally grateful for his support, patience and goethroughout my
thesis study. | have learned so much in the last year of working with him.

| would like to thank the graduate coordinator, Dr. Ajoy Datta, fer vute of
confidence on everything | have ventured to do during my Mastersapnogiwvould like
to convey my sincere appreciation and gratitude to the membery tiasis advisory
committee, Dr. Laxmi P Gewali, Dr. Venkatesan Muthukumar and [oy Batta. Their
ready acceptance to serve on my committee has been a queezt ®f confidence. |
consider myself privileged for the opportunity to work under their guidance.

My acknowledgements would be incomplete without a mention of the suppgort
husband and family have given me. | am humbled by their constaht daid

encouragement without which | wouldn’t be where | am today.

TABLE OF CONTENTS

Y 2 1S Y ¥ AN O SRR iv
ACKNOWLEDGEMENTS ..ottt e s snnnnnesereeeees v
TABLE OF CONTENTSoeciiiiiiiiiii ettt e e e e e e e e e e e e e e e s e s e s s s anssnnnereeeenees Vi
LIST OF FIGURESottt ettt e e e e e e e e e e e e e e e s sttt e e e e e e e eaaaaaaeaaeaasasannnnns vii
CHAPTER 1 INTRODUGCTIONuuttiiiiiiiiiiiiiiiittteeeeaeeeeessssssssssssssessseeeeeeeeeaaasaaaaeasssssnnnnns 1
IO RO 1 1 [TP PPPPPPRP 2
CHAPTER 2 INFORMATION EXTRACTION AND AFP EXAPLAINED 3
CHAPTER 3 ALGORITHMS ...ttt 12
3.1 Hidden Markov MOAEIS ..o 12
3.2 VIterbi AlQOrtNmo e e e e e e 17
3.3 Maximum Likelihood Estimation (MLE)ccooeiiiiiiiiiiicceees e 20
CHAPTER 4 DESIGNciiiiiiiiiiiii ettt e e e e e 22
CHAPTER 5 IMPLEMENTATION ..ottt 30
5.1 Learning MOAUIEuuuuieiii et e e e e e e eees 31
22 L= Tod o To [T o 117 (o o [1] = 0SSP 34
CHAPTER 6 EXPERIMENTS ..ottt ettt e e 39
CHAPTER 7 CONCLUSION AND FUTURE WORKccciiiiiiiiiiiiiiiieee 43
BIBLIOGRAPHY ...ttt ettt e e e e e e e e e e e e e e e ettt e e e e e e e e aeaaaeaeaeassseananns 44
LY L1 P PEURRRUPRPR 46

Vi

LIST OF FIGURES

Figure 1 Dynamic Programming Algorithm for equatei)j]cooeevrreeiiiiiiiiininnn. 10
Figure 2 State TransSition DIAQIaMcoooiiiiiuiiiiiiiiaae e e e e e eeeeeeiereia e e e e e e e e eeeeaeeennes 13
FIQUrE 3 TrelliS DIagram......cco i e e e eeeeeeeeeeeeee e e e s e e e e e e e e e e e e e e et s s e e e e e e eeaeaeeeeeeeennnnnnns 18
Figure 4 HMM for Acronyms and their Definitions...............ouuuiiiiiiiiinniee e, 23
Figure 5 Sample set of probabilitieseuvvviiiiiiii e 26
Figure 6 SampPle Data L.......cooooiiiiiiiiiiiiie e e e e e e e e r e 40
FIgure 7 Sample Data 2........coooiiiieeeeeiree sttt e e e e e e e 40

Vii

CHAPTER 1

INTRODUCTION
The thesis discusses a method of Information Extraction called iidaéekov Models
(HMMs) [6]. Information Extraction can be carried out by the os&IMMS and other
standard approaches such as hand-written regular expressions,Bdgése [12] and
Conditional Random fields (CRF) [13]. The main focus of the thesis isnderstand
Hidden Markov Models. It also looks into the working of the Viterbi athani and the
use of Maximum Likelihood Estimation (MLE) [14].

Information Extraction is the task of retrieving structuredoriméition from
unstructured or semi-structured documents. More specificaléytita task of extracting
data that is relevant with respect to a category and context from eticollef documents
in a certain domain. We look into the problem of finding acronyms anddéginition in
text using the formal method of information extraction i.e. Hiddemk®a Models
(HMMs).

Acronyms are a word formation that is composed of the firgrdettf words in a
series of words. These acronyms are known to cause considevahlsian to readers
who are unaware of its origins. It is therefore important terésa the acronym and
what it stands for. The problem is one that has been studied bé&ffoféé algorithm [3]
is based on an inexact pattern matching algorithm applied to text surrounding theeposs
acronym. Evaluation shows that the algorithm performs well, howerxego on to show
that the use of HMMs for the same task overcomes some of titatioms of the ad-hoc
methodology such as the length of the acronym, use of special teharacthe acronym

etc.

The idea of using HMMs to the task of extracting acronyms laid definitions is
based on the significant success it has had to other languagedresks, including
speech recognition [Rabiner 1989], text segmentation and topic datfeiin Mulbregt
1998]. Like finite state automaton HMMs are composed of a finitefsstates. HMMs
are probabilistic tools that are used to model a sequence oflikabgtstates given an
observation sequence and other model parameters. The probabilibestass with
every state in an HMM model are set using Maximum Likelihosthiation (MLE) on
tagged documents and the most likely sequence of states for thelat@us decided by

the Viterbi algorithm. We evaluate our results by using precision and recall.

1.1 Outline

Chapter 1 looks into Information Extraction in some detail and aiglaies the working
of the Acronym Finder algorithm [3]. Chapter 2 discusses the ngr&f the Viterbi
algorithm and the statistical method of estimating model paemeising Maximum
Likelihood Estimates (MLE). A detailed account of the design ofHh& model used
for the task and other implementation specifics are discusseldajpté€? 3. The methods
used to train the model, test it and an overview of the results abtgine Chapter 4.

Chapter 5 summarizes and concludes this thesis.

CHAPTER 2
INFORMATION EXTRACTION AND AFP EXPLAINED

Information Extraction (IE) [15] can be defined as the taskexttacting relevant
information from the actual text of documents. Information Exipactis of great
significance to companies that rely on drawing inferences ftata, using transaction
histories and archives of other happenings. Information RetrievaldifRthe other hand,
is the task of finding relevant documents from a collection of docunkns likely that
an Information Extraction system built for a specific need iscgaded by some
Information Retrieval task to categorize relevant documents fromex leojection.

A clear distinction between these two processes can ben draviooking into an
example. A system that classifies incoming emails asnSma ‘Not Spam’ is an
example of an Information Retrieval system. These systenguaressential in today’s
day and age and categorize email messages into the above mectbegalies by
looking into information encapsulated in the email headers.

Every email message consists of two parts — the body and the, hesadeby servers
on the Internet as they deliver the message. The headerst@ltsere the email is coming
from, which route it has come through and the name of the diffevatihg points. The
names of some of these fields are Return-Path, Message IB, X-UIDL. The IR
system first tokenizes the header and analyzes theseifiedtdsne detail to ascertain if
they are genuine and reliable. Ones that are inferred as Spam are cadiegyorardingly.

