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ABSTRACT 

Implementation of Numerically Stable Hidden Markov Model 

by 

Usha Ramya Tatavarty 

Dr. Kazem Taghva, Examination Committee Chair 
Professor of Computer Science 

University of Nevada, Las Vegas 

A Hidden Markov model (HMM) is a statistical Markov model in which 

the system being modeled is assumed to be a Markov process with 

unobserved (hidden) states. HMM is an extremely flexible tool and has 

been successfully applied to a wide variety of stochastic modeling tasks. 

One of the first applications of HMM is speech recognition. Later they 

came to be known for their applicability in handwriting recognition, part-

of-speech tagging and bio-informatics. 

 In this thesis, we will explain the mathematics involved in HMMs 

and how to efficiently perform HMM computations using dynamic 

programming (DP) which makes it easy to implement HMM.  We will also 

address the practical issues associated with the use of HMM like 

numerical scaling of conditional probabilities to model long sequences 

and smoothing of poor probability estimates caused by sparse training 

data.  
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CHAPTER 1 

INTRODUCTION 

A Hidden Markov Model (HMM) is simply a Markov Model in which the 

states are hidden. Hidden Markov Models (HMMs) are powerful statistical 

models for modeling sequential or time-series data. Hidden Markov 

Models were first introduced in a series of statistical papers by Leonard 

E. Baum and others in the late 1960s. Andrei Markov gave his name to 

the mathematical theory of Markov processes in the early twentieth 

century, but it was Baum and his colleagues that developed the theory of 

HMMs. One of the first applications of HMMs was speech recognition. 

Later they have been successfully used in many tasks such as 

computational sequence analysis, robot control, and information 

extraction. Hidden Markov modeling has become popular as it works very 

well in practice for several important applications when applied properly. 

Also it is very rich in mathematical structure and hence can provide a 

theoretical basis to a wide range of applications. In this thesis we 

attempt to understand the theoretical aspects of this type of statistical 

modeling. 

 Real-world processes usually produce observable outputs which 

can be characterized as signals [1].  These signals can be characterized 

in terms of signal models and with a good signal model we can stimulate 

the source that generated the signal.  Signal Models can be broadly 

categorized into deterministic models and statistical models. In 
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deterministic model the specification of the signal model is normally 

straightforward. We need to determine values of the parameters of the 

signal model.  In statistical models we characterize only the statistical 

properties of the signal. The signal is first illustrated as a parametric 

random process, and then the parameters of the stochastic process are 

estimated in a precise, well-defined manner.  Some examples of 

statistical models include Gaussian processes, Markov processes and 

Hidden Markov processes, among others. The statistical model that is of 

interest to us is hidden Markov process, to be more specific discrete 

Hidden Markov Models. 

1.1 Thesis Overview  

Hidden Markov Model (HMM) is a finite state model that describes a 

probability distribution over an infinite number of possible sequences. It 

is a statistical Markov model in which the system being modeled is 

assumed to be a Markov process with unobserved (hidden) states [2]. The 

“hidden” in Hidden Markov Models comes from the fact that the observer 

does not know in which state the system may be in, but has only a 

probabilistic insight on where it should be [3]. 

 In this thesis we will explain the mathematics involved in HMMs 

and how to perform efficient HMM computations using dynamic 

programming (DP).  However, before going to the theoretical aspects of 

Hidden Markov Models we will first understand the theory behind 

Markov chains using some simple examples. The basic idea is to 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Markov_model
http://en.wikipedia.org/wiki/Markov_process
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characterize the theoretical aspects of Hidden Markov Model in terms of 

solving three fundamental problems. So we focus our attention on the 

three fundamental problems for HMM design, namely: the Forward and 

Backward algorithm for evaluating the likelihood of a sequence of 

observation given a specific HMM; Viterbi Algorithm to find the most 

likely explanation of a sequence; and Baum-Welch Algorithm and 

Maximum Likelihood Estimation (MLE) for training an HMM given 

sequence of observations. There are two practical issues that are 

associated with the implementation of Hidden Markov Models. We will 

also address those issues and solve them using numerical scaling and 

smoothing techniques. 

1.2 Thesis Structure 

 This thesis is organized into different chapters starting from 

introduction in chapter 1 followed by a brief description about Markov 

Chains in Chapter 2. Then we extend the idea to the class of Hidden 

Markov Models in Chapter 3 using simple examples. Chapter 4 presents 

the implementation of theoretical aspects of HMM discussed in the 

previous chapter. The issues that arise during the implementation of 

HMM are addressed in the chapter 5. Chapter 6 concludes the thesis by 

giving a brief description about future proceedings. 
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CHAPTER 2 

BACKGROUND 

Some data mining techniques such as clustering assume that each data 

point in an observed input data is statistically independent from the 

observation (data point) that preceded it. But we often encounter 

sequences of observations, where each observation may depend on the 

observations which preceded it. One example that can explain this 

situation is a sequence of phonemes (fundamental sounds) in speech 

during the process of speech recognition [6]. In order to model such 

processes, we can use Hidden Markov Models. 

 Hidden Markov Model is one of the most important machine 

learning models in Information Extraction and Retrieval. Earlier, we have 

defined Hidden Markov Model (HMM) as a statistical model where the 

system being modeled is assumed to be a Markov process with unknown 

parameters, and the challenge is to determine the hidden parameters, 

from the observable parameters, based on this assumption [5]. To have a 

better understanding of what an HMM is, we will first focus our attention 

on what is meant by statistical models and Markov models and then on 

the concept of Hidden in Hidden Markov Models. 

2. 1 Statistical Model 

A statistical model is a formalization of relationships between variables in 

the form of mathematical equations. A statistical model describes how 

one or more random variables are related to each other. The model is 
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statistical as the variables are not deterministically but stochastically 

related.  Stochastic means random. In stochastic or a random process 

instead of dealing with only one possible reality of how the process might 

evolve under time, there is some indeterminacy in its future evolution 

which is described by probability distributions [2]. 

