
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2011

Implementation of numerically stable hidden Markov model Implementation of numerically stable hidden Markov model

Usha Ramya Tatavarty
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Statistics and Probability Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
Tatavarty, Usha Ramya, "Implementation of numerically stable hidden Markov model" (2011). UNLV
Theses, Dissertations, Professional Papers, and Capstones. 1018.
http://dx.doi.org/10.34917/2362226

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/2362226
mailto:digitalscholarship@unlv.edu

IMPLEMENTATION OF NUMERICALLY STABLE HIDDEN MARKOV

MODEL

by

Usha Ramya Tatavarty

Bachelor of Technology in Computer Science and Engineering
Jawaharlal Nehru Technological University, India

May 2009

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2011

Copyright by Usha Ramya Tatavarty 2011

All Rights Reserved

ii

The Graduate College

We recommend the thesis prepared under our supervision by

Usha Ramya Tatavarty

entitled

Implementation of Numerically Stable Hidden Markov Model

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Venkatesan Muthukumar, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

May 2011

iii

ABSTRACT

Implementation of Numerically Stable Hidden Markov Model

by

Usha Ramya Tatavarty

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

A Hidden Markov model (HMM) is a statistical Markov model in which

the system being modeled is assumed to be a Markov process with

unobserved (hidden) states. HMM is an extremely flexible tool and has

been successfully applied to a wide variety of stochastic modeling tasks.

One of the first applications of HMM is speech recognition. Later they

came to be known for their applicability in handwriting recognition, part-

of-speech tagging and bio-informatics.

 In this thesis, we will explain the mathematics involved in HMMs

and how to efficiently perform HMM computations using dynamic

programming (DP) which makes it easy to implement HMM. We will also

address the practical issues associated with the use of HMM like

numerical scaling of conditional probabilities to model long sequences

and smoothing of poor probability estimates caused by sparse training

data.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to many people who helped and

directed me to pursue my goal of getting an education in USA. Firstly, I

would like to thank the faculty and staff of School of Computer Science,

University of Nevada Las Vegas. I cannot thank enough to Dr. Kazem

Taghva for being more than a mentor and an advisor to me. It is only

because of his support and guidance I am able to finish my research

work. I sincerely thank our graduate coordinator, Dr. Ajoy K Datta, for

his help and invaluable support throughout my masters program. I also

would like to thank other members of my committee, Dr. Laxmi P. Gewali

and Dr. Venkatesan Muthukumar.

 I would also like to extend my appreciation towards my parents,

and my sisters, for being there for me through thick and thin and always

encouraging me to strive for the best. Without their endless support, I

would never be able to reach the place I am standing today in my life.

Last but not the least; I thank my friends for their support in successful

completion of this work.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ..vii