The system described above does not categorize emails based@emahécs of the
body of content. Features such as Multiple Inboxes, provided by Godgles al Gmail
user to segregate their inbox. The segregation criteria cannigiad of things such as

3

the Sender of the email message, the subject line, the pribetyamain name of the
sender’'s email ID etc. Such a task is difficult for an IBtem but not for an Information
Extraction system. Information Extraction is not a stand-alosle ttaat analysts engage
in. It is an abstraction over a larger task intended to produce sresgtiftout human
intervention.

Extracting information from text to understand implicit patterns datéstbdloe early
days of Natural Language Processing (NLP). In 1979, DeJong Yale University
developed a system called FRUMP. This NLP system analyzesistevies to generate a
summary for users logged into the system. This system is resmbisf modern day IE,
since the generated summaries are essentially tempifiees ih by Fast Reading
Understanding and Memory Program (FRUMP) [16]. DeJong’s syst&a® hand-coded
rules and the data structure that was populated by the systsmalled ‘script’, a term
coined by his advisor, Schank. Other early attempts to extrawimation include the
work of Silva and Dwiggins [17] for identifying information about datelflights from
multiple text reports. The system that was developed for this was Prolog based.

To encourage the development of IE techniques, in the late 1980s gntP8aH the
US Government, DARPA, organized a series of Message Understaddirfgrences
(MUC) as a competitive task with standard data and evaluatioreguoes. IE was
separated into several different tasks in later conferenaeb, as Named Entity (NE)
task, Relation Extraction (RE) task and Scenario TemplatetéSK. These conferences
established a competitive environment that enabled rapid transterasf and techniques

and thus benefitted IE research. In the later years of the cooéetbe government

focused its efforts on reducing the amount of human undertaking involvedenatjag
rules for IE. Much success was achieved in this area.

Research in IE has continued to grow over the years since MigQi€finition of IE
has broadened gradually to include many types of tasks that diffeeir complexity,
amount of resources used, training methodologies, etc. Recent appraadkeslso
include incorporating machine-learning, including global information I&csystems
than was possible with hand-crafted pattern based approaches.

Tim Bernes-Lee, inventor of the World Wide Web WWW, refers toetkisting
Internet as a document web. The Internet has a vast amount @ivddédole but is very
hard to manipulate and analyze by computers as it is in unstraiétune. The task of IE
is to transform this unstructured data into something that camnoerstood and
manipulated. IE, therefore, is the process of extracting sub-sezpiefn text from this
human-readable text form to populate some sort of a data base.

There are many approaches to IE, some of which are Handnwréegular
expressions, pattern matching, use of classifiers such as Nayes,Bsequence models
like Hidden Markov Models, Chained Markov Models, Conditional random fields, etc.

In this thesis, we use Hidden Markov Models for Information ExoragIE). The
inspiration to use HMMs came from Dayne Freitag and Andrew &la@ [1]. Their
experiments were based on two real world data sets; on-linaageamnouncements and
Reuter’'s newswire articles on company acquisitions. As HMMs baweeag foundations
in statistical theory there are many established techniquésdioring the parameters of

the HMM from labeled training data. Freitag and McCallumda} impressive results

when using HMMs for their specific tasks. The design of the HMddl@s used by them

have the following characteristics:

Each HMM extracts just one type of field. When multiple fiem® to be
extracted from the same document, a separate HMM is constructed foredg.ch fi

e The entire document is modeled without any pre-processing to seghe

document into smaller parts. The entire text of the training docuimerged to
train transition and emission probabilities.

e They contain two kinds of states — background states and taates. starget

states are intended to produce the tokens we want to extract.

e The models of the HMM are not fully connected. The restrictedtateicaptures

the context that helps improve extraction accuracy.

The problem discussed in this thesis is to extract acronymshairddefinitions
(available in the same text) from a collection of documents (noe¢ssarily from the
same context). An HMM is designed for this specific purpose andhtuel is trained
using labeled training data.

The problem is one that has been done before using an inexach pa#tching
algorithm applied to text surrounding the possible acronym [3]. Adexis not used to
validate words that are picked up by the program which essentredbns that the
spelling of the word is of little consequence to us. The Acronyrddfiprogram consists
of four phases namely initialization, input filtering, parsing teenaining input into

words, and the application of the acronym algorithm.

Initialization

The input of the algorithm is composed of several lists of wordis,thae text of the

document as the final input stream. These inputs are:
e A list of stopwords— words like “the”, “and”, “of”, that are insignificant par$
an acronym. These need to be distinguished from other words thet goaeX
matches for the acronym definitions.
e A list of reject words — words in the document that resemble acronyms but are
words that are frequent in any document and that are known not to bgnasron
For e.g. “TABLE”, “FIGURE”, Roman Numerals.
e The text of the document to be searched.
Filtering theinput

The input stream is preprocessed to remove lines of text thadtsarfsivords that are
all uppercase (e.g. headings, titles). Identify a candidateyanrand compare it against
the list of reject words. Once it is elected as a candidatntext window is selected
around it. The text window is divided into two sub-windows, the pre-windotvthe
post-window. The length of the sub-window is twice the number of cleasact the
acronym.
Word parsing

In order for the algorithm to work efficiently different tgpef words have to be
identified and a priority should be assigned to each one of them. Stop(gyrese
normally ignored in traditional text but they can sometimes be gfathe acronym.
Precedence should be given to non-stopwords over stopwords in the matchegs.proc

Hyphenated words are a special case of words in which eithérgihketter of the word

7

(H) or every first letter of the hyphenated set of words (hjespond to the acronym.
Both cases need to be tested to find the best match. Acronyoen(#)emselves be part
of the definitions of other acronyms. It is therefore necessasgé if the acronym that is
part of the definition is the same or a different one. Words &opantthe ones that have
been defined are normal words (w).

When parsing the subwindow two symbolic arrays are generaededder array
consisting of the first letter of every word and the type atiayis composed of the type
(defined above) of every word.

Applying the algorithm

The algorithm identifies a common subsequence of the lettdre attonym and the
leader array to find a probable definition. For two sequences X amwdeYsay that a
sequence Z is a common subsequence of both X and Y. For examplea¥dab and
Y =achdabe , thencab is a common subsequence of X and Y of length 3. Notice that the
subsequence need not necessarily be together, there candmerban between. It must
be ensured while deriving the subsequence, the order of occuokmnice characters
should be maintained as in the original strings. Observeatldt and acda are also
common subsequences of length greater than 4. The longest common subsgdgi@nce
of any two strings is a common subsequence with the maximunthlemgong all
common subsequences. The length of the longest subsequence cli,j]; ‘ivisetbe
length of the prefix of a string, say X and ‘j' is the lengthhaf prefix of the comparison
string, say Y; can be found recursively using the formula

0ifi=0,j=0
cli,jl = cli—-1,j—1]+ 1ifi,j>0and X; =Y,

max (c[i,j — 1],c[i,j —1]if i,j > 0and X; # Y]
8

Example
Consider the text:

The displays use arrays of Organic Light Emitting Diodes OLED to grrdfee image
onto a screen contained within the armor much like a rear projection TV.