 In mathematical terms, a statistical model is frequently thought 

of as a pair (Y, P) where Y is the set of possible observations and P the set 

of possible probability distributions on Y. It is assumed that there is a 

distinct element of P which generates the observed data. Statistical 

inference enables us to make statements about which element(s) of this 

set are likely to be true [2]. 

 Consider a simplest possible case of discrete time intervals. A 

stochastic process in this case amounts to a sequence of random 

variables known as a time series. A good example for this is Markov 

Chains. 

2.2 Markov Models 

To define Hidden Markov Model (HMM) properly, we need to first 

introduce the concept of Markov Chain, also referred to as an observed 

Markov Model. Markov chains and Hidden Markov models are both 

extensions of the finite automata. A finite automaton is defined by a set 

of states and a set of transitions between states. A weighted finite-state 

automaton is a simple augmentation of the finite automaton in which 

each arc is associated with a probability, indicating how likely that path 
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is to be taken. The probability on all the arcs leaving a node must sum to 

one [4]. 

2.2.1 Markov Chain 

A Markov Chain is a particular case of a weighted automaton in which 

the input sequence uniquely determines the states through which the 

automaton traverses. Markov chains are sequences of random variables 

in which the future variable is determined by the present variable but is 

independent of the way in which the present state arose from its 

predecessors [8]. An important point to consider is that Markov chains 

can only assign probabilities to unambiguous sequences; it cannot 

represent problems that are inherently ambiguous. 

 We will now try to define Markov chains as probabilistic graphical 

models which are a way of representing probabilistic assumptions in a 

graph [4].  
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Figure 1 A Markov Chain with five states and state transitions 

 

A Markov chain is specified by the following components: 

State: 

In Markov Model, at any time t, we consider the system to be in one of a 

set of N distinct states, S1, S2, S3, …, Sn and we denote this distinct state 

occupied at state t as qt. 

Notation 

A set of N states S= { S1, S2, S3, …, Sn-1, Sn }  

 We can denote a sequence of successive states of length T as Q  

               Q = (q1, q2 , …, qt) 

 In a Markov model, we know what states the machine is passing 

through, so the state sequence or some deterministic function of it can 

be regarded as the output. 
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 We will model the production of such a sequence using transition 

probabilities 

Transition Probabilities: 

A transition Probability denoted by aij  is the probability that the system 

will be in state Sj at time t+1 given that it was in state Si at time t 

Notation 

aij≡ P(qt+1 =Sj/ qt =Si)  aij ≥ 0 

   , a12, …, ann are the Transition Probabilities. All the transition 

probabilities together can be represented by a Transition Probability 

Matrix A.  

   

 
 
 
 
 
 
              

              

              

      
      

               
 
 
 
 
 

 

 In transition probability matrix A, each aij represents the 

probability of moving from state i to state j 

      
 
      for all i 

 As each aij represents the probability P (  /  ), the laws of 

probability require that the values of the outgoing arcs from a given state 

must sum to one. 

Initial Probability Distribution ( π ): 

An initial probability denoted by Πi is the probability that the Markov 

chain will start in state i. Some states j may have Πj=0, meaning that 

they cannot be initial states.  
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Notation 

         πi ≡ P(q1=Si)          

 Π1, Π2, …, Πn is the initial probability distribution over states 

 As each πi represents the probability of Si being the start state, 

all the π must sum to one 

    

 

 

   

 A model of states and transition probabilities, such as the one we 

have just described, is called a Markov model. The above stochastic 

process could be called an observable Markov Model since the output of 

the process is the set of states at each instant of time, where each state 

corresponds to an observable event [1]. 

2.2.2 Discrete Markov Model 

 Discrete Markov chains model observation sequences which consist of 

symbols drawn from a discrete and a finite set of size N. This set of 

discrete observations is often referred to as a codebook. 

 The above Markov model considers the observations to be 

discrete; it has states that are distinct from one another. As the 

observations of a Markov Model are characterized as discrete symbols 

chosen from a fine alphabet it is a discrete Markov Model.  

2.2.3 First –order Markov Model 

A Markov Chain that we have defined above embodies an important 

assumption about transition probabilities. We assumed that transition 
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probabilities depend only on the previous state which makes it a first-

order Markov model. In a first order Markov chain, the probability of a 

particular state depends only on the previous state. This assumption is 

called a Markov assumption. 

Markov Assumption: 

The probability of a certain observation at time n only depends on the 

observation qn-1 at time n-1  

 Markov Assumption: 

   P ( qt / q1 … qt-1 ) = P ( qt / qt-1 ) 

 This is called first order Markov Assumption. A second order 

Markov assumption would have the probability of an observation at time 

n depend on qn-1 and qn-2. Higher order Markov models are also possible 

but the model that is of concern to us is first order. In general when 

people talk about Markov assumption they usually mean the first-order 

Markov assumption [7]. 

2.3 Discrete Markov Model Examples 

Markov models are used to model sequences of events (or observations) 

that occur one after another. These sequences of events can either be 

deterministic or non-deterministic. Deterministic Markov Models where 

one specific observation always follows another are easy to model.  One 

good example to represent deterministic Markov Model is changes in 

traffic lights. Non-deterministic models are the ones where an event 

might be followed by one of several subsequent events, each with a 
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different probability. Some real time processes that come under non-

deterministic Markov Models are daily changes in the weather, sequences 

of words and sequences of phonemes in spoken words [10]. 

 To illustrate the concept of Markov chains we will consider an 

example of tossing coins. This example can later be extended to 

understand Hidden Markov Models. 

2.3.1 Example 1 Single Fair Coin Tossing Experiment 

Let us consider the following scenario. Assume that we are placed in a 

room which is divided into two sections with a curtain. Imagine that we 

are on one side of the curtain and there is a person on the other side of 

the curtain. The person on the other side has a single fair (un-biased) 

coin with him which he tosses to produce an observation. The person 

tosses the coin and tells us the outcome (H, T), after each trial. He does 

this several times and the outcome obtained after each trial is recorded 

as an observation.  