CHAPTER 1 INTRODUCTION ... 1

1.1 Thesis Overview .. 2

1.2 Thesis Structure ... 3

CHAPTER 2 BACKGROUND ... 4

2. 1 Statistical Model .. 4

2.2 Markov Models.. 5

2.2.1 Markov Chain ... 6

2.2.2 Discrete Markov Model .. 9

2.2.3 First –order Markov Model ... 9

2.3 Discrete Markov Model Examples .. 10

2.3.1 Example 1 Single Fair Coin Tossing Experiment 11

2.3.2 Example 2: Stock Market Index ... 13

2.4 Extension to HMMs ... 15

CHAPTER 3 HIDDEN MARKOV MODELS ... 18

3.1 Elements of an HMM... 18

3.2 Canonical Problems of HMM ... 21

3.2.1 Evaluation .. 24

3.2.1.1 Forward Algorithm .. 26

3.2.1.2 Backward Algorithm .. 28

3.2.2 Decoding ... 30

3.2.2.1 Viterbi Algorithm ... 30

3.2.3 Training .. 32

3.2.3.1 Supervised Learning .. 33

3.2.3.2 Unsupervised learning ... 34

3.3 HMM Examples... 37

3.3.1 Example 1: Coin Tossing Experiment 37

3.3.1 Example 2: Stock Market Index ... 38

CHAPTER 4 IMPLEMENTATION OF HMM .. 40

4.1 Representation of HMM Model .. 40

4.1.1 HMM Representation on the disk file 41

4.3 Decoding... 46

4.4 Training .. 48

4.4.1 Supervised Training .. 48

4.4.2 Unsupervised Training .. 50

vi

CHAPTER 5 IMPLEMENTATION ISSUES OF HMM 54

5.1 Scaling.. 54

5.1.1Viterbi underflow ... 54

5.1.2 Forward algorithm underflow .. 55

5.1.2.1 Normalized Forward Algorithm .. 56

5.2 Smoothing .. 57

CHAPTER 6 CONCLUSION AND FUTURE WORK 59

BIBLIOGRAPHY ... 60

VITA .. 61

vii

LIST OF FIGURES

Figure 1 A Markov Chain with five states and state transitions 7

Figure 2 Observation Sequence for coin tossing experiment 11

Figure 3 Single Fair Coin tossing experiment-Markov Model............... 12

Figure 4 Stock Market Index Markov Model 14

Figure 5 Operations for computing the forward variable αj (t + 1) 26

Figure 6 Computing αj(t) .. 27

Figure 7 Computing .. 29

Figure 8 Operations for computing ... 35

Figure 9 HMM-Coin Tossing Experiment .. 38

Figure 10 Hidden Markov Model-Stock Market Index 38

Figure 11 Screenshot of the Stock Market Index HMM Model file. 42

Figure 12 Screen shot of an observation sequence file 43

Figure 13 Forward Algorithm-Initialization code snippet 45

Figure 14 code snippet to compute alpha values 45

Figure 15 Viterbi Algorithm-Initialization-code snippet 46

Figure 16 Viterbi Algorithm Compute Step ... 47

Figure 17 Viterbi Algorithm-termination code snippet 47

Figure 18 screen shot of tagged sequence file 48

Figure 19 screen shot of Counting in MLE ... 49

Figure 20 code snippet for UpdateParameters() of MLE......................... 50

Figure 21 cone snippet of function train-BW Algorithm 51

Figure 22 code snippet of UpdateHMM function 52

Figure 23 source code to calculate scaling coefficients 56

Figure 24 source code to compute normalized alpha values 56

Figure 25 Step 2 of Normalized Forward Algorithm 57

Figure 26 Smoothing in HMM .. 58

1

CHAPTER 1

INTRODUCTION

A Hidden Markov Model (HMM) is simply a Markov Model in which the

states are hidden. Hidden Markov Models (HMMs) are powerful statistical

models for modeling sequential or time-series data. Hidden Markov

Models were first introduced in a series of statistical papers by Leonard

E. Baum and others in the late 1960s. Andrei Markov gave his name to

the mathematical theory of Markov processes in the early twentieth

century, but it was Baum and his colleagues that developed the theory of

HMMs. One of the first applications of HMMs was speech recognition.

Later they have been successfully used in many tasks such as

computational sequence analysis, robot control, and information

extraction. Hidden Markov modeling has become popular as it works very

well in practice for several important applications when applied properly.

Also it is very rich in mathematical structure and hence can provide a

theoretical basis to a wide range of applications. In this thesis we

attempt to understand the theoretical aspects of this type of statistical

modeling.

 Real-world processes usually produce observable outputs which

can be characterized as signals [1]. These signals can be characterized

in terms of signal models and with a good signal model we can stimulate

the source that generated the signal. Signal Models can be broadly

categorized into deterministic models and statistical models. In

2

deterministic model the specification of the signal model is normally

straightforward. We need to determine values of the parameters of the

signal model. In statistical models we characterize only the statistical

properties of the signal. The signal is first illustrated as a parametric

random process, and then the parameters of the stochastic process are

estimated in a precise, well-defined manner. Some examples of

statistical models include Gaussian processes, Markov processes and

Hidden Markov processes, among others. The statistical model that is of

interest to us is hidden Markov process, to be more specific discrete

Hidden Markov Models.

1.1 Thesis Overview

Hidden Markov Model (HMM) is a finite state model that describes a

probability distribution over an infinite number of possible sequences. It

is a statistical Markov model in which the system being modeled is

assumed to be a Markov process with unobserved (hidden) states [2]. The

“hidden” in Hidden Markov Models comes from the fact that the observer

does not know in which state the system may be in, but has only a

probabilistic insight on where it should be [3].

