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ABSTRACT

Zero-Sum Magic Graphs and Their Null Sets

by

Samuel M. Hansen

Dr. Ebrahim Salehi, Examination Committee Chair
Professor of Mathematics

University of Nevada, Las Vegas

For any h ∈ N, a graph G = (V,E), with vertex set V and edge set E, is said to

be h-magic if there exists a labeling l : E(G) → Zh − {0} such that the induced

vertex labeling l+ : V (G)→ Zh defined by

l+(v) =
∑

uv∈E(G)

l(uv)

is a constant map. When this constant is 0 we call G a zero-sum h-magic graph. The

null set of G is the set of all natural numbers h ∈ N for which G admits a zero-sum

h-magic labeling. A graph G is said to be uniformly null if every magic labeling of

G induces zero sum. In this thesis we will identify the null sets of certain classes of

Planar Graphs.
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CHAPTER 1

INTRODUCTION

1.1 Magic-Labelings

In this thesis all graphs are connected, finite, simple, and undirected. For graph

theory notations and terminology not directly defined in this thesis, we refer readers

to [2]. For an abelian group A, written additively, any mapping l : E(G)→ A−{0}

is called a labeling. Given a labeling on the edge set of G one can induce a vertex set

labeling l+ : V (G)→ A by

l+(v) =
∑

uv∈E(G)

l(uv).

A graph G is said to be A-magic if there is a labeling l : E(G)→ A− {0} such that

for each vertex v, the induced vertex label is a constant map.

1

1 1

2 2

3

Figure 1.1. A Z-magic graph.

In general, a graph G may have multiple labelings that show the graph is A-magic.

For example, if |A| > 2 and l : E(G)→ A− {0} is a magic labeling of G with sum c,

then l : E(G)→ A− {0}, the inverse labeling of l, defined by l(uv) = −l(uv) will be

another magic labeling of G with sum −c. A graph G = (V,E) is called fully magic

if it is A-magic for every abelian group A. For example, every regular graph is fully



magic. A graph G = (V,E) is called non-magic if for every abelian group A, the

graph is not A-magic. The most obvious example of a non-magic graph is Pn (n ≥ 3),

the path of order n. As a result, any graph with a path pendant of length at least two

would be non-magic. Here is another example of a non-magic graph: Consider the

graph H in Figure 1.2. Given any abelian group A, a potential magic labeling of H

is illustrated in that figure. The condition l+(u) = l+(v) implies that 6x+ y = 7x+ y

or x = 0, which is not an acceptable magic labeling. Thus H is not A-magic.

x
xy

u v
H:

Figure 1.2. An example of a non-magic graph.

Certain classes of non-magic graphs are presented in [1].

The original concept of A-magic graph originated with J. Sedlacek [16, 17], who

defined A-magic-graphs to be a graph with a real-valued edge labeling such that:

1. distinct edges have distinct nonnegative labels

2. the sum of the labels of the edges incident to a particular vertex is the same for

all vertices.

Jenzy and Trenkler [4] proved that a graph G is magic if and only if every edge of G is

contained in a (1-2)-factor. Z-magic graphs were considered by Stanley [18, 19], who

pointed out that the theory of magic labeling can be put into the more general context
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of linear homogeneous diophantine equations. Recently, there has been considerable

research articles in graph labeling, interested readers are directed to [3, 20]. For

convenience, the notation 1-magic will be used to indicate Z-magic and Zh-magic

graphs will be referred to as h-magic graphs. Clearly, if a graph is h-magic, it is not

necessarily k-magic (h 6= k).

1.2 Integer-Magic Labelings

Definition 1.1. For a given graph G the set of all positive integers h for which G is

h-magic is called the integer-magic spectrum of G and is denoted by IM (G).

Since any regular graph is fully magic, then it is h-magic for all positive integers

h ≥ 2; therefore, IM (G) = N. On the other hand, the graph H, Figure 1.2, is non-

magic, therefore IM (H) = ∅. The integer-magic spectra of certain classes of graphs

created through the amalgamation of cycles and stars have been identified in [6]

and [7] the integer-magic spectra of the trees of diameter at most four have been

completely characterized. Also, the integer-magic spectra of certain other graphs have

been studied in [5, 8, 9, 10, 13, 14, 15].
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CHAPTER 2

ZERO-SUM MAGIC GRAPHS

2.1 Zero-Sum Magic

Definition 2.1. An h-magic graph G is said to be h-zero-sum (or just zero-sum) if

there is a magic labeling of G in Zh that induces a vertex labeling with sum 0. The

graph G is said to be uniformly zero-sum if any magic labeling of G induces 0 sum.

A direct result of this definition is that any graph that has an edge pendant is not

zero-sum.

Definition 2.2. The null set of a graph G, denoted by N(G), is the set of all natural

numbers h ∈ N such that G is h-magic and admits a zero-sum labeling in Zh.