This is how the observation sequence would look like  

 

 

 

Figure 2 Observation Sequence for coin tossing experiment  

 

 This sequence of Heads (H) and Tails (T) can be modeled as a 

Markov Chain. The two possible outcomes of each trial in the coin 

THTHHHTTTTHHHHHTHHTTHHTTHHTHHHHHHHTTHTTHHHH 

THTTTHHTHTTHHHHTHTHHTTHTHTTHHTHTHHHTHHTHT… 
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tossing experiment, heads (H) and Tails (T) are represented as the two 

states of the Markov Model. In fact, we may describe the system with a 

deterministic model where the states are the actual observations [8].  

These states can transition to themselves and as the experiment uses a 

fair coin, the transition probabilities are equally distributed. Here it is 

obvious that there is no concept of hidden as it is already known that a 

single fair coin is tossed every time which implies that the visible states 

correspond to the internal states. 

Here is the graphical representation of the single fair coin tossing 

experiment. 

 

 

Figure 3 Single Fair Coin tossing experiment-Markov Model 

 

States (S): Heads (1), Tails (2) 

Transition Probabilities (A):  

  
        
         

 
      

      
  

Initial Probabilities (π): 



 

13 

   
   

   
  

O= H H H T T H… 

Q = 1  1  1  2 2  1… 

Observation sequence is O= H H H T T H… and the corresponding state 

sequence is Q = 1  1  1  2 2  1… . 

It is obvious from the Markov Model that these are the states traversed to 

obtain the above observation sequence. 

2.3.2 Example 2: Stock Market Index 

Let us consider another example to get a better understanding of Markov 

Processes. Figure 4 depicts a simple example of Markov process. It 

describes a simple model for a stock market index.  It has three stocks, 

Bull, Bear and Even, that represents states and three index observations 

up, down, unchanged that represent the variations of stock in model. We 

associated Bull to the variation Up, Bear to the variation Down and Even 

to the variation Unchanged. 

Graphical Representation of Example 2 
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Figure 4 Stock Market Index Markov Model 

 

Parameters of this Markov Model are 

States:  

Bull, Bear and Even 

These are the internal states corresponding to the three stocks of the 

example 

Transition Probabilities: 

It is a finite state automaton, with probabilistic transitions between 

states.  

                                     

  

          

        

        

 

        

         

         

  

Initial Probabilities (π): 
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Given a sequence of observations we can easily find the state sequence 

that produced these observations.  

Observations: up-down-down-unchanged 

States: Bull-Bear-Bear-Even 

Probability for the above sequence can now be calculated 

P (O) = πBull * A Bull, Bear * A Bear, Bear * A Bear, Even 

         = 0.33 * 0.2 * 0.3 * 0.2  

         = 0.00396 

2.4 Extension to HMMs 

A Markov Chain is useful when we need to compute probability for a 

sequence of events that we can observe in the real world. In many cases 

however the events are not observable. We will see how the above 

mentioned examples can be improved to represent more realistic 

problems and how this improvisation leads to the concept of Hidden 

Markov Models. 

  In example 1 we considered a coin tossing experiment where 

there is a person on one side of the curtain who tosses a single fair coin. 

Here once an observation is made, the state of the system is trivially 

retrieved. But this model is too restrictive as it is limited to one un-

biased coin. However this is not always the case. There can be a case 

where the person behind the curtain has several coins, some of them 
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being biased. This situation cannot be modeled using Markov Chains as 

there is a concept of hidden in this situation. 

 Now consider example 2 and how it is too restrictive to be of any 

practical use. The model presented in example 2 describes a simple 

model for a stock market index with three states and three observations. 

We assumed in our example that a bull market has only good days. 

Similarly, we assumed that Bear market always goes down and Even 

market remains Unchanged. Our goal here is to represent a Stock 

Market index and we are not doing a good job by restricting the stocks to 

a specific variation.  

 To make our example more expressive and realistic we have to 

consider the possibility of bull market not only going Up but also the 

possibility of it going down and remaining unchanged. Similar 

possibilities should also be considered for other stocks, Bear and Even. 

By including these prospects to the Model we are associating a state 

(Stocks) to all the observations (Variations in Price) as opposed to a state 

being indexed to a particular observation making in more realistic. By 

extending example 2 to include these new prospects we come up with 

Hidden Markov Models.  

 To conclude, in order to make a Markov Model more flexible, we 

assume that the outcomes or observations of the model are a 

probabilistic function of each state [8]. This makes the Markov Model a 

Hidden Markov Model. The “hidden” in Hidden Markov Models comes 
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from the fact that the observer does not know in which state the system 

may be in, but has only a probabilistic insight on where it should be. 
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CHAPTER 3 

HIDDEN MARKOV MODELS 

Hidden Markov Models (HMMs) separate the observations from the 

states; the observations (outputs) are visible, but the state sequences 

that led to them are hidden. It’s “Markov” because the next state is 

determined solely from the current state.  It is “Hidden” because the 

actual state sequences are hidden [10].  In this thesis we talk about 

discrete Hidden Markov Models. This type of HMM has discrete 

observation symbols. In this thesis the term HMM implies Discrete HMM. 

A set of five elements can be used to describe an HMM. 

 In the following section the elements of an HMM and their notation 

are defined. 

3.1 Elements of an HMM 

We define Q to be a fixed state sequence of length T, and corresponding 

observations O: 

Q = q1, q2, · · · , qT  

O = o1, o2, · · · , oT 

T is the number of observations in the sequence  

We can define an HMM as a 5-tuple (S, V, π, A, B) 

HMM Notation:  λ = (A, B, π)  

 N: Number of states in the Model. 
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There are a finite set of states in a model. The states in a HMM are 

hidden but there is a lot of significance to these states in defining 

an HMM. We denote the individual states as S1, S2, S3, …, Sn . 

S = { S1, S2, S3, …, Sn } 

 M: Number of distinct symbols observable in states.  