 In this thesis we will explain the mathematics involved in HMMs

and how to perform efficient HMM computations using dynamic

programming (DP). However, before going to the theoretical aspects of

Hidden Markov Models we will first understand the theory behind

Markov chains using some simple examples. The basic idea is to

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Markov_model
http://en.wikipedia.org/wiki/Markov_process

3

characterize the theoretical aspects of Hidden Markov Model in terms of

solving three fundamental problems. So we focus our attention on the

three fundamental problems for HMM design, namely: the Forward and

Backward algorithm for evaluating the likelihood of a sequence of

observation given a specific HMM; Viterbi Algorithm to find the most

likely explanation of a sequence; and Baum-Welch Algorithm and

Maximum Likelihood Estimation (MLE) for training an HMM given

sequence of observations. There are two practical issues that are

associated with the implementation of Hidden Markov Models. We will

also address those issues and solve them using numerical scaling and

smoothing techniques.

1.2 Thesis Structure

 This thesis is organized into different chapters starting from

introduction in chapter 1 followed by a brief description about Markov

Chains in Chapter 2. Then we extend the idea to the class of Hidden

Markov Models in Chapter 3 using simple examples. Chapter 4 presents

the implementation of theoretical aspects of HMM discussed in the

previous chapter. The issues that arise during the implementation of

HMM are addressed in the chapter 5. Chapter 6 concludes the thesis by

giving a brief description about future proceedings.

4

CHAPTER 2

BACKGROUND

Some data mining techniques such as clustering assume that each data

point in an observed input data is statistically independent from the

observation (data point) that preceded it. But we often encounter

sequences of observations, where each observation may depend on the

observations which preceded it. One example that can explain this

situation is a sequence of phonemes (fundamental sounds) in speech

during the process of speech recognition [6]. In order to model such

processes, we can use Hidden Markov Models.

 Hidden Markov Model is one of the most important machine

learning models in Information Extraction and Retrieval. Earlier, we have

defined Hidden Markov Model (HMM) as a statistical model where the

system being modeled is assumed to be a Markov process with unknown

parameters, and the challenge is to determine the hidden parameters,

from the observable parameters, based on this assumption [5]. To have a

better understanding of what an HMM is, we will first focus our attention

on what is meant by statistical models and Markov models and then on

the concept of Hidden in Hidden Markov Models.

2. 1 Statistical Model

A statistical model is a formalization of relationships between variables in

the form of mathematical equations. A statistical model describes how

one or more random variables are related to each other. The model is

5

statistical as the variables are not deterministically but stochastically

related. Stochastic means random. In stochastic or a random process

instead of dealing with only one possible reality of how the process might

evolve under time, there is some indeterminacy in its future evolution

which is described by probability distributions [2].

 In mathematical terms, a statistical model is frequently thought

of as a pair (Y, P) where Y is the set of possible observations and P the set

of possible probability distributions on Y. It is assumed that there is a

distinct element of P which generates the observed data. Statistical

inference enables us to make statements about which element(s) of this

set are likely to be true [2].

 Consider a simplest possible case of discrete time intervals. A

stochastic process in this case amounts to a sequence of random

variables known as a time series. A good example for this is Markov

Chains.

2.2 Markov Models

To define Hidden Markov Model (HMM) properly, we need to first

introduce the concept of Markov Chain, also referred to as an observed

Markov Model. Markov chains and Hidden Markov models are both

extensions of the finite automata. A finite automaton is defined by a set

of states and a set of transitions between states. A weighted finite-state

automaton is a simple augmentation of the finite automaton in which

each arc is associated with a probability, indicating how likely that path

6

is to be taken. The probability on all the arcs leaving a node must sum to

one [4].

2.2.1 Markov Chain

A Markov Chain is a particular case of a weighted automaton in which

the input sequence uniquely determines the states through which the

automaton traverses. Markov chains are sequences of random variables

in which the future variable is determined by the present variable but is

independent of the way in which the present state arose from its

predecessors [8]. An important point to consider is that Markov chains

can only assign probabilities to unambiguous sequences; it cannot

represent problems that are inherently ambiguous.