The pre-window of the acronym OLED is:

displays use arrays of Organic Light Emitting Diodes

leader arrayj[duaooled]

type array[lw ww s w w w w]

acronymis [0 | e d]

The length of the LCS obtained by the algorithm is 4 using the equation defined above.

Index for acronym is

j 0 1 2 3 4 5 6 7
I Y D u a 0 0 I E
0 X 0 0 0 0 0 0 0 0

1 0 0 OT g [ow R [R4 [
2 | 0 0g [og oy [Ty 1y [R [«
3 e 0 o [0 [og Ty g 24 R
4 d 0 0y [0p [0y [Ty 1y 24 ST

Figure 1: Dynamic Programming Algorithm for equatij]

Al b o e

The arrows in the figure indicate how the current value in tHewas selected i.e. if

value chosen was one amarijg— 1,j — 1]+ 1, c[i — 1,j] orc[i,j — 1].

The acronym finder algorithm produces all ordered arrangeroemslices for all
possible subsequences. In our example, the two possible ordered pairs are
(1,4), (2,6),(3,7),(4,8)
(1,5), (2,6),(3,7),(4,8)

These indices are used to construct a vector notation of the poséibigods of the
acronym. The vectors of the example we have chosen will be:
[00010234]

[00001234]

The last part of the algorithm selects the appropriate defifitom the vectors that
were generated. This is done by evaluating the candidate aefiior the number of

stopwordsthat are part of the definition, the number of words in the aanaasfinition

10

that do not match the acronym, etc. The best possible match fexdneple we have
considered is the second vector [0 0001 2 3 4].

This is so as the first vector considers a stopword to be ghg atronym definition.
We have discussed that a stopword has lower precedence as comiparadnormal

word. The definition of the acronym OLED is hence Organic Light Emitting Diode.

11

CHAPTER 3
ALGORITHMS
In statistics and machine learning, the most important decisiom moade is the selection
of the model among different mathematical models to best Hestlre data set. Our
choice of Hidden Markov Models (HMM) to model data for the tasknédrmation
Extraction was made easy by the study of Dayne Freitag and AndrewallMod1]. This
chapter explains HMM and also describes the algorithms thaused to extract

acronyms and their definitions.

3.1 Hidden Markov Modds

Consider a system that has N distinct state§SS;.. S,.. The system undergoes a change
of state at regularly spaced time intervals according tet afsprobabilities associated
with that state. These probability distributions govern the manner ichvthe system
evolves over time. Such a system is referred to as a stacphestess. To predict the
probability of the next state that would be traversed, a fullrgd®mn of the system
would be required; that is the specification of the current stategawith all the
predecessor states. This system is otherwise known as a Markov model.
pr(qe = Silqe-1 =5 N qe2 =Sk N ..Nqo = S)

An order 0 Markov model is one that takes no consideration of the hiktasy.
commonplace to say that an Order 0 Markov model has “no memory”.
pr(q. = S;) = pr(q, = S;) fortand t’' in a sequence.

A first order Markov model has a memory size of 1. So the prolyabilibeing in

state $Sat a time t depends on the statat$ime t-1.

12

pr(q: = Silqe-1 = SJ))
An order ‘m’ Markov model is said to have a memory size of mh8gtobability of the
current state depends on m number of previous states.

The processes explained above could be called observable Markov muockeldhsi
output is the set of states at each instant of time, where staieh corresponds to an
observable or physical event. Such a model is very restrictive appleable to real
world problems. A Hidden Markov model is a Markov model where the stichast
process produces a sequence of observations output from states mbdel but the

states themselves are not seen. Consider a 3 state Markov hatdabtels the weather

of a city [7].
0.8 0.6
0.1 _,
2 |
=
- 0.2
A A
0.1 0.2
0.3 0.3
4
0.4

Figure 2: State Transition Diagram

The weather on a particular day can be any one of the three states mentioned below
State 1: Snow

State 2: Rain

13

State 3: Sunny
The probabilities associated with the weather changing betwese tstates can be

written in a matrix as follows

Snow Rain Sunny
Snow 0.4 0.3 0.3
Rain 0.2 0.6 0.2
Sunny 0.1 0.1 0.8

Given these probabilities we can find the probability associatéidl a sequence of
weather states such as ‘sunny->sunny->snow->snow->sunny’. The pitgbabil
evaluated for the observation sequerite; {Ss, S5, S;,51,55}

P(O|Model) = P[S3,S5,5;,51,55]

= P[S3] = P[S3|S3] * P[S5]S1] * P[S1|S1] = P[S1]S5]

= 0.4x0.8 0.3 x0.4 0.1 (assuming that initial probability of S3 is 0.4)

= 0.00384

To someone who is oblivious to the weather conditions, because he reedaiofia small
closed space, it is possible to draw inferences on the weatiest ba the way his visitor
is dressed i.e. if the guest is wearing a coat (C) or not@@sider the probability that
the visitor wears a coat is 0.1 on a sunny day, 0.3 on a raingrmdh.7 on the day it
snows. Finding the probability of a certain type of weathecam be based on the
observation x The conditional probability’(g;|x;) can be written according to Bayes’

rule as

P(x;lq:)P(q;)

P(qilx;) = P(x;)

14

or for n days, the weather sequen@e= {q,,....,q,}, as well as the sequence of

observationX = {xy,....,x,} as

Py, x0lqy, e, 40 P(qa) - Q)
P(qq, ooy QulXe, ooy) = Pt)
) eeer Xp,

using the probability?(qy, ..., q,) from above and(x,, ..., x;,) of seeing a particular

sequence of coat events. The probabiRty,, ..., x,|q4, ..., q,) Can be estimated as
N P(xilqy), when it is assumed for all i that g are independent of al| and g for all

] # 1. The probability of seeing the visitor wear a coat is indeperafethe weather that

we like to predict, so we can disregdt¢x,, ..., x,). This measure is now referred to as

Likelihood.

Assume that the person knows that the day he entered confinenseSumay. The
visitor on the next day carries a coat with him. Using this in&dion and the
probabilities it is not difficult to analyze what the weathwerst likely weather condition
outside is. This evaluation is done as follows:

Likelihood that the second day is sunny
= P(x, = Clqz = $3).P(q2 = S31lq1 = S3)
=0.1+x0.8=10.08
Likelihood that it is raining on the second day is
= P(x; = Clqz = $2).P(q2 = S2191 = S3)
=0.3%0.1=0.03
Likelihood that it is snowing on the second day is
= P(x; = Clqz = $1).P(q2 = S11q1 = S3)

=0.1x0.7=0.07

15

The highest of these probabilities is 0.08. From the result obtaiaefthd the highest
probability is associated with Sunny weather even though the Msitays a coat with
him.

Formally said, it is possible to find the sequence of physueaite when a string of
observations generated by these events is available with thef uselden Markov
models. Now that we have understood the basic idea behind HMMs, veeintel some
of the specifics.