These symbols correspond to the observable output of the system 

that is being modeled. We denote the individual symbols as v1, v2, 

v3, …, vM 

V = { v1, v2, v3, …, vM  } 

 A: State transition probability distribution 

A is transition array that store the state transition probabilities, 

A={ aij  }  

 aij= P(qt=Sj/qt-1=Si), i ≥1 and j ≥ N 

aij, the probability of moving from state Si to Sj at time t 

   

 
 
 
 
 
 
              

              

              

      
      

               
 
 
 
 
 

 

At each time t, a new state is entered which depends on the 

transition probability distribution of the state at time t – 1. 

Transition to the same state is also possible. An important point 

about transition probabilities is that they are independent of time; 

the probability of moving from state Si to state Sj is independent of 

time t 
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 B: Observation symbol probability distribution 

B = { bj(k) } is the output symbol array that stores the probability of 

an observation Vk being produced from the state j, independent of 

time t. Observation symbol probability or Output Emission 

Probability estimates are also independent of time; the probability 

of a state emitting a particular output symbol does not vary with 

time. 

 B = { bj(k) }  , bi(k) = P(xt = vk/qt = Sj)  1≤ j ≤ N and 1≤ k ≤ M  

 bi(k), the probability of emitting symbol vk when state Sj is entered 

at time t 

After each transition is made a symbol is outputted based on the 

output probability distribution which depends only on the current 

state.  

 π: Initial state distribution 

π = { Πi } is the initial probability array that stores the probability of 

the system starting at state i in an observation. It is the probability 

of state Si being the start state in an observation sequence. 

π = { Πi }, Πi = P (q1 = Si),  1≤ i ≤ N 

Πi , the probability of being in state I at time t=1 

A complete specification of an HMM consists of the above five elements, 

{S, V, π, A, B}.  We usually use a compact notation λ=(A, B, π ) to 

represent the above complete parameter set of HMM. 

The following are obvious constraints on the elements of an HMM.  
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      for all i 

   
 
          for all i 

As each aij represents the probability P (  /  ), the laws of probability 

require that the values of the outgoing arcs from a given state must sum 

to one. Same laws of probability apply to Initial Probabilities and Output 

Emission Probabilities. 

3.2 Canonical Problems of HMM 

The operations of an HMM are characterized by state sequence Q and the 

observation sequence O.  

Q = q1, q2, · · · , qT  

O = O1, O2, · · · , OT 

Q is a fixed state sequence of length T, and corresponding observation 

sequence is O. T is total number of observation in the observation 

sequence and Ot is one of the symbols from V (Output variables). Using 

an HMM, we can generate an observation sequence O = O1, O2, · · · , OT.  

We can also estimate the most probable state sequence Q= (q1, q2, · · · , 

qT) given the set of observations O =( O1, O2, · · · , OT). Here the 

observations are assumed to have statistical independence; the Model 

has discrete observation (output) symbols. For an HMM to perform all 

these we need appropriate values of N, M, A, B and π. These values can 

be obtained by a learning process.  
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For an HMM to perform the above mentioned tasks we characterize it in 

terms of solving three fundamental problems. We can use HMMs to solve 

real problems with real data by solving these three problems.  So much 

being said about the three problems let us now discuss what these 

problems are.  

Problem 1 

Evaluation: 

Given an observation sequence O and a model λ, what 

is the probability of the observation sequence, P(O|λ )? 

P(O|λ )= P(O1,O2,…, OT | λ ) = ? 

 

Problem 2 

Decoding: 

Given an observation sequence O and the model λ, 

what is the most probable state transition sequence Q 

for O? 

Q* = arg max Q=(q1, q2, …, qT) P(Q, O | λ ) = ? 

 

Problem 3 

Training: 

Given a training sequence O, find a model λ, specified 

by parameters (A, B, π) to maximize P(O|λ) (we 

assume for now that Q and V are known). 

P ( O | λ = ( A, B ,π ) ) < P ( O | λ ' = ( A' , B ' ,π' ) ) 

λ* = argmaxλ P(O|λ ) 

Among the three problems only the evaluation problem has a direct 

solution. The other problems are harder and involve optimization 

techniques like dynamic programming. There are specific algorithms for 

each problem that explain a best way to solve them. The problem of 
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evaluation is solved using the Forward and Backward iterative 

algorithms. The second problem is solved using the Viterbi Algorithm, 

also an iterative algorithm that output best path by sequentially 

considering each observation symbol of O. The last problems which deals 

with training an HMM can be solved by using Baum- Welch or Maximum 

Likelihood Estimation (MLE). The decision between these two algorithms 

can be made based on the training data available for the learning 

process. 

 

Problem 

 

Solution 

 

Evaluation 1) Forward Algorithm 

2) Backward Algorithm 

Decoding Viterbi Algorithm 

Training 1) Supervised - Maximum 
Likelihood Estimation ( 
MLE) 

2) Unsupervised- Baum- 
Welch Algorithm 

Table 1: Problems of HMM 

 

We will now discuss in detail how these algorithms solve the three 

problems associated with HMM. The section is divided based on the 

problem that has to be addressed. Each algorithm is explained 

mathematically using equations that make use of HMM Notation, λ= ( A, 

B, π ). 
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3.2.1 Evaluation 

Problem 1 is the evaluation problem. Given a model and a sequence of 

observation the question is how to compute the probability that the 

observation sequence is produced by the model. Here we are trying to see 

how well a particular observation sequence matches the given model.  

This is an extremely important point. If there is a situation where a 

choice has to be made among several competing HMMs, the model which 

best suits the observation sequence can be found using Evaluation. 

The simplest way to solve the evaluation problem is by following 

the Brute-Force approach. In this approach we enumerate every state 

sequence of length T (the number of observations) and calculate the 

probability of each state sequence producing the given observation 

sequence. 

Consider one such fixed state sequence  

 Q= q1,q2,…, qT 

Here q1 is the initial state of the sequence. Now find the probability of 

the observation sequence O for the selected state sequence of length T 

 P( O| Q, λ ) =                 
    

The below equation is valid for our HMM as we are dealing with discrete 

HMM. 