 We will now try to define Markov chains as probabilistic graphical

models which are a way of representing probabilistic assumptions in a

graph [4].

7

Figure 1 A Markov Chain with five states and state transitions

A Markov chain is specified by the following components:

State:

In Markov Model, at any time t, we consider the system to be in one of a

set of N distinct states, S1, S2, S3, …, Sn and we denote this distinct state

occupied at state t as qt.

Notation

A set of N states S= { S1, S2, S3, …, Sn-1, Sn }

 We can denote a sequence of successive states of length T as Q

 Q = (q1, q2 , …, qt)

 In a Markov model, we know what states the machine is passing

through, so the state sequence or some deterministic function of it can

be regarded as the output.

8

 We will model the production of such a sequence using transition

probabilities

Transition Probabilities:

A transition Probability denoted by aij is the probability that the system

will be in state Sj at time t+1 given that it was in state Si at time t

Notation

aij≡ P(qt+1 =Sj/ qt =Si) aij ≥ 0

 , a12, …, ann are the Transition Probabilities. All the transition

probabilities together can be represented by a Transition Probability

Matrix A.

 In transition probability matrix A, each aij represents the

probability of moving from state i to state j

 for all i

 As each aij represents the probability P (/), the laws of

probability require that the values of the outgoing arcs from a given state

must sum to one.

Initial Probability Distribution (π):

An initial probability denoted by Πi is the probability that the Markov

chain will start in state i. Some states j may have Πj=0, meaning that

they cannot be initial states.

9

Notation

 πi ≡ P(q1=Si)

 Π1, Π2, …, Πn is the initial probability distribution over states

 As each πi represents the probability of Si being the start state,

all the π must sum to one

 A model of states and transition probabilities, such as the one we

have just described, is called a Markov model. The above stochastic

process could be called an observable Markov Model since the output of

the process is the set of states at each instant of time, where each state

corresponds to an observable event [1].

2.2.2 Discrete Markov Model

 Discrete Markov chains model observation sequences which consist of

symbols drawn from a discrete and a finite set of size N. This set of

discrete observations is often referred to as a codebook.

 The above Markov model considers the observations to be

discrete; it has states that are distinct from one another. As the

observations of a Markov Model are characterized as discrete symbols

chosen from a fine alphabet it is a discrete Markov Model.

2.2.3 First –order Markov Model

A Markov Chain that we have defined above embodies an important

assumption about transition probabilities. We assumed that transition

10

probabilities depend only on the previous state which makes it a first-

order Markov model. In a first order Markov chain, the probability of a

particular state depends only on the previous state. This assumption is

called a Markov assumption.

Markov Assumption:

The probability of a certain observation at time n only depends on the

observation qn-1 at time n-1

 Markov Assumption:

 P (qt / q1 … qt-1) = P (qt / qt-1)

 This is called first order Markov Assumption. A second order

Markov assumption would have the probability of an observation at time

n depend on qn-1 and qn-2. Higher order Markov models are also possible

but the model that is of concern to us is first order. In general when

people talk about Markov assumption they usually mean the first-order

Markov assumption [7].

2.3 Discrete Markov Model Examples

Markov models are used to model sequences of events (or observations)

that occur one after another. These sequences of events can either be

deterministic or non-deterministic. Deterministic Markov Models where

one specific observation always follows another are easy to model. One

good example to represent deterministic Markov Model is changes in

traffic lights. Non-deterministic models are the ones where an event

might be followed by one of several subsequent events, each with a

11

different probability. Some real time processes that come under non-

deterministic Markov Models are daily changes in the weather, sequences

of words and sequences of phonemes in spoken words [10].

 To illustrate the concept of Markov chains we will consider an

example of tossing coins. This example can later be extended to

understand Hidden Markov Models.

2.3.1 Example 1 Single Fair Coin Tossing Experiment

Let us consider the following scenario. Assume that we are placed in a

room which is divided into two sections with a curtain. Imagine that we

are on one side of the curtain and there is a person on the other side of

the curtain. The person on the other side has a single fair (un-biased)

coin with him which he tosses to produce an observation. The person

tosses the coin and tells us the outcome (H, T), after each trial. He does

this several times and the outcome obtained after each trial is recorded

as an observation.