An HMM is characterized by a 5-tup{8, V, =, A, B), where

e S is a finite set of N statgsy, ..., s,}. Although the states are hidden, for many
practical applications there is some significance assoctatéde states of the
model.

e V is the set of M distinct symbols in the vocabulary of an HMMe M
observation/emission symbols correspond to the physical output of skeEmsy
being modeled.

e 1 = {m;} are the initial state probabilities where= P[q; = S;]and1 <i <N

e A= {a;;} are the state transition probabilities where
a;j = P[qrs1 = Silg: = S;], whenl < i,j < N.

e B= {bj(ok)} are the emission probabilities. The observation symbol probability
distribution in statei is B = {b;(k)}, whereb;(k) = P[{oy at t|q; = S;}] and
1<i<Nandl<k<M.

We useld = (4, B,) to denote the complete parameter set of the HMM. The constraints

on the HMM are

16

N

Zni=1for1SiSN

i=1

N

2 aj=1fori=12,..N

j=1

M
Z bi(op) =1fori=12,..N
k=1

For the model to be useful in real world applications, three prableeed to be
addressed. These problems are:
1. Evaluation: Evaluating the probability of an observed sequence of symibels
010, ..o (0;€ V), given a particular HMM, i.en(0|A).
2. Decoding: Finding the most likely sequence of states for the observed sequence
Let 9 = Q... be a sequence of states. We want to find
q" = argmaxgap(q|0,A).
3. Training: Adjusting all the parameterd to maximize the probability of
generating an observed sequence, i.e., toffind argmax;p(0|1).
In this thesis, we solve problem 2 with the help of the Viterborétlyn and problem 3

using Maximum Likelihood Estimation (MLE). Problem 1 is not addressed in this. study

3.2 Viterbi Algorithm

The Viterbi algorithm is used closely with Hidden Markov Modél$i\s). It is most
useful when calculating the most likely path through the statsitiens of these HMMs
over time. The motivation behind this algorithm arises from thetfedt givenN states

andT moments in time, calculating the probabilities of all traosgiover time would be

17

NT probability calculations. The observation made by Viterbi is tbatahy state at
timet there is only one likely path to that state. Therefore, ifre¢y@ths converge at a
particular state at a time, instead of recalculating them all when calculating the
transitions from this state to states at titne 1, the less likely paths can be discarded
and the most likely paths used. When this is applied, it reduces thbenuwh
calculations td” * N2 which is of lesser complexity than the method discussed earlier.
To illustrate how the algorithm finds the shortest path, we btee@present the
process pictorially. This can be done in a trellis diagranu¢gig). In a trellis, each node
corresponds to a distinct state at a given gmend each arrow represents a transition
a;; to some new state at the next instant of time. The most inmp@saect of the trellis

diagram is that for every possible state sequence there is a unique path through i

State 1
State 2
State 3
Sequence X1 *x2 X Xn
[[— [——]
X7 n=2 n=i n=N
time

Figure 3: Trellis Diagram

18

The idea of the Viterbi algorithm is to find the most probable patheach
intermediate state and finally for the terminating statéhe trellis. At each time only the
most likely path leading to each state survives. For an HMM Witstates the Viterbi
algorithm has 4 phases namely Initialization, Recursion, TerminatidnBacktracking.
This makes requires us to define two variables:

6, (1) is the highest likelihood of a single path among all the paths endingtessat a

timen.

6,() = max p(qu,qz) Gn-1,9n = Siy X1, X2, -, X5 |0)
q1,92,- dn-1,49n

and a variable),, (i) which allows us to keep track of the ‘best path’ ending in sjee

a timen.

Yo(i) = argmax p(qy, gz - Gn-1, Gn = Si» X1, X2, -, X5 |0)
Q1,CI2 """ Qn—l'Qn

1. Initialization
6:(0) = mibiy,i=1,...,N
YD) =0

wherer; is the probability of being in staieat a timen = 1.
2. Recursion

0,(j) = maxy<jen(Gp—1(0).a;). bjy,, 2<i <Nandl<j<N

Yn(j) = maxy<j<n(6p-1(i).a;;) ,where2 <i < Nandl<j<N
3. Termination

p"(X10) = max &y (i)

qy = argmax 6y (i)
<I<N

19

Find the best likelihood when the end of the observation sequeacg is
reached.
4. Backtracking
Q" ={qi, .,qn} so thatgy, = Yui1(qpea) n=N-1LN—=2,..,1
In this phase the best sequence of states is got frogh, thiectors
An example of how the algorithm works in the HMM we have designedplained later

in this chapter.

3.3 Maximum Likelihood Estimation (MLE)

The idea behind Maximum Likelihood estimate is to determine thanpers that
maximize the probability or likelihood of the sample data. MLE metlamdsconsidered
to be robust and versatile and so they are used for most modédts aifferent types of
data. Using Maximum Likelihood estimation with HMMs to deterntime parameters of
the model from labeled training data is also known as Supervised Training.

The process of computing the statistical parameters of an HMAMdIves the
calculation of emission probabilities and the transition probabiliias are associated
with states. The underlying sequence of states associatedheitdata is known by the
trainer. It is possible to find the number of distinct states adsdcwith the HMM by
parsing the file that is used for training purposes. To estimate the pasaofdtee HMM
we maintain a count of the transitions that are seen betwees &batall the possible
combinations of states and also maintain counts for the number of sgmbols
belonging to the defined HMM vocabulary are generated fromsstéles count is later

used to estimate emission and transition probabilities.

20

number of transitions from state s; to state s;

Transition Probability,a;; = —
Y dij number of transitions from state s;

Emission probability, b;(k)

number of times the symbol k is generated from state s;

total number of symbols generated from state s;

Maximum Likelihood estimation assigns a zero probability to dtatesitions and
state-emission combinations that are unseen in the training dasaprbblem if left
unchecked can cause erroneous results. It is most often handled witle thiessome type
of Smoothing technique. In this study, we use Absolute discounting and explained
in chapter 5.

It must be noted that the restrictions in transition topologyedl@n the design are
reflected in the parameters of the model only if the documentgget/labeled

appropriately.

21

CHAPTER 4
DESIGN

The design of the HMM to extract acronyms with their defomii is similar to the design
chosen by Frietag and McCallum [1] to model two data sets Igamaline seminar
announcements and Reuter's newswire articles on company acquisfttems-iMM
model for acronyms has 4 states:

e Prefix (0)

e Acronym (1)

e Definition (2)

e Suffix (3)
The states of special consequence are the Acronym and tmétiDefstate. These states
are also called the target states; the words that areafetdry them are candidate
acronyms and candidate definitions respectively. To capture cargdain restrictions

have been placed on the transitions between states. This is illustrated gutédélow

22

Target/Acronym

A

000 0010
000 000

Prefix states \ ! Suffix states
OO0

000

Definition

Figure 4: HMM for Acronyms and their Definitions

As can be seen from the figure, the HMM is not entirely ergdditle tagging data
to train the HMM model (for calculating probabilities) ig important to keep the
topology of transitions in check. In the event that acronyms acajrick succession the
target states can transition to the prefix state without fsange to suffix states. It is
however not possible to reach target states from the suéfte,sthe transition must
happen through the prefix state. The rules states above are what the mods! implie

It has been stated in section 3.1 that an essential part of Bhigi&idefinition of its
emission vocabulary. The vocabulary associated with the acronym FiMEl consists
of three symbols, each of which represents a type of word. The symbols are

e A —for the acronym that is made of all uppercase letters

23

e D —for possible definition of the acronym that starts with an uppercase letter

e n — for all other words in the text.