P( O| Q, λ ) =    
      .     

      . . .     
     

The probability for the model to emit our fixed state sequence is 

P( Q| λ ) =    
 .      

 .      
 . . .         
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The joint probability that O and Q occur simultaneously is simply the 

product of the two terms. 

P( O, Q| λ ) = P( O| Q, λ )  *  P( Q| λ )  

This is just one state sequence. Our goal is to obtain P ( O| λ ), not P( O, 

Q| λ ) 

So, to obtain the probability of the model λ emitting O we sum P( O, Q| λ 

) over all the possible state sequences. 

P( O| λ ) =                                       

=    
       

              
     

                                    
       

This approach can be followed but the computations get very long. 

There is a problem of computational complexity as the calculations to be 

done are exponential. This is because our model has N states and at 

every t= 1, 2, …, T, there are N possible states which can be reached. So 

there are NT possible state sequences of length T and for each such state 

sequence about 2T calculations are required. To be precise we need (2T-

NT) multiplications and NT-1 additions. The computational complexity is 

O (NTT). Even if we have small N and T, this is not feasible: for N = 5 and 

T = 100, there are ~1072 computations needed. 

There is a more efficient procedure to solve Problem 1. It is called 

Forward- Backward Procedure. 



 

26 

3.2.1.1 Forward Algorithm 

Luckily, there is no need for so many computations. We can perform a 

recursive evaluation, using an auxiliary variable αt(i), called the forward 

variable. 

 )|)(,,...,,()( 21  itt qtiOOOPi   

αt(i), the probability of the partial observation sequence until time t and 

internal state qt = Si given the model λ. 

How does αt(i) help? 

 αt(i) makes a recursive calculation possible because in a first-order 

HMM, the transition and emission probabilities only depend on the 

current state [6]. These recursive calculations reduce the numbers of 

calculations needed to obtain P (O| λ ). 

We can solve αt(i) inductively as follows 

Step 1: Initialization 

                    , 1 ≤ i ≤ N 

Step 2 : Induction 

 

 

Figure 5: Operations for computing the forward variable αj (t + 1) 
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 Here we calculate α      , the next step, using the previous one 

αt(i). αt+1(j) represents the probability of the observation sequence up to 

time t + 1 and being in state Sj at time t + 1. 

 

  

    1 ≤ t ≤ T-1, 1 ≤ j ≤ N 

 According to the above equation         is the probability of 

observing symbol Ot+1 when in state Sj ( bj(Ot+1) ), times the sum of the 

probabilities of getting to state Sj from state Si times the probability of the 

observation sequence up to time t and being in state Si [1].Note that we 

have to keep track of      ,for all N possible internal states. These values 

are used in the termination step. 

Step 3: Termination: 

 

 

Figure 6: Computing αj(t) 




 
N

i
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If we know αT(i) for all the possible states, we can calculate the overall 

probability of the sequence given the model,  P(O | λ ) 





N

i

T iOP
1

)()|(   

The forward algorithm allows us to calculate P(O|λ). As it can be 

seen from the above algorithm it has a computational complexity O(N2T). 

This is linear in T, rather than exponential as compared to the Brute 

Force approach. This means that it is feasible. Apart from calculating 

P(O|λ) this algorithm is also used in Baum Welch Algorithm for 

unsupervised learning.  

3.2.1.2 Backward Algorithm 

The α values computed using the forward algorithm are sufficient for 

solving the first problem, P(O | λ). However, in order to solve the third 

problem, we will need another set of probabilities, the β values. In the 

same manner as forward variable we define a backward variable,      . 

We denote the backward variable       as the probability of the partial 

observation sequence after time t, given state Si at time t.  

      = P (Ot+1, Ot+2 , …, OT |qt = Si, λ ) , 1 ≤ t ≤ T, 1≤ i ≤ N 

Just like α’s, β's can also be computed using the following 

backward recursive procedure: 

Step 1: Initialization 

The initialization step arbitrarily defines        to be 1 for all i. 

       =1, 1 ≤ i ≤ N 
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This algorithm is backwards in the sense that the time interval t are from 

T to one.  

Step 2: Induction 

 

 

Figure 7: Computing β
 
     

 

Here we calculate β
t
 i , the next step, that makes use of the previous one 

β
   

     

β
 
    =                  β   

    
     , t=T-1, T-2, . . . , 1 1 ≤ i ≤ N 

In order to have been in state Si at time t and to account for the 

observation sequence from time t+1 on, you have to consider all possible 

states Sj at time t+1, accounting for the transition from Si to Sj (aij), as 

well as observation Ot+1 in state j (         ), and then account for the 

remaining partial observation sequence from state j ( β
   

    ) [1].  
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Step 3: Termination 

 

Again the computation of  β
 
    , 1 ≤ t ≤ T, 1≤ i ≤ N require N2T 

calculations. 

We will see later how the backward as well as the forward 

algorithms are used to solve problems 2 and 3 of HMM. 

3.2.2 Decoding 

Problem 2 deals with decoding. In decoding we attempt to uncover the 

hidden part of the HMM. In other words we try to find the optimal state 

sequence for a given observation sequence. Unlike evaluation, in 

decoding there is no single optimal sequence.  

One possible solution to this problem is to choose states which are 

individually most likely and then find the single best state sequence that 

guarantees that the uncovered observation sequence is valid. This 

solution has several drawbacks. The most common solution to the 

decoding problem is the Viterbi algorithm which also uses partial 

sequences and recursion. 

3.2.2.1 Viterbi Algorithm 

The Viterbi algorithm is a dynamic programming algorithm that 

computes the most likely state transition path given an observed 

sequence of symbols. It is actually very similar to the forward algorithm, 

except that we will be taking a “max”, rather than a “  ∑ “, over all the 

possible ways to arrive at the current state under consideration. 





N

i

iOp
1

1 )()|( 
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However, the formal description of the algorithm involves some 

cumbersome notations [11]. 

We need to define the following quantity for solving the problem 

using Viterbi Algorithm. 