Here are some well known results concerning null sets of graphs by E. Salehi in [11, 12]

Theorem 2.1. If n ≥ 4, then N(Kn) =

{
N if n is odd
N− {2} if n is even

Theorem 2.2. Let m,n ≥ 2. Then

N(K(m,n)) =

{
N if m+ n is even;
N− {2} if m+ n is odd.

Definition 2.3. An h-magic graph G is said to be uniformly null if every h-magic

labeling of G induces 0 sum.

Theorem 2.3. The bipartite graph K(m,n) is uniformly null if and only if |m−n| =

1.

One can introduce a number of operations among zero-sum graphs which produce

magic graphs. Here is an example of one such operation.



Definition 2.4. Given n graphs Gi i = 1, 2 · · · , n, the chain G1 �G2 � · · · �Gn is the

graph in which one of the vertices of Gi is identified with one of the vertices of Gi+1.

If Gi = G, we use the notation �Gn for the n-link chain all of whose links are G.

Observation 2.1. If graphs Gi have zero sum, so does the chain G1 �G2 � · · · �Gn,

hence it is a magic graph. Moreover, if Gi = G, then the null set of the chain �Gn is

the same as N(G).

Figure 2.1. Finding the null set of this graph seems difficult.

Figure 2.2. Graph G is constructed by six copies of K4.
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Theorem 2.4. N(Cn) =

{
N if n is even
2N if n is odd

For any three positive integers α < β ≤ γ, the theta graph θα,β,γ consists of three

edge disjoint paths of length α, β and γ having the same endpoints, as illustrated in

Figure 2.3. Theta graphs are also known as cycles with a Pk chord.

u v

Figure 2.3. The graph θ3,4,7.

Theorem 2.5.

N(θα,β,γ) =

{
N− {2} if α, β, γ have the same parity
2N− {2} otherwise

When k copies of Cn share a common edge, it will form an n-gon book of k pages and

is denoted by B(n, k).

Theorem 2.6.

N(B(n, k)) =


N n is even, k is odd
N− {2} n and k are both even
2N− {2} n is odd, k is even
2N n and k both are odd

Lemma 2.1. (Alternating label) Let u1, u2, u3 and u4 be four vertices of a graph

G that are adjacent (u1 ∼ u2 ∼ u3 ∼ u4) and deg u2 = deg u3 = 2. Then in any magic

labeling of G the edges u1u2 and u3u4 have the same label.

6



x xy

u1 u2 u3 u4

Figure 2.4. Alternating label in a magic labeling.

Given k ≥ 2 the positive integers a1 < a2 ≤ a3 ≤ · · · ≤ ak, the generalized theta

graph θ(a1, a2, · · · , ak) consists of k edge disjoint paths of lengths a1, a2, · · · , ak having

the same initial and terminal points.

When discussing magic labeling of a generalized theta graphG = θ(a1, a2, · · · , ak), the

alternating label lemma (2.1), allows us to assume that ai = 2 or 3. For convenience,

we will use θ(2m, 3n) to denote the generalized theta graph which consists of m paths

of even lengths and n paths of odd lengths.

Theorem 2.7. Following the above notations, for any two non-negative integers m,n

N(θ(2m, 3n)) =

{
2N− {1− (−1)m+n} if m = 1 or n = 1;
N− {1− (−1)m+n} otherwise.

7



CHAPTER 3

NULL SETS OF CERTAIN PLANAR GRAPHS

3.1 Null sets of Wheels

For n ≥ 3, wheels, denoted Wn, are defined to be Cn + K1, where Cn is the cycle of

order n. The integer-magic spectra of wheels are determined in [10].

Theorem 3.1. If n ≥ 3, then IM(Wn) = N− {1 + (−1)n}.

In this section we determine the null sets of wheels. Since the degree set of the

Wn is {3, n}, Wn cannot have a zero-sum magic labeling in Z2. Therefore, for any

n ≥ 3, 2∈/ N(Wn). Let u1 ∼ u2 ∼ · · · ∼ un ∼ u1 be the vertices of the cycle Cn and

u the center vertex of the wheel. In some cases, for convenience, we may use un+1 for

u1 and u−1, u0 for un−1, un, respectively. The following observation will be useful in

finding the null sets of wheels.

Observation 3.1. If l : E(Wn)→ Zh (h 6= 2) is a zero-sum magic labeling, then

2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un) + l(unu1)

)
≡ 0 (mod h).

Proof. Let l : E(Wn) → Zh be the edge labeling that provides zero-sum. Clearly,

l∗(u) = 0 implies that sum of the labels of all spokes is 0. Also, l∗(uk) = 0 (1 ≤ k ≤ n).