The document collection is first pre-processed before it can deiruske learning
module or the decoding module. This processing is explained cledhg mext chapter.
When the document collection (pre-processed) is parsed by theesyugvery word in
the document is translated to one of the above symbols. The routindsavieabeen
written do not capture context or semantics; they are only cattevith the sequences
of symbols the words translate to.

Maximum Likelihood Estimate (MLE) is calculated on a tagged deatiof words,
rather symbols with states. The probabilities that are cabculat this manner are
transition probabilities between all combinations of states and dyramission
probabilities associated with every state. Initial probalsligee set by hand. Let us
consider the following statement
The example explains how Maximum Likelihood Estimate (MLE) works in our thesis.
Preprocessing and tagging this statement would result in a seqaaeoh as the one
shown below.

The O
example O
explains O
how O
Maximum 2
Likelihood 2

Estimate 2

24

MLE 1
works 3
in3
our 3
thesis 3

The routine that uses Maximum Likelihood Estimation (MLE) readsfilki one line
at a time. The very first thing that is done by the routindesttanslation of words into
one of the defined emission symbols. The routine keeps track of thatcstate and the
previous state and keeps a count of the number of times the combinamoimtered
in the file. In the example that is considered it can be seeththétansition from state 0
to state 0 happens 3 times and the total number of transitions ats0gh the text is 4.
The probability associated with the transition from state<idte O is therefore 0.75. In a
manner similar to what is described the emission of symbol am fstate 0 happens 3
times in our example and the symbol ‘D’ is generated once $tate 0. The probability
associate with the state 0 for emitting symbol ‘n’ is the nunalbeéimes symbol ‘n’ is

emitted from state O divided by the total number of emissions from state 0 i.e. 0.75.

25

+

== o
LW

=S
=
B

WNHOWNEHEOQWNHOWNHOLD S OPrPSOPPS OSSO0t 00O -

utputPr 12
0.0369804
0.0928197
0.870133
0.997147
3.06805e-05
3.06805e-05
0.00596771
0.891985
0.101324
0.0211513
0.0781888
0.900427
ransPr 16
0.97688
0.000740519
0.0223791
7.3978e-07
0.161549
3.07654e-05
0.0615617
0.776858
0.00398397
0.250497
0.741535
0.00398397
0.0653865
2.56408e-06
0.000643583
0.933967

WIWIWIWANRMNAMNMNEEREREROOOSDOOOO A WWWARAMMPEFRERROODOOOQOWNR - OH

Figure 5: Sample set of probabilities

The Viterbi algorithm uses these probabilities to find the bestesee of states for
the input string. Consider another example statement:
this example shows how the Acronym Finder Program AFP works.
Step 1: Initialization
n =1, emission vocabulary = n
8,(0) = my.b,(n) = 0.7+ 0.870133 = 0.6090931 ,(0) = 0
8o(1) = my.b;(n) = 0.15 * 3.06805 * 1075 = 0.4602075 * 10~° 1),(1) = 0

80(2) = m,.by(n) = 0.15 % 0.101324 = 0.0151986 ,(2) = 0
26

60(3) = m3.b3(n) = 0%0.900427 =0 Y,(3)=0

Step 2: Recursion

n = 2, emission vocabulary = n

8,(0) = max(8,(0). ago, 6o(1). ao, 80(2). azo, 6o(3)-. asp). bo(n)

= max(0.06497379 * 0.97688,0.4602075 = 10~° * 0.161549,0.13379775
* 0.00398397,0 = 0.653865) 0.870133

= max(0.063471,0.074340 * 10~°,0.000533,0) 0.870133

= 0.0552282

Y,(0)=10

6,1 (1) = max(8¢(0). a1, 80(1). a1, 80(2). azy, 80(3). azy). by (n)

= max(0.06497379 * 0.000740,0.4602075 * 10~> = 3.07654 x 1075,0.13379775
% 0.250497,0 2.5640 * 107°) 3.06805 * 1075

= max(0.0000480, 1.4158467 * 10~1°,0.0335108, 0) 3.06805 * 107>

=0.1028 * 107>

Y (D) = 2

61(2) = max(8,(0). apz, 6o(1). a2, 80(2). azz, 6o(3). asz). bo(n)

= max(0.06497379 * 0.0223791,0.4602075 x 10~> % 0.0615617,0.13379775
* 0.741535,0 = 0.000643583) 0.101324

= max(0.001454,0.0283311 = 10%,0.0992157,0) 0.101324

= 0.01005

Y1(2) = 2

01(3) = max(8,(0). a3, 8o(1). ayz, 60(2). azz, 6o(3). azz). bs(n)

27

= max(0.06497379 * 7.3978 x 107, 0.4602075 * 10> % 0.776898,0.13379775
* 0.00398397,0 * 0.933967) 0.900967

= max(0.48066 * 10~7,0.357533 * 10~>,0.0005330,0) 0.900967

= 0.00048045

P1(3) = 2

n=3, emission vocabulary = n

8,(0) = max(81(0). ago, 61(1)- ayo, 8;(2). aze, 61(3)- aso)- bo(n)

= max(0.0552282 * 0.97688,0.1028 * 10~> = 0.161549,0.01005
* 0.00398397,0.00048045 * 0.653865) 0.870133

= 0.046944

P,(0) =0

8,(1) = max(81(0).agy, 61(1).ay1,61(2). azq,61(3).az1). bi(n)

= max(0.0552282 = 0.000740,0.1028 * 107> % 3.07654 = 107°,0.01005
x 0.250497,0.00048045 * 2.5640 * 107°) 3.06805 * 10~°

= 0.0077238 « 1075

Yo (1) = 2

82(2) = max(61(0). agz, 6, (1). ay3,61(2). azz, 61(3). asz). by (n)

= max(0.0552282 x 0.0223791,0.1028 = 10> % 0.0615617,0.01005
* 0.741535,0.00048045 * 0.000643583) 0.101324

= (0.0007551

Po(2) = 2

8,(3) = max(8;(0).ag3, 61(1).as3,61(2). azs, 81(3).azz). b3(n)

28

= max(0.0552282 * 7.3978 * 10~7,0.1028 * 10~ * 0.776898,0.01005
x 0.00398397,0.00048045 * 0.933967) 0.900967
= 0.0004042
Y,(3) =3
The recursion step continues till n=10 for all emission symboledgnsame manner as
above.
From the values calculated this far, we can see &), §,(0) and §,(0) have the
highest probabilities in their group. So backtracking would give usateence),(0) =
0, ¥,(0) = 0 of states and the start stateDiswhen we run the example through the
decoding module of our program we get:
this O
example O
shows 0
how O
the O
Acronym 2
Finder 2
Program 2
AFP 1

works 3

29

CHAPTER 5
IMPLEMENTATION

The program that was written to discover acronyms with tihefinitions was written
entirely in C++. The features that were implemented includeitgne that strips the input
file off any punctuation, the decoding algorithm called Viterbi atgm that finds the
best sequence of states for the input file, the algorithm thaisi¢lae parameters of the
HMM (Maximum Likelihood Estimation), the routine that ascertdivestype of the input
word and also the function that estimates the smoothing constant f@utpese of
absolute discounting. In this chapter we explain the various modules pfagram in
detail.