  

δt(i) is the probability of the most probable path ending in state Si at time 

t 

By induction we have  

 

To retrieve the state sequence we need to keep track of the 

argument which maximize δ       , for each t and j. We use an array ψt(j) 

for back tracking the state sequence.  

The Viterbi Algorithm is as follows 

Step 1: Initialization 

 

 

Step 2: Recursion  

          )())((max)( 1
1

tjijt
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t obaij 


   

 

 

 

Step 3: Termination 
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P* gives the state-optimised probability  

 

Q* is the optimal state sequence ( Q* = {q1*,q2*,…,qT*} )  

Step 4: Backtrack State Sequence 

 

Viterbi algorithm is similar to Forward algorithm except for the 

backtracking step and the maximization over previous states instead of 

summation. So, the time complexity here is O(N2T). We can use a trellis 

structure is clearly explain the Viterbi Algorithm 

3.2.3 Training 

The problem 3 in HMM is training an HMM to obtain the most likely 

parameters that best models a system, given a set of sequences 

originated from this system. 

There is no known way to analytically solve for the model which 

maximizes the probability of the observation sequence(s). So we come up 

with models λ = (A, B, π) which locally maximizes P(O). 

 HMM = Topology + Statistical parameters 

During the training process we compute the statistical parameters of the 

HMM. The topology is already designed. So the input to a training 

algorithm would be a database of sample HMM behaviour and output is 

the transition, emission and initial probability distribution of HMM. Thus 

we can conclude that given a set of examples from a process, we should 

)(maxarg
1

iq T
Ni

T 


 

)( 11
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be able to estimate the model parameters λ = (A, B, π) that best describe 

that process.  

 There are two standard approaches to the learning task based on 

the form of the examples (database available for learning process), 

supervised and unsupervised training. If the training examples contain 

both the inputs and outputs of a process, we can perform supervised 

training. It is done by equating inputs to observations, and outputs to 

states, but if only the inputs are provided in the training data then we 

must use unsupervised training. Unsupervised training guesses a model 

that may have produced those observations. Maximum Likelihood 

Estimation (MLE) comes under supervised training and Baum-Welch 

Algorithm comes under supervised training.  

3.2.3.1 Supervised Learning 

The easiest solution for creating a model λ is to have a large corpus of 

training examples, each annotated with the correct classification. If we 

having such tagged training data we use the approach of supervised 

training.  

Maximum Likelihood Estimation (MLE): 

MLE is a supervised learning algorithm. In MLE, we estimate the 

parameters of the model by counting the events in the training data. This 

is possible because the training examples for a MLE contain both the 

inputs and outputs of a process. We equate inputs to observations and 

outputs to states and easily obtain the counts of emissions and 
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transitions. These counts can be used to estimate the model parameters 

that represent the process. 

aij = 
                                               

                                                     
 

bi (  ) = 
                                                         

                                                    
 

There is a possibility of aij or bi (  ) being zero. For example 

consider the case where state i is not visited by the sample training data 

then aij=0. In practice when estimating a HMM from counts it is 

normally necessary to apply smoothing in order to avoid zero counts and 

improve the performance of the model on data not appearing in the 

training set.  

3.2.3.2 Unsupervised learning 

Key idea of unsupervised learning is iterative improvement of model 

parameters. We can use iterative expectation-maximization algorithm, 

Baum-Welch to find local maximum of P (O | λ).  

Baum- Welch Algorithm 

Baum-Welch algorithm uses the forward and backward algorithms to 

calculate the auxiliary variables α, β.  

B-W algorithm is a special case of the EM algorithm: 

 E-step: calculation of  and   

 M-step: iterative calculation of λ’ 

E-step : 
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In order to describe the procedure for solving the problem we need to 

first define      
 
      

 
 
                                 

 
 
      is the probability of being in state Si at time t, and state Sj at time 

t+1, given λ, O. 
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Figure 8: Operations for computing         

 

After defining  
 
      define γ

 
    

γ
 
    = P (    =    | O, λ ) 
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      is the probability of being in state Si at time t for a given observation 

sequence O and model λ. 

We can relate       and         by summing over j 

 

      
   
     = expected number of transitions from state Si to Sj 

         
   
   = expected number of transitions from Si to Sj. 

Using these formulas we can re-estimate the parameters of an HMM. 

M- Step: 

A set of reasonable re-estimation formulas for a π, A and B are 

 ̂  
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It we define the current model as λ= ( A, B, π ), and use these 

values on the right hand side of the above equations we get the re-

estimated model  =(     ). 

It has been established by Baum and his colleagues that 

    P (O |   ) > P( O | λ ) 

If we iteratively use   in place of λ and repeat the re-estimation 

calculation we can improve the probability of O being observed from the 

model. This process is continued until some threshold value is reached 

that is when there is not much difference between    and λ.  

3.3 HMM Examples 

3.3.1 Example 1: Coin Tossing Experiment 

Consider the coin tossing experiment of Markov Models but here the 

person on the other side of the curtain has several coins both biased and 

un-biased with him. He selects one of his several coins and tosses it. 

Then he tells us the outcome (H, T), but not the coin selected. He does 

this several times and the outcome obtained after each trial is recorded 

as an observation. Here the coins will be the hidden states and H, T are 

the observations. 

 We make an assumption that the person has three coins and 

chooses among these three based on some probabilistic event [1].  This is 

the graphical representation of the example 1 model that has 3 coins. 
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Figure 9 : HMM-Coin Tossing Experiment 

 

3.3.1 Example 2: Stock Market Index 

Consider the second example of Stock Market Index. It has three states 

representing stocks in the stock market which are associated with all the 

observations that represent the variations in these stocks. 

 

Figure 10 : Hidden Markov Model-Stock Market Index 
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 Here the variations in stock market, up, down and unchanged 

are output variables and Bull, Bear and Even are hidden states. Given an 

observation sequence up-down-down, we cannot say exactly what state 

sequence produced these observations. We use some probabilistic 

functions that determine the most probable state sequence. 