Therefore,

n∑
k=1

l∗(uk) = 2
∑

l(uiui+1) + l∗(u)

= 2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un) + l(unu1)

)
≡ 0.

Observation 3.2. For every n ≥ 3, 3 ∈ N(Wn) if and only if n ≡ 0 (mod 3).



Proof. If n ≡ 0 (mod 3), then we label all the edges of Wn by 1 and this provides a

zero-sum in Z3. Now suppose n≡/ 0 (mod 3) and let l : E(Wn) → Z3 be any magic

labeling of Wn with zero-sum. Then by Observation 3.6, the sum of the labels of the

outer edges is 0. Since the outer edges cannot all be labeled 1 (or 2), two adjacent

outer edges would have labels 1 and 2. This implies that the spoke adjacent to these

two outer edges must have label 0, which is not an acceptable label.

Observation 3.3. If Wn is zero-sum h-magic, so is Wkn for every k ∈ N.

Proof. Following the notations used above, let u1 ∼ u2 ∼ · · · ∼ un ∼ u1 be the vertices

of the cycle Cn and u the center vertex of Wn. For Wkn, let v1 ∼ v2 ∼ · · · ∼ vkn ∼ v1

be the vertices of Ckn and v be its center vertex. Also, assume that f : E(Wn)→ Zh is

a magic labeling of Wn with 0 sum. Now define g : E(Wkn)→ Zh by g(vvm) = f(uui)

whenever m ≡ i (mod n) and g(vmvm+1) = f(uiui+1) whenever m ≡ i (mod n).

Then for the induced vertex labeling g∗ : V (Wkn)→ Zh we have g∗(v) = kf ∗(u) = 0.

Moreover, given any vm let m = qn+ r (0 ≤ r ≤ n− 1). Then g∗(vm) = g(vm−1vm) +

g(vmvm+1) + g(vvm) = f(ur−1ur) + f(urur+1) + f(uur) = f ∗(ur) = 0. Therefore, g is

a magic labeling of Wkn with 0 sum.

Corollary 3.1. For any n ≥ 1, N(W3n) = N− {2}.

Proof. Note that W3
∼= K4, for which we have N(W3) = N − {2}. Therefore, by 3.3,

N(W3n) = N− {2}.

Lemma 3.1. For any n ≥ 3, N− {2, 3} ⊂ N(Wn).

Proof. To prove the lemma we consider the following four cases:

9



Case 1. Suppose n ≡ 0 (mod 4) or n = 4p for some p ∈ N.

A zero-sum magic labeling of W4 is provided in Figure 3.1, which indicates that for

every h > 3, the graph W4 admits a zero-sum magic labeling in Zh, where −2 ≡ 2−1.

Therefore, by Observation 3.3, W4p has a zero-sum magic labeling in Zh. That is

N− {2, 3} ⊂ N(W4p).

1

1 1

1

-2

-2

1

1

1

-2

-2
2

2

-3

1

1

1

1

1

-2

-3

-3

-3

2

2 2

u1 u2 u1u1 u2u2

Figure 3.1. A zero-sum labeling of W3,W4 and W6.

Case 2. Suppose n ≡ 1 (mod 4) or n = 4p + 1 for some p ∈ N. We proceed by

induction on p and show that

“for any p, there is a zero-sum magic labeling for W4p+1. Moreover, in this

labeling at least one of the outer edges have label 1.”

Let p = 1. In Figure 3.2(A), a zero-sum magic labeling of W5 in Z4 is provided. Also,

Figure 3.2(B) indicates that W5 admits a zero-sum magic labeling in Zh for all h ≥ 5,

where −1 ≡ 1−1, −2 ≡ 2−1 and −3 ≡ 3−1.

Now, assume that the statement is true for W4p+1 and let u1u2 be the outer edge

of W4p+1 that has label 1. Then we eliminate this edge and insert the four-spoke

extension, which is given in Figure 3.3, in such a way that the vertices z, v and w

of this extension be identified with the central vertex u and vertices u1, u2 of W4p+1,

10



respectively. This provides the desired zero-sum magic labeling for W4p+5.

1

1

-1

-3

-3

-2

2

2

4

-1

1

1

-3

2
2

1

-3

-3

2

2

A: B:

u2u2u1 u1

Figure 3.2. Two zero-sum-magic labeling of W5.

1

1

2 1-2

-3

2-2

1

v wz

Figure 3.3. The four-spoke extension of a wheel.

An argument similar to the one presented in case 2, will also work for the remaining

two cases:

Case 3. Suppose n ≡ 2 (mod 4) or n = 4p+ 2 for some p ∈ N.

Case 4. Suppose n ≡ 3 (mod 4) or n = 4p+ 3 for some p ∈ N.