The program consists of three C++ files; one is the ménthat analyzes the
command line arguments and determines the action to be performedctmal Jile
contains all method and variable declarations and the other consikts agfinitions of
the same. The program consists of two modules namely,

e Learning Module

e Decoding Module
Before we explore each of these modules in greater detddlkwabout the aspects that
are common to both. To run the program certain command line argunmesdsto be
specified. They are:

e The first argument is a symbol that signifies the module to be invoked.

e The second is the number of states that are in the HMM.

e The third is the file that contains the probability distribution®@ssed with the

HMM (determined while learning and used while testing).

30

e The fourth is the name of the test file or the tagged training file.

e The fifth argument specifies the name of the output file.

The number of states of the HMM are determined during our design. phese
documents that are used for training and testing/decoding requieepiee-processed by
a routine that removes punctuation marks and transcribes whiteczaeeters into new

line characters.

5.1 Learning Module

The main goal of this module is to use Maximum Likelihood estonaty determine the
transition probabilities between states of the HMM and symbossom probabilities
associated with each state. The module is invoked by passinghhaeat of command
line arguments.

Preparing the tagged training document file is the very $iep. As has been
mentioned, the documents are collected and pre-processed. Thenid@uslly tagged
with one of four states ensuring that the topology of transitionotsviolated. This
completed tagged file is uploaded into the directory where our code is placed.

The document is parsed one line at a time. Every line of the tdggedhent has two
entries — the word and the state that it corresponds to. The svsethslated into one of
the emission symbols in the following manner:

e If the word starts with a capital letter and is followedshyaller case letters, it is

translated to the symbol ‘D’
e If the word comprises of only capital letters, it is translated to the symbol

e Any other word is translated to the symbol ‘I

31

The symbols and the state are assigned to a character anteger variable
respectively. Counters are set up to keep an account of the numbemegf the
combination of the symbol and the state are encountered and the nuntipeesothe
transition from the previous state to the current state is seen in the trainingedocline
counters are incremented by 1 every time. The routine also keegsof counters that
are used to normalize the probabilities. This runs till all ites|of the input training file
are read.

A function is called after counting the number of transitions encaahtEnd the
number of times the symbols are emitted from states. Thisidancalculates the actual
probabilities by using the formulas we have discussed in Chapter 3.

These formulae are implemented as they have been discussed dndeheould only be

useful for a very short sequence of symbols. This is because mamytigaavould get

extremely small as the sequence gets longer. This problerd beuhddressed in two
ways:

e Normalization, and

e Working on the logarithm domain
Working with logarithm would mean conversion of the product of small diemninto a
sum of the same small probabilities. The logarithm domain is ndiestealternative for
counting, normalization is an easier method to solve the underflow profdem
Maximum Likelihood estimate. A smoothing constant is calculated dempgrah the
number of states that are in our HMM. The smoothing constant ishonsandth of the
number of states. The probabilities are calculated by adding this cedtatatistant to the

counter and dividing this sum by a sum of the product of the number ef stat

32

smoothing constant and the normalization counter for every statefofinelae are
written below:
State transition probability, A[i][j] between state i and j is calculated

smoothconstant + CounterA[i][/j]

Ali]lj] =

N * smoothconstant + NormA[i]
Symbol emission probability of symbol |’ from state ‘i’ is

smoothconstant + CounterB|[j][i]
SYMNUM * smoothconstant + NormB]i]

Bljlli] =

SYMNUM is a constant that is defined in the header file thasisigned to an integer
number 94. The symbol ‘J' in the above formula corresponds to the ASCi¢ \adlthe
character. The list of symbols we consider is shown in Table thb&yemission
probabilities are calculated for each of these symbols in our ati®ugh the symbols
that are relevant to us are only just 3 as we have explainedcdde is built to
accommodate other HMM designs with a different number of staidsdéferent
emission vocabulary sets.

The probabilities that are calculated are written to thevfilese name is specified in
one of the command line arguments. The initial probabilities weze daded in the file
manually after making assumptions about the most probable ingtiakstt was decided
that these probabilities would be set by hand as most often tla stétie is a prefix state

in a document which would result in zero probabilities for the other states.

33

5.2 Decoding Module

The main objective of this module is to find the best possible seqoéstates for the

sequence of words belonging to documents that are isolated for the

Decimal | ASCII | Decimal | ASCIl | Decimal | ASCII | Decimal | ASCII | Decimal | ASCII
33 ! 53 5 73 I 93] 113 Q
34 “ 54 6 74 J 94 N 114 R
35 # 55 7 75 K 95 _ 115 S
36 $ 56 8 76 L 96 : 116 T
37 % 57 9 77 M 97 a 117 u
38 & 58 : 78 N 98 b 118 \Y
39 ‘ 59 ; 79] 99 c 119 w
40 (60 < 80 P 100 d 120 X
41) 61 = 81 Q 101 e 121 Y
42 * 62 > 82 R 102 f 122 z
43 + 63 ? 83 S 103 g 123 {
44 , 64 @ 84 T 104 h 124 |
45 - 65 A 85 U 105 i 125 }
46 : 66 B 86 \Y 106 j 126 ~
47 / 67 C 87 W 107 k

48 0 68 D 88 X 108 I

49 1 69 E 89 Y 109 m

50 2 70 F 90 z 110 n

51 3 71 G 91 [111 0

52 4 72 H 92 \ 112 p

Table 1: Characters and their ASCII codes

34

purpose of testing. The decoding algorithm used is the Viterlriddgh and the

probabilities required by it, state transitions and symbol eomgsiobabilities for every

state, are calculated in the previous module. The inputs requirédeaname of the file

in which the number of states and probabilities associated with M Hre present

along with the name of the file that needs to be tested agaeshodel. The names of
these files are passed as command line arguments when the module is invoked.

It must be ensured that the test file is preprocessed im#mmer that has been
described before it is used in further processing. The probabiéieociated with the
HMM model must first be saved into appropriate data structliressnumber of states is
read and assigned to an integer variable. The initial probabilibgiassd with each state
is stored in a one-dimensional array, while the transition probebiland symbol
emission probabilities are placed in two-dimensional arrays.

Maximum Likelihood Estimation assigns a probability of zero to emsmission —
state combinations in the training file. This is potentially hatrd the decoding process
and requires to be addressed. The problem is resolved by usingeptccaited absolute
discounting. Absolute discounting involves subtracting a small amount of plitbabi
from all symbols assigned a non-zero probability at a stateobkaBitity p is then
distributed equally over symbols given zero probability by the Mamniikelihood
estimate. If v is the number of symbols that are assigned norpadyability at a state s
and N is the total number of symbols, emission probabilities are calculated by

PW|S)m — p if P(W|S)m; >0

P(wls) = | vp

otherwise
N—v

35

There is no best way to calculate the value of p. We calculzéua proportional to the
non-zero emission probability MLE assigned to the state. The mannehich the
concept is implemented in our code is explained below.