Parameters of this Model are 

States:  

Bull, Bear and Even 

These are the internal states corresponding to the three stocks of the 

example 

Transition Probabilities: 

                                     

  

          

        

        

 

         

         

         

  

Initial Probabilities (π): 

  

          

        

        

 

    

    

    

  

Output Emission Probabilities (B): 
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CHAPTER 4 

IMPLEMENTATION OF HMM 

In this thesis we implemented a numerically stable HMM in C++ 

programming language. In order to test the working of the HMM, we 

considered a simple real-time example and modelled it as an HMM. To 

keep the model very simple and easy to understand we consider an 

example of Stock Market Index with three stocks. There can be three 

variations possible to the values of these stocks. 

 We know that HMM can be characterized as solving three 

fundamental problems evaluation, decoding and training. Before getting 

to the implementation of the solution for these three problems, I will 

explain a major aspect in the understanding of HMM, the representation 

of a model file in source code.  

4.1 Representation of HMM Model 

For the Stock Market Index example we assume a fixed vocabulary that 

consists of three ascii characters u, d and n representing up, down and 

unchanged variations of stock value.  When a symbol is not observed in 

the data, its count is automatically   set to zero, effectively excluded from 

the model. 

 The number of states is stored in a variable N. This example has 3 

states 0, 1 and 2 each representing Bull, Bear and Even stocks 

respectively.  

An N-state HMM is represented by the following arrays: 
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1. Initial state probability (I) 

I is an array of length N (0-indexed), with I[s] representing the 

initial probability of being at state s. 

2.  State transition probability matrix (A) 

A is a 0-indexed two-dimensional array (NxN), with A[i][j] 

representing the probability of going to state j from state i. 

3. Output probability matrix (B) 

B is a 0-indexed two-dimensional array (MxN), with B[o][s] 

representing the probability of generating output symbol "o" at 

state "s". M is the number of unique symbols (currently 3, 

stored in SYMNUM). 

Note that the observed character “o” cannot be used directly as an 

index to access the entries of matrix B; it must be normalized by 

subtracting the lowest character “ ! “ [11].  

 4.1.1 HMM Representation on the disk file 

An HMM can be encoded as a text file. The syntax is very simple. So, it 

will be explained by means of an example. 
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Figure 11: Screenshot of the Stock Market Index HMM Model file. 

 

These are some of the rules associated with writing a model file. 

Failing to following any of these rules will fail the document from being 

considered as a model file. There could be any number of spaces between 

the numbers or words. All the white space characters are treated the 

same and if the model file has several white spaces they are treated as a 

single one.  



 

43 

But keywords "InitPr", "OutputPr", and "TransPr" is strict There should 

not be any variations in how they are written. 

In the Model file 

- The first number is the number of states 

- The number after each keyword is the number of entries following 

it that should be associated with this keyword 

- The entries not specified imply that the values are zero. 

The keyword “InitPr” represents Initial Probabilities, “TransPr” represents 

Transition Probabilites and “OutputPr” represents Output Emission 

Probabilities [11]. 

Also let us see how an observation sequence would look like on a 

disk file. 

 

 

Figure 12 Screen shot of an observation sequence file 
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The sequence file contains a list of observations represented by their 

ascii values. 

Model file and sequence files are the inputs, outputs of HMM. 

The implementation of HMM is divided based on the three problems of 

HMM 

4.2 Evaluation Problem 

Problem: Given an observation sequence O and a model λ, what is the 

probability of the observation sequence, P(O|λ ) ? 

Solution: Forward Algorithm and Backward Algorithm 

Functions: 

void ComputeAlpha(int *seq, int seqLength); 

void ComputeBeta(int *seq, int seqLength); 

Variables: 

Array alpha[][] 

alpha[t][i] = prob. of generating observations up to time t and being in 

state i at time t 

Parameters: 

- Observations 

*seq- the sequence of observed symbols, and is an array of length 

seqLength. It is 0-indexed, and seq[t] is the index of the symbols at 

time t, which can be used directly to access matrix B, B[seq[t]][i]. 

- HMM model file 
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Output: The probability that the given sequence has been generated by 

this model 

Implementation: 

Step 1: 

 

 

Figure 13 Forward Algorithm-Initialization code snippet  

 

Step 2: 

 

Figure 14 code snippet to compute alpha values 

 

Similarly Backward Algorithm has been implemented. One of the 

algorithms can be used to compute P(O | λ ) 
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4.3 Decoding 

Problem: This problem is the discovery of the most likely sequence of 

states that generated a given output sequence. 

Solution: This can be computed efficiently using the Viterbi algorithm. A 

trackback is used to detect the maximum probability path travelled by 

the algorithm. The probability of travelling such sequence is also 

computed in the process. 

Functions:  

void Decode(char *seqFile); 

ComputeStep( char *seq, int t, int i ) 

Parameters: model file and an observations sequence. 

Variables: 

delta[T][N], psy[T][N], stateSequence[T], lnProbability 

Output: The sequence of states that most likely produced the sequence - 

a tagged sequence file 

Implementation: 

Step 1: 

 

Figure 15 Viterbi Algorithm-Initialization-code snippet 
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Step 2: 

Compute Step 

 

 

Figure 16 Viterbi Algorithm Compute Step 

In this function we compute δ and Ψ values. Using these values we 

compute the most probable state sequence. 

Step 3: Termination 

 

 

Figure 17 Viterbi Algorithm-termination code snippet 
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StateSequence array stores the most probable state sequence. 

The output of a HMM id a tagged sequence file which looks like this 

 

 

Figure 18: screen shot of tagged sequence file 

 

4.4 Training 

Problem: Find the most likely parameters that best models a system 

given a set of sequences that originated from this system. 