We summarize the main result of this section in the following theorem:

Theorem 3.2. For any n ≥ 3, N(Wn) =

{
N− {2} ifn ≡ 0 (mod 3)
N− {2, 3} if otherwise

3.2 Null sets of Fans

For n ≥ 2, Fans, denoted Fn, are defined to be Pn+K1, where Pn is the path of order

n. In this section we determine the null sets of Fans. Since the degree set of the Fn is

11



{2, 3, n}, it cannot have a magic labeling in Z2. Therefore, for any n ≥ 3, 2∈/ N(Fn).

Note that F2 ≡ C3, and we know that N(F2) = 2N. Also, a typical magic labeling of

F3
∼= K4−e is illustrated in Figure 3.4(A), for which we require that a+b−z = a+b+z

or 2z ≡ 0 (mod h); that is, h has to be even. On the other hand, if h = 2r, then

F3 admits a zero-sum magic labeling in Zh, as indicated in Figure 3.4(B). Therefore,

N(F3) = 2N−{2}. For the general case, let u1 ∼ u2 ∼ · · · ∼ un be the vertices of the

path Pn and u the central vertex of the fan. We call the edges uui (1 ≤ i ≤ n) blades

of the fan Fn. The following observation will be useful in finding the null sets of fans.

ab

z

r 1

-b

-1

1-r -1

r

-a

A: B:

Figure 3.4. A typical magic labeling of F3.

Observation 3.4. If l : E(Fn)→ Zh (h 6= 2) is a zero-sum magic labeling, then

2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un)

)
≡ 0 (mod h).

Proof. Let l : E(Wn) → Zh be the edge labeling that provides zero-sum. Clearly,

l∗(u) = 0 implies that sum of the labels of all blades is 0. Also, l∗(uk) = 0 (1 ≤ k ≤ n).

Therefore,

n∑
k=1

l∗(uk) = 2
∑

l(uiui+1) + l∗(v)

= 2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un)

)
≡ 0.

Theorem 3.3. N(F2) = 2N, N(F3) = 2N− {2} and for any n ≥ 4,

12



N(Fn) =

{
N− {2} if n ≡ 1 (mod 3);
N− {2, 3} otherwise.

Proof. First let us first consider if n ≥ 2, 3 ∈ N(Fn). We know from above that

3∈/ N(Fn) for n = 2, 3. Suppose n ≥ 4 and n ≡ 1 (mod 3). Then we label all the

edges of Pn by 2, the two outer blades by 1 and all other blades by 2, as illustrated

in Figure 3.5. This is a zero-sum magic labeling of Fn.

u1

u2

u3

un u 11

2

2
2 2

2
22

22

22

Figure 3.5. The fan Fn (n = 7).

Next, suppose n≡/ 1 (mod 3) and let l : E(Fn) → Z3 be a zero-sum magic labeling.

By Observation 3.4, we require that l(u1u2) + l(u2u3) + · · ·+ l(un−1un) ≡ 0 (mod 3),

which implies that at least two adjacent edges of Pn are labeled 1 and 2. But this will

force the label of the blade adjacent to these edges be 0, which is not an acceptable

label. Therefore, such a zero-sum magic labeling does not exist and n ≥ 2, 3 ∈ N(Fn)

if and only if n ≡ 1 (mod 3).

To finish the proof of the theorem we consider the following three cases:

Case 1. Suppose n ≡ 1 (mod 3) or n = 3p + 1 for some p ∈ N. We proceed by

induction on p and show that

“for any p, there is a zero-sum magic labeling for F3p+1. Moreover, in this

13



labeling at least one of the edges of Pn has label 2.”

Let p = 1. In Figure 3.6, a zero-sum magic labeling of F4 is provided in Zh for all

h ≥ 4, where −1 ≡ 1−1, −2 ≡ 2−1 and −3 ≡ 3−1.

1 1

1

-2

-1

2

2-1

-1 -1

-1 11

-2

2

1

1 1

1

-2

-3
-3-3

2

2 2

-1

Figure 3.6. A zero-sum magic labelings of F4, F5 and F6.

Now, assume that the statement is true for F3p+1 and let uiui+1 be the edge of P3p+1

that has label 2. Then we eliminate this edge and insert the three-blade extension,

which is given in Figure 3.7, in such a way that the vertices z, v and w of this extension

be identified with vertices u, ui, ui+1 of F3p+1, respectively. This provides the desired

zero-sum magic labeling for F3p+4.

-1

2 2

-1

-1

-1
2

v w

z

Figure 3.7. The three-blade extension of a fan.

An argument similar to the one presented in case 1, will also work for the remaining

two cases:
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Case 2. Suppose n ≡ 2 (mod 3) or n = 3p+ 2 for some p ∈ N.

Case 3. Suppose n ≡ 0 (mod 3) or n = 3p for some p ∈ N− {0}.