Once all the values are read from the probabilities file, evaté through the arrays
making note of the indices of the values that are assigned grodrability. Similar to
the calculation that is used in the learning module, a functionleslcahd the smoothing
constant is determined. The arrays are iterated through gaseand for every entry we
calculate the portion that is to be subtracted from itselurktion is called to calculate
this portion and the parameters we pass to this function are thentcpnobability
associated with the state and the smoothing constant that wasidetem the previous
step. The function returns a value of type ‘double’ which is then stddrdmom the
current probability. The returned values are added to a variable to reearcettall sum..
This sum is then evenly distributed among the entries that werevetis® have zero
entries.

Absolute discounting is also used to smooth the transition probalagiegell as
initial probabilities to ensure that zero entries have no negetigets on the code. The
process is the same as the one described above. The progdpaitt te handle large
amounts of data and to overcome the problem of underflow (explained leatiméng
module). The decoding algorithm is done entirely in the logardbmain as opposed to
the use of normalization.

The working of the Viterbi algorithm is already discussed in ehapt The
implementation of the algorithm is done in much the same way. Dapasite data
types: struct data types are declared to handle the complex wéttire task involved.

36

One struct type is used to keep track of the path that has lkeenttaget to the current
state. It has an integer member variable that stores the cstagmntand another member
of the same struct type that holds the path; that is, the dupstrsce of states to get to the
state previous to s. Another struct type is used for the impletientaf the trellis
diagram (The significance trellis diagram has been explaine@€hapter 3). This
composite data type keeps track of the best path, the probabitlig best path and the
probability once the path is extended to include the current state.

As we are working on the logarithmic domain, the product of two satueonverted
to the sum of the logarithm of the same values. Two arrays eftskare created for each
of the struct types. One keeps track of the current best fidtietcurrent state and the
other records trellis information for every state. The inpetifilread one line at a time.
Once a word is read the first task is to translate thesdswato one of our emission
symbols. The default character is the symbol set aside fornaahevord; this is used
when the input word does not fall into any one of our defined categories.

The very first step in the algorithm is to determine the pessible start state. The
sum of the logarithms of the initial probability for every stated the emission
probability of the symbol associated with the same state sesulh probability. This
value is assigned to the member variable of the trellis tigga that records the
probability of the path. In this manner start probabilities of every stateeaeorded.

trellis[i].pr = log10(I[i]) + log10(B[cIndex][i]) where I[i] is the probability
that i is the start state and B[cIndex][i] is the enaisgprobability of cindex (ASCII value

of symbol) associated with state i.

37

In the recursion phase of the Viterbi algorithm we build ourgmrdiagram to find the
best way to get from one state to the next for the observedAdemporary variable is
used to store the best ‘From’ state; this is required to resoleention. Nested ‘for’
loops are used to find the best sequence of states and the ptpledsiticiated with
every combination of the same to determine the most likely tamsi he value is a sum
of the logarithms of the probability calculated in the previougp,sthe transition
probability between the previous state and the current state aechisson probability
associated with the symbol (type of next word that is reaah) fthe current state. The
new probability and the best ‘From’ state are recorded in thetdbijat is created to hold
the best possible values for the states in question. All the wottle document are put
through the same process with the use of a while loop.
thisPr = trellis[j].pr + log10(A[j][i]) + log10(B[cIndex][i]) where trellis[j].pr
is the probability associated with the current path tillesjatA[j][i] is the transition
probability from state j to state i and B[cIndex][i] is the same as in theiequdove.

The best path is extracted from the array of trellis abgetated, by using an iterator
object on it. The result of the decoding process is a filgpgtified) that has the string of
words and the state to which they belong listed adjacent to them.

The output file is then analyzed to determine how well the HMM hyetéormed.
The evaluation measures and findings of our experiment are explaintde next

chapter.

38

CHAPTER 6
EXPERIMENTS
Following the phases of the software development life cycle titdgm description was
provided in Chapter 1, the design was explained in Chapter 3 and thexptalaesl in
Chapter 4. This chapter talks about the experiments that were ceshdoctvaluate the
performance of the HMM model.

To build an HMM model that generalizes well and has high accirisdynportant to
gather large amounts of data for training. The better traimednodel is, the better the
model performs against new data sets. As there are no pattetmmngaalgorithms and
regular expression matching algorithms in place, it is not possibMork with context
windows for possible acronym occurrences. There is thereforquarament for large
amounts of data across different domains for the Maximum hiketl Estimate (MLE)
to provide the set of probabilities that are associated with HMDiigerent domains
ensure the use of acronyms with their definitions in various pattEuesy author has
their own pattern of writing and when these authors are picked difbenent domains,
their writing styles seldom coincide; this allows the HMdttain on different types of
data sets.

To achieve what has been explained, a set of 200 documents mamisacollected
from various articles available on the Internet. The only pre-réguisat was to be
satisfied by every file was the occurrence of at least one acronymheitletfinition in its
vicinity. The collection of documents was divided into two catego@eee set of 100
documents were used to train the HMM model and the other wasasest the same
model so as to evaluate the performance of the HMM model thatleggned. In this

39

study we discovered that one of the easiest ways to cdi¢atwas with the help of the
glossary of acronyms defined for a specific area of study. For examgstetHe Glossary
of Education Terms and Acronyms we gathered acronyms and lagsihdata as shown
below.

Allan Odden is Professor of Educational Leadership and Policy Analysis at the University of Wisconsin-
Madison. He also is Co-Director of the Consortium for Policy Research in Education (CPRE), a national
center studying how to improve state and local education policy. He formerly was professor of
education policy and administration at the University of Southern California (1984-1993) and Director of
Policy Analysis for California Education (PACE), and from 1975-1984 held various positions at the
Education Commission of the States. He was president of the American Educational Finance Association
in 1979-80 and received AEFA’s distinguished Service Award in 1998. His research and policy emphases
include school finance redesign and adequacy, effective resource allocation in schools, the costs of
instructional improvement, and teacher compensation. Dr. Odden has written widely, publishing over
200 journal articles, book chapters, and research reports, and 30 books and monographs. His newest
book, co-authored with Marc Wallace, is entitled How to Create World Class Teacher Compensation (St.
Paul: Freeload Press).