4.4.1 Supervised Training  

Solution: MLE 

Functions: 

void CountSequence(char *seqFile); 

 void UpdateParameter(); 

Parameters: tagged sequence file 
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Output: Model file 

Implementation: 

Accumulate the following counts  

-  count how many times it starts with state i 

-  count how many times a particular transition happens 

-  count how many times a particular symbol would be generated 

from a particular state 

 

 

Figure 19 screen shot of Counting in MLE 
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Using these counts relative frequencies are computed to obtain 

parameters of an HMM. This is done in the function UpdateParameters. 

 

Figure 20: code snippet for UpdateParameters() of MLE 

 

4.4.2 Unsupervised Training  

Solution: Baum-Welch Algorithm 

Functions: 

- Train(char *seqFile); train an HMM with an untagged sequence 

using Baum-Welch algorithm 

-  RandomInit(); initialize parameters of HMM to some random 

values 

- double UpdateHMM(int *data, int seqLength);re-estimates the 

parameters of the HMM. 

Parameters: A sequence file, Number of States and Output Variables 

Output: Model file 

Implementation: 
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We first initial probabilities values to the matrices A, B and π  to 

random values using a function RandomInit. 

 We train for many epochs.  

As we train, we keep track of how well the current HMM models 

the data ( P(O | λ) ). Additionally, we keep track of a history of how 

the model has fit the data in previous epochs (meanFit). As the 

HMM settles into a stable state, currentFit will asymptote to a 

particular value. The time-averaged meanFit will asymptote to this 

value also (though more slowly). 

 When the currentFit becomes very similar to the meanFit, the 

model isn't changing, so we stop training. The code in function 

Train shows how this is done 

 

 

Figure 21 cone snippet of function train-BW Algorithm 
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The train function has the following steps in it 

Step1:Initial probabilities values of the matrices A, B and π are set to 

random values using a function RandomInit. 

Step 2:UpdateHMM  function re-estimates the λ values to obatain λ’ 

 

Figure 22 code snippet of UpdateHMM function 

 

AccumulateCounts function in UpdateHMM accumaulates counts 

using training data. These counts are needed for updating the 

parameters of HMM. It first computes the gamma's based on the alpha's 

and beta's and uses these to compute the following counts. 

- counting for initial state distribution 

- counting for output probabilities 

- count for state transition probabilities 
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Step 3: Calculate Mean-fit. It the meant fit is less than or equal to a 

certain threshold value stop re-estimating. 

The output of Baum-Welch Algorithm is a Model File that 

represents that best represents the observation sequence. 
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CHAPTER 5 

IMPLEMENTATION ISSUES OF HMM 

There are two practical issues associated with the implementation of 

HMM. 

1) numerical scaling of conditional probabilities to model long 

sequences  

2)  smoothing of poor probability estimates caused by sparse training 

data 

5.1 Scaling 

When implementing a HMM, long observation sequences often result in 

the computation of extremely small probabilities. These values are 

usually smaller in magnitude than the smallest value a normal floating 

point number in a system can hold. This results in a significant problem 

called floating-point underflow.  

This numerically instability is seen Viterbi and Forward Algorithms of 

HMM. When Viterbi and forward algorithms are applied to long 

sequences it results in extremely small probability values that could 

underflow on most machines. We solve this problem differently for each 

algorithm:  

5.1.1Viterbi underflow 

As the Viterbi algorithm only multiplies probabilities, a simple solution to 

underflow problem is to log all the probability values and then add those 

values instead of multiplying them. 
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If all the values in the model matrices (A, B, λ) are stored logged, then at 

runtime only addition operations are needed. But in our implementation 

model matrices are not logarithmic values. 

This is how we convert floating numbers to log and instead of 

multiplying we add them. 

 delta[0][i] = Math.log(I[i]) + Math.log(B[cIndex][i]); 

In the code as you can see in order to compute the delta value we 

just added the log values of I[i] and B[cIndex][i] instead of multiplying 

them. Similar scaling is applied to other computations of Viterbi 

Algorithm. 

5.1.2 Forward algorithm underflow 

The forward algorithm sums probability values, so using log values here 

will not help in preventing underflows. The most common solution to this 

problem is to use scaling coefficients that will keep the probability values 

in the dynamic range of the machine. These scaling coefficients should 

not be dependent on anything except for time t.  

The scaling coefficient in our implementation is:  

 

This is how the scaled forward variable looks like 
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In our implementation array eta ( eta[t] ) is the scaling coefficient. The 

code below shows the calculation of scaling coefficients and normalizing 

the alpha values. 

 

 

Figure  23: source code to calculate scaling coefficients 

 

5.1.2.1 Normalized Forward Algorithm 

Step 1:  

 

The code below shows the calculation of scaling coefficients and 

normalization of alpha values in step 1 of forward algorithm. 

 

 

Figure 24 : source code to compute normalized alpha values 
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Step 2: 

 

This is how the above equation is implemented in code. 

 

 

Figure 25: Step 2 of Normalized Forward Algorithm 

 

Similar coefficients and Normalization is down in Backward Algorithm. 

5.2 Smoothing 

Smoothing technique is used to solve the problem that occurs during the 

learning process. The output of learning in HMM is the estimated 

probabilities for vocabularies and transitions. Sparse training data 

causes poor probability estimates. Unseen words have emission 

probabilities of zero. Smoothing is the process of flattering probability 
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distribution so that all word sequences can occur with some probability. 

This often involves redistributing weight from high probability regions to 

zero probability regions. 

In practice when estimating a HMM from counts it is normally 

necessary to apply smoothing in order to avoid zero counts and improve 

the performance of the model on data not appearing in the training set.  

This is how we implemented the concept of smoothing in our HMM. 

 

 

Figure 26: Smoothing in HMM 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this thesis, the theoretical aspects of a discrete HMM are implemented 

by dividing it into three canonical problems. The practical issues that 

arise during the implementation are also addressed which makes the 

HMM numerically stable. This Numerical stable HMM can be used in 

making application without worrying about genome length observation 

sequences or training data. 

 This thesis considered the output variables of the HMM to be 

discrete symbols but can be expanded to continuous output variables. 

Using this HMM as a basis and adding several features specific to the 

application under consideration, application specific HMM can be 

developed. 
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