3.3 Null sets of Double Wheels

For n ≥ 3, double wheels, denoted by DWn, are the cycle Cn(u1 ∼ u2 ∼ · · · ∼ un ∼

u1) together with two additional vertices v and w that are connected to all vertices

of the cycle. In this section we determine the null sets of double wheels.

Theorem 3.4. For all n ≥ 3 N(DWn) =

{
N if n ≡ 0 (mod 2);

N− {2} if n ≡ 1 (mod 2)

Proof. To prove the Theorem we consider the following two cases:

Case 1. Suppose n ≡ 1 (mod 2) or n = 2p + 1 for some p ∈ N . First observe that

if n is odd then the degree set of DWn is {4, n} and DWn is not Z2-magic, therefore

can not have a zero-sum labeling in Z2. Now we proceed by induction on p and show

that

“for any p, there is a zero-sum magic labeling for DW2p+1. Moreover, in

this labeling at least one of the edges of Cn has label 1.”

-1

1 -1

-2

1

2
1

1

1

-1

2

-1

-1

-1

-1

-1 -1

11
1

-1

Figure 3.8. A zero-sum magic labeling of DW3 and DW4
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In Figure 3.8, a zero-sum magic labeling of DW3, p = 1, is provided in Zh for all

h ≥ 3, where −1 ≡ 1−1 and −2 ≡ 2−1. Now, assume that the statement is true for

DW2p+1 and let uiui+1 be the edge of C2p + 1 that has label 1. Then we eliminate

this edge and insert the four-blade extension, given in Figure 3.9, with vertices a, b,

c, and d such that a and d are identified with ui and ui+1 respectively. This provides

the desired zero-sum magic labeling for DW2p+3.

1 1-1

-1

-11

1

a dcb

Figure 3.9. The four blade extension for a double wheel

Case 2. Suppose n ≡ 0 (mod 2) or n = 2p for some p ∈ N − {0}. Then to prove

2 ∈ N(DFn) one must observe that the degree set of DW2p = {4, n}. Since n is

even a labeling of 1 on all edges yields a zero-sum-magic labeling and 2 ∈ N(DWn).

Finally, an argument similar to one presented in case 1 will suffice to show that for

k ≥ 3, k ∈ N(DWn).

3.4 Null sets of Double Fans

For n ≥ 2, double fans, denoted by DFn, are the path Cn(u1 ∼ u2 ∼ · · · ∼ un)

together with two additional vertices v and w that are connected to all vertices of
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the path. In this section we determine the null sets of Double Fans. Since the degree

set of the DFn is {3, 4, n}, it cannot have a magic labeling in Z2. Therefore, for any

n ≥ 2, 2∈/ N(DFn). Note that DF2 ≡ F3, and we know that N(DF2) = 2N − {2}.

Also note, DF3 ≡ W4 and we know that N(DF3) = N− {2, 3}.

Theorem 3.5. N(DF2) = 2N− {2}, N(DF3) = N− {2, 3}, and for any n ≥ 4,

N(DFn) = N− {2}

Proof. To prove the theorem we consider the following two cases:

Case 1. Suppose n ≡ 0 (mod 2) or n = 2p for some p ∈ N+ 1−{0}. We proceed by

induction on p and show that

“for any p, there is a zero-sum magic labeling for DF2p. Moreover, in this

labeling at least one of the edges of Pn has label 2.”

2

2

2 22

1

1

1
1 1

1
1

1
-1

-1
-1-1

-1

-1
-1

-1

-2-2

-2

-2

Figure 3.10. A zero-sum magic labeling of DF4 and DF5

In figure 3.10, a zero-sum magic labeling of DF4, p = 2, is provided in Zh for all

h ≥ 3, where −1 ≡ 1−1 and −2 ≡ 2−1. Now, assume that the statement is true for

17



DF2p and let uiui+1 be the edge of P2p that has label 2. Then we eliminate this edge

and insert the four-blade extension, given in Figure 3.11, with vertices a, b, c, and

d such that a and d are identified with ui and ui+1 respectively. This provides the

desired zero-sum magic labeling for DF2p+2.

22

1

1-1

-1

-2
a dcb

Figure 3.11. The four blade extension for a double fan

An argument similar to the one presented in case 1, will also work for the remaining

case:

Case 2. Suppose n ≡ 1 (mod 2) or n = 2p+ 1 for some p ∈ N + 1.