Figure 6: Sample Data 1

Fhe National Association of Colleges and Employers (NACE) tracks entry salary offers in a variety of
occupations within each of the fifty states, for graduates of select universities. In a 2003 school finance
adequacy study, Arkansas reviewed starting salaries for the following occupations and compared them
to the typical teacher—agriculture and natural resources, health and related occupations, and
humanities and social science, and the following occupations for math and science teachers—business,
computer technology, engineering, and science. The final issue in making salary comparisons is whether
teacher salaries should be “adjusted” to account for the fact that the typical teacher “works” only 9 or
10 months of the year, or even just 5-6 hours a day. This is a hotly debated issue within the education
policy community, with many arguing for an adjustment and others arguing just as vociferously for no
adjustment. But as Allegretto et al. (2004) learned from the U.S. Bureau of Labor Statistics (BLS), such an
adjustment is not warranted because it is difficult to determine how many hours or even weeks that
teachers work. Teachers prepare lessons and correct papers outside of the regular school day and often
engage in training or curriculum development over the summer months. In comparing salariesamong
professions, the BLS makes no adjustments when “work” hours are difficult to determine, such as the
number of hours airplane pilots work, or college professors work, and suggest that salary comparisons
for such jobs, including teachers, be made on an annual salary basis.

Figure 7: Sample Data 2

Before either set of documents were used further, each oéttloé documents were

put through a pre-process phase. Pre-processing of the training docantetiie set of

40

testing documents were conducted separately although the process inwadged
essentially the same. The decision to make the tradeoff betwaeg 8me and accuracy
makes the results of the experiments credible. A routine wemvto do two tasks; strip
the document collections of any punctuation and special charaetbie space
characters were replaced with new line characters in or@dote easy tagging and easy
scanning of the result set. The output of the pre-processing setefiilés that has no
punctuations, no special characters and has only one word per line.

The file obtained after pre-processing the 100 documents setf@siadaining are
tagged in a simple text editor such as notepad or wordpad. Tagging invbives t
assignment of one of the 4 states to every word in the file whiglst writing the state
adjacent to the word. The decision of the assignment is mades lisatner who is well
aware of the topology of transitions that the HMM model allovi®e fgged file is saved
as a simple text file with a .txt extension and saved in A8@¢bding. Transition and
Emission probabilities are calculated by the use of MLE anfil@. Initial probabilities
are set by hand so that all states have a fair chance of being theattait MLE were to
decide these initial probabilities, only the prefix state would bsigaed a large
probability while the others would have a probability closer to zedpasments start at
the prefix state most often. The output of the learning phasdiles \&ith probabilities
associated with the HMM model.

The 100 documents set aside for testing use the probabilities temlanl¢he previous
step. The output of the decoding phase is a file similar in appmata the training file.

This file is analyzed by a human observer (not necessarilyeavdhne design) for words

41

that are tagged with state 1 and 2 as they are candidate asr@mandefinitions

respectively. The file is checked for True Positives, False PositivesatselNfegatives.
Standard measures of Precision, Recall and F1 measure aréo usemluate the

performance of the HMM.

Precision is defined as

o Number of True Positives
Precision =

Number of True Positives + False Positives
Recall is defined as

Number of True Positives
Recall =

Number of True Positives + False Negatives

F1 measure is

1 + 1
Recall = Precision

The results obtained as shown in table below.

True Positive | False Positive False Negative Precision Recall F1

196 16 4 0.9245 0.98 0.95144

Table 2: Results

42

CHAPTER 7
CONCLUSION AND FUTURE WORK

The main objective of this thesis is to elucidate that HMMs lwa used for the task of
Information Extraction. Here, we addressed the problem of findirghgms and their
definitions using HMMs. We designed an HMM, implemented Viterboriigm and
Maximum Likelihood Estimator in C++ and compared our findingsh® Acronym
Finder Program [3]. The experiment can be concluded as successfuieand it
establishes that HMMs can be used for the task of extractienparg information from
documents.

The experiments in this thesis were conducted on a small set db20Ments. To
build an HMM that generalizes well and has high accuragrgelamount of data is
required. Testing the model on a large collection of data and corgp&sults against
the ad-hoc algorithm can be performed to establish which of the &tloods performs

better.

43

BIBLIOGRAPHY

. Dayne Freitag and Andrew Kachites McCallum, “Information extractiagh WMMs and
Shrinkage,” In Proceedings AAAI-99 Workshop Machine Learning and Infavmat
Extraction, 1999.

. Kazem Taghva, Jeffrey Coombs, Ray Pereda and Thomas Nartkleiress Extraction
Using Hidden Markov Models”, Proc. IS&T/SPIE 2004 Intl. Symp. on Electronic
Imaging Science and Technology

. Kazem Taghva and Jeff Gilbreth, “Recognizing Acronyms and tHefmitions”,
International Journal on Document Analysis and Recognition, Volume 1, Numb®@t -
198, DOI: 10.1007/s100320050018

. Wayne Grixti, Charlie Abela and Matthew Montebello, “Name Findtngm Free Text
Using HMMs”

. ChengXiang Zhai, “A Brief Note on the Hidden Markov Models”, Uniugrsif lllinois
at Urbana-Champaign, March 16, 2003

. Lawrence R Rabiner, “A Tutorial on Hidden Markov Models and Sele&pgdications
in Speech Recognition”, Proceedings of the IEEE, Vol 77, No. 2, pp. 257-286aRebr
1989

. Barbara Resch, “Hidden Markov Models”

. Kazem Taghva, Russell Beckley and Jeffrey Coombs, “The EftddDCR Error on the
Extraction of Private Information,” Document Analysis Systems 2006: 348-357

. Daniel M Bikel, Scott Miller, Richard Schwarts and Ralph Wedgel, “Nymble: A High-
Performance Learning Name Finder,” Proceedings of the Fifthe@emde on Applied
Natural Language Processing, 1997, pp. 194-201

44

10.Daniel M Bikel, “An Algorithm that Learns What's in an Nam&/lachine Learning,
BBN Systems and Technologies, Cambridge 1999

11.M. Banko, M. Cafarella, S. Soderland, M. Broadhead and O. Etzioni, “Opemkution
Extraction from the Web,” Magazine Communications of the ACM viSing the data
deluge Volume 51 Issue 12, December 2008

12.Harry Zhang, “The Optimality of Naive Bayes”, American Agation for Artificial
Intelligence 2004

13.Charles Sutton and Andrew McCallum. “An introduction to conditional randelasffor
relational learning”. In Lise Getoor and Ben Taskar, editors, Inttamu¢o Statistical
Relational Learning. MIT Press, 2006.

14.ReliaSoft Corporation, “ MLE (Maximum Likelihood) Parameter Estiomd,
Accelerated Life Testing Reference Appendix B : Parameten&ison

15.Christopher D Manning, Prabhakar Raghavan and Hinrich Schutze, “Introduation t
Information Retrieval”, Cambridge University Press. 2008.

16.Gerald DeJong, “ Skimming Newspaper Stories By Computer”, Yale Uniy@&n7

17.Georgette Silva and Don Dwiggins, “Towards a Prolog Text GrahiA&M SIGART

Bulletin 73 October 1980, Page 20-25.

45

VITA

Graduate College
University of Nevada, Las Vegas

Lakshmi Vyas

Degrees:
Bachelor of Engineering in Computer Science, 2006
Visvesvaraya Technological University

Thesis Title: Finding Acronyms and Their Definitions using HMM

Thesis Examination Committee:
Chair Person, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D
Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

46

	Finding acronyms and their definitions using HMM
	Repository Citation

	Microsoft Word - $ASQ89184_supp_undefined_7A0473C4-6B6A-11E0-AEC6-B485F0E6BF1D.docx