3.5 Prisms and n-Prisms

For k ≥ 3 a Prism of order k, denoted P2Ck, is P2 ×Ck In other words, two identical

copies of Ck, u1 ∼ u2 ∼ · · · ∼ uk ∼ u1 and v1 ∼ v2 ∼ · · · ∼ vk ∼ v1, with additional

edges connecting ui and vi for all i. For k ≥ 3 and n ≥ 3 an n-Prism of order k, is

defined to be PnCk = Ck × Pn. The degree set of P2Ck is {3} and the degree set of

PnCk is {3, 4}. Therefore P2Ck and PnCk cannot have a zero-sum magic labeling in

Z2, which implies 2∈/ N(P2Ck) and 2∈/ N(PnCk).
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Theorem 3.6. For any k ≥ 3, N(P2Ck) = N− {2}

1

1

-2

1

1

1 1 1 1

-2
-2

-2

Figure 3.12. A zero-sum magic labeling P2C4

Proof. P2Ck can be drawn as two cycles of order k, one within the other and oriented

in the same way, with edges connected the corresponding vertices of the cycles. Label

all of the edges of the cycles with 1, and all of the connecting edges with -2. Then all

of the vertices have two edges labeled 1 and one edge labeled -2 incident. This is a

zero-sum magic labeling of P2Ck in Zh for all h ≥ 3, where −2 stands for the inverse

of 2.

Theorem 3.7. For any k ≥ 3 and n ≥ 3, N(PnCk) = N− {2}

Proof. PnCk can be drawn as n cycles of order k, within each other and oriented in the

same way, with edges connecting the corresponding vertices. Label all of the edges of

the outermost cycles with 1, all the edges of the interior cycles with 2, and all of the

connecting edges with -2. Then all of the vertices on the outermost cycles have two

edges labeled 1 and one edge labeled -2 incident and all the vertices on the interior

cycles have two edges labeled 2 and two edges labeled -2 incident. This is a zero-sum
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magic labeling of P2Ck in Zh for all h ≥ 3.

2
1

-2

1
1

1

1

1

2

2

-2

-2-2

-2-2

Figure 3.13. A zero-sum magic labeling P3C3

3.6 Anti-Prisms and n-Anti-Prisms

For k ≥ 3 an anti-Prism of order k, denoted by APk, is two identical copies of Ck,

Ck:u1 ∼ u2 ∼ · · · ∼ uk ∼ u1 and C
′

k: v1 ∼ v2 ∼ · · · ∼ vk ∼ v1 with additional edges

uivi and uivi−1 (mod n) for i = 1 · · ·n, as illustrated in Figure 3.14.

u2u1

u3u4

v1

v2

v3

v4

Figure 3.14. AP4
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For k ≥ 3 and n ≥ 3, an n-Anti-Prism of order k, n-APk, is n identical copies of Ck,

C
(1)
k , C

(2)
k , · · · , C(n)

k , where any two consecutive cycles form an Anti-Prism.

Theorem 3.8. For any k ≥ 3, N(APk) = N

Proof. APk can be drawn in a planar fashion as two cycles of order k, one within

the other with edges connected the corresponding vertices. If all the cycle edges are

labeled with a 1 and all the edges connecting the two cycles are labeled with a -1,

then all vertices with have two edges labeled with a 1 and two edges labeled with a

-1. This is a zero-sum magic labeling of APk in Zh for all h ≥ 2, where −1 stands for

the inverse of 1.

Theorem 3.9. For any k ≥ 3 and n ≥, 3 N(n-APk) = N

Proof. n-APk can be drawn in a planar fashion as n cycles of order k, drawn one

within another with edges connected the corresponding vertices. Label the edges in

the following fashion: since all of the vertices are either degree 4 or degree 6 if we

label ever edges with a 1 that is clearly a zero-sum labeling in Z2. Also if we label

the outermost cycle edges with 1’s, all of the inner cycle edges with 2’s and all edges

connecting cycles with -1’s, then every vertex on the outermost cycles will have two

edges labeled with 1 and two edges labeled with -1 and all inner cycle vertices will

have two edges labeled with 2 and four edges labeled with -1. This is a zero-sum

magic labeling of n-APk in Zh for all h ≥ 3.
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3.7 Null sets of Grids

For n ≥ 2 and k ≥ 2, an n by k Grid, Pn,k, is Pn × Pk. In this section we determine

the null sets of Grids. Since the degree set of Gn,k, for n ≥ 3 and k ≥ 3, is {2, 3, 4}

and the degree set of Gn,2, n ≥ 3, and G2,k, k ≥ 3, is {2, 3}, Pn,k, where n ≥ 3 or

k ≥ 3, cannot have a magic labeling in Z2 if n ≥ 3 or k ≥ 3. Therefore 2∈/ N(Pn,k) if

n ≥ 3 or k ≥ 3. Note that P2,2 ≡ C4, and we therefore know that N(P2,2) = N.

Theorem 3.10. For any n ≥ 3 or k ≥ 3, N− {2} ⊂ N(Pn,k)

Proof. You can think of a Grid as being k Pn’s oriented horizontally and connected

together by n Pk’s. Label all of the edges in the following way: the two outer Pn’s

with 1’s, the k − 2 inner Pn’s with 2’s, the two outer Pk+1’s with −1’s, and the the

n− 2 outer Pk’s with −2’s.

1 1 1 1

1 1 1 1

-1

-1

-1

-1

-1

-1

-2 -2 -2

-2 -2 -2

-2 -2 -2

2

2

2 2 2

222

Figure 3.15. A zero-sum magic labeling of P4,5

Then the corner vertices will have edges incident to them having values 1 and

−1, the non-corner vertices on the outer Pn’s will have edges incident to them having

values 1, 1, and −2, the non-corner vertices on the outer Pk’s will have edges incident
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to them having values −1, −1, and 2, and all interior vertices will have two edges

incident to them having value 2 and two others having value −2. This is a zero-sum

magic labeling of Gn,k in Zh for all h ≥ 3, where −1 and −2 stand for the inverses of

1 and 2 respectively.

3.8 Null sets of Bowties

For n ≥ 2, Bowties, BTn, are two identical copies of Fn that are connected together

at the Fns’ K1 nodes. Since the degree set of the BTn is {2, 3, n + 1}, BTn cannot

have a zero-sum magic labeling in Z2. Therefore, for any n ≥ 2, 2∈/ N(BTn). Let

u1 ∼ u2 ∼ · · · ∼ un be the vertices of the path of one of the Fns, u the K1 vertex of

the corresponding fan, and v the K1 of the other fan. The following observation will

be useful in finding the null sets of bowties.

Observation 3.5. If l : E(BTn)→ Zh is a zero-sum magic labeling, then

2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un)

)
≡ l(uv) (mod h).

Proof. Let l : E(BTn) → Zh be the edge labeling that provides zero-sum. Clearly,

l∗(u) = 0 implies that sum of the labels of all spokes is −l(uv). Also, l∗(uk) = 0 (1 ≤

k ≤ n) and l∗(u) = 0. Therefore,

n∑
k=1

l∗(uk) = 2
n∑
k=1

l(uiui+1) +

(
l∗(u)− l(uv)

)
= 2

n∑
k=1

l(uiui+1)− l∗(uv)

⇒ 2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un)

)
≡ l(uv).

Theorem 3.11. For any n ≥ 2,
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N(BTn) =

{
N− {2, 3} if n ≡ 1 (mod 3);
N− {2} otherwise.

Proof. First let us consider if n ≥ 2, 3∈/ N(BTn). For n≡/ 1 (mod 3) label all the

path edges with 1’s, all the interior spokes with 1’s, all the exterior spokes with 2’s,

and the uv edge with a 1 if n ≡ 0 (mod 3) or 2 if n ≡ 2 (mod 3). Then the end

vertices of the path have an edge labeled 1 and an edge labeled 2 incident, the interior

path vertices have three edges labeled 1 incident, and if n ≡ 0 (mod 3) u and v have

two edges labeled 2, n − 1 edges labeled 1 incident or if n ≡ 2 (mod 3) u and v

have three edges labeled 2 and n− 2 edges labeled 1 incident. These are both clearly

zero-sum labeling. Suppose n ≡ 1 (mod 3) and let l : E(BTn) → Z3 be any magic

labeling of BTn with zero-sum. Then by Observation 3.5, twice the sum of the labels

of the path edges is l(uv). Since there are n − 1 path edges, which is equivalent to

0 (mod 3), they cannot all be labeled 1 (or 2) since that would imply that l(uv) is

zero, two adjacent path edges would have labels 1 and 2. This implies that the spoke

adjacent to these two outer edges must have label 0, which is not an acceptable label.

Therefore, n ≥ 2, 3∈/ N(BTn) if and only if n ≡ 1 (mod 3).

To finish the proof of the theorem we consider the following three cases:

Case 1. Suppose n ≡ 1 (mod 3) or n = 3p + 1 for some p ∈ N. We proceed by

induction on p and show that

“for any p, there is a zero-sum magic labeling for BT3p+1. Moreover, in

this labeling at least one of the edges on both Pn’s has label 1.”

In figure 3.16, a zero-sum magic labeling of BT4, p = 1, is provided in Zh for all

h ≥ 4, where −2 ≡ 2−1 and −3 ≡ 3−1.
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1

1

-2

1

1
1

1 1

1 -2-22

-1 -1

-1-1 -1 -1

22

1

-2

2 2

3 3-3 -3

-2-21

-1 -1

Figure 3.16. A zero-sum magic labeling BT2, BT3, and BT4

Now, assume that the statement is true for BT3p+1 and let uiui+1 be the edge of P3p+1

that has label 1. Then we eliminate this edge and insert the four-blade extension, given

in Figure 3.17, with vertices a, b, c, d, and e, such that a and e are identified with ui

and ui+1 respectively. This provides the desired zero-sum magic labeling for BT3p+4.

1 1

1

1

1 -2

-2

a dcb e

Figure 3.17. The three blade extension of a bowtie.

An argument similar to the one presented in case 1, will also work for the remaining

two cases:

Case 2. Suppose n ≡ 2 (mod 3) or n = 3p+ 2 for some p ∈ N.

Case 3. Suppose n ≡ 0 (mod 3) or n = 3p for some p ∈ N− {0}.

25



3.9 Null sets of Axles

For n ≥ 3, Axles, AXn, are two identical copies of Wn that are connected together

at the Wns’ K1 nodes. Since the degree set of the AXn is {3, n + 1}, AXn cannot

have a zero-sum magic labeling in Z2. Therefore, for any n ≥ 2, 2∈/ N(AXn). Let

u1 ∼ u2 ∼ · · · ∼ un ∼ u1 be the vertices of the cycle of one of the Wn’s(in some cases,

for convenience, we may use un+1 for u1 and u−1, u0 for un−1, nn, respectively.), u the

K1 vertex of the corresponding wheel, and v the K1 of the other wheel.

Observation 3.6. If l : E(AXn)→ Zh is a zero-sum magic labeling, then

2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un + l(unu1)

)
≡ l(uv) (mod h).

Proof. Let l : E(AXn) → Zh be the edge labeling that provides zero-sum. Clearly,

l∗(u) = 0 implies that sum of the labels of all spokes is −l(uv). Also, l∗(uk) = 0 (1 ≤

k ≤ n). Therefore,

n∑
k=1

l∗(uk) = 2
n∑
k=1

l(uiui+1) +

(
l∗(u)− l(uv)

)
= 2

n∑
k=1

l(uiui+1)− l∗(uv)

⇒ 2

(
l(u1u2) + l(u2u3) + · · ·+ l(un−1un)

)
≡ l(uv).

Theorem 3.12. For any n ≥ 3,

N(AXn) =

{
N− {2, 3} if n ≡ 0 (mod 3)
N− {2} otherwise

Proof. First let us consider if n ≥ 3, 3∈/ N(AXn). For n≡/ 0 (mod 3) label all the

cycle and spoke edges with 1’s and the edge uv with a 1 if n ≡ 2 (mod 3) or 2 if n ≡ 1

(mod 3). Then the cycle vertices of the wheel have three edges labeled 1 incident and
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u and v have n edges labeled 1 and one edge labeled 2 incident if n ≡ 1 (mod 3) or

n + 1 edges labeled 1 if n ≡ 2 (mod 3). These are both clearly zero-sum labelings.

Suppose n ≡ 1 (mod 3) and let l : E(AXn) → Z3 be any magic labeling of BTn

with zero-sum. Then by Observation 3.6, twice the sum of the labels of the cycle

edges is l(uv). Since there are n cycle edges, which is equivalent to 0 (mod 3), they

cannot all be labeled 1 (or 2) since that would imply that l(uv) is zero, two adjacent

path edges would have labels 1 and 2. This implies that the spoke adjacent to these

two outer edges must have label 0, which is not an acceptable label. Therefore,

n ≥ 3, 3∈/ N(AXn) if and only if n ≡ 0 (mod 3).

1

-2

-3 -3

11

1
-2

-2

22 2 2

-2

-2

-2

-2-2

-2

2

1

1 1

1

1

1

1 1

11

1

1
1

1

1

11

1

11

1

11

1

-2 -2

-2 -2

-2

-2 -2

Figure 3.18. A zero-sum magic labeling AX3, AX4, and AX5
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To finish the proof of the theorem we consider the following three cases:

Case 1. Suppose n ≡ 0 (mod 3) or n = 3p for some p ∈ N. We proceed by induction

on p and show that

“for any p, there is a zero-sum magic labeling for AX3p. Moreover, in this

labeling at least one of the edges on both Wn’s has label 1.”

In figure 3.18, a zero-sum magic labeling of AX3, p = 1, is provided in Zh for all

h ≥ 4, where −2 ≡ 2−1 and −3 ≡ 3−1.

Now, assume that the statement is true for AX3p and let uiui+1 be the edge of AX3p

that has label 1. Then we eliminate this edge and insert the four-blade extension,

given in Figure 3.19, with vertices a, b, c, d, and e, such that a and e are identified

with ui and ui+1 respectively.. This provides the desired zero-sum magic labeling for

AX3p+4.

1 1

1

1

1 -2

-2

a dcb e

Figure 3.19. The three blade extension of an axle.

An argument similar to the one presented in case 1, will also work for the remaining

two cases:

Case 2. Suppose n ≡ 1 (mod 3) or n = 3p+ 1 for some p ∈ N.
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Case 3. Suppose n ≡ 2 (mod 3) or n = 3p+ 2 for some p ∈ N− {0}.
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