This is how the observation sequence would look like

Figure 2 Observation Sequence for coin tossing experiment

 This sequence of Heads (H) and Tails (T) can be modeled as a

Markov Chain. The two possible outcomes of each trial in the coin

THTHHHTTTTHHHHHTHHTTHHTTHHTHHHHHHHTTHTTHHHH

THTTTHHTHTTHHHHTHTHHTTHTHTTHHTHTHHHTHHTHT…

12

tossing experiment, heads (H) and Tails (T) are represented as the two

states of the Markov Model. In fact, we may describe the system with a

deterministic model where the states are the actual observations [8].

These states can transition to themselves and as the experiment uses a

fair coin, the transition probabilities are equally distributed. Here it is

obvious that there is no concept of hidden as it is already known that a

single fair coin is tossed every time which implies that the visible states

correspond to the internal states.

Here is the graphical representation of the single fair coin tossing

experiment.

Figure 3 Single Fair Coin tossing experiment-Markov Model

States (S): Heads (1), Tails (2)

Transition Probabilities (A):

Initial Probabilities (π):

13

O= H H H T T H…

Q = 1 1 1 2 2 1…

Observation sequence is O= H H H T T H… and the corresponding state

sequence is Q = 1 1 1 2 2 1… .

It is obvious from the Markov Model that these are the states traversed to

obtain the above observation sequence.

2.3.2 Example 2: Stock Market Index

Let us consider another example to get a better understanding of Markov

Processes. Figure 4 depicts a simple example of Markov process. It

describes a simple model for a stock market index. It has three stocks,

Bull, Bear and Even, that represents states and three index observations

up, down, unchanged that represent the variations of stock in model. We

associated Bull to the variation Up, Bear to the variation Down and Even

to the variation Unchanged.

Graphical Representation of Example 2

14

Figure 4 Stock Market Index Markov Model

Parameters of this Markov Model are

States:

Bull, Bear and Even

These are the internal states corresponding to the three stocks of the

example

Transition Probabilities:

It is a finite state automaton, with probabilistic transitions between

states.

Initial Probabilities (π):

15

Given a sequence of observations we can easily find the state sequence

that produced these observations.

Observations: up-down-down-unchanged

States: Bull-Bear-Bear-Even

Probability for the above sequence can now be calculated

P (O) = πBull * A Bull, Bear * A Bear, Bear * A Bear, Even

 = 0.33 * 0.2 * 0.3 * 0.2

 = 0.00396

2.4 Extension to HMMs

A Markov Chain is useful when we need to compute probability for a

sequence of events that we can observe in the real world. In many cases

however the events are not observable. We will see how the above

mentioned examples can be improved to represent more realistic

problems and how this improvisation leads to the concept of Hidden

Markov Models.

 In example 1 we considered a coin tossing experiment where

there is a person on one side of the curtain who tosses a single fair coin.

Here once an observation is made, the state of the system is trivially

retrieved. But this model is too restrictive as it is limited to one un-

biased coin. However this is not always the case. There can be a case

where the person behind the curtain has several coins, some of them

16

being biased. This situation cannot be modeled using Markov Chains as

there is a concept of hidden in this situation.

 Now consider example 2 and how it is too restrictive to be of any

practical use. The model presented in example 2 describes a simple

model for a stock market index with three states and three observations.

We assumed in our example that a bull market has only good days.

Similarly, we assumed that Bear market always goes down and Even

market remains Unchanged. Our goal here is to represent a Stock

Market index and we are not doing a good job by restricting the stocks to

a specific variation.

 To make our example more expressive and realistic we have to

consider the possibility of bull market not only going Up but also the

possibility of it going down and remaining unchanged. Similar

possibilities should also be considered for other stocks, Bear and Even.

By including these prospects to the Model we are associating a state

(Stocks) to all the observations (Variations in Price) as opposed to a state

being indexed to a particular observation making in more realistic. By

extending example 2 to include these new prospects we come up with

Hidden Markov Models.

 To conclude, in order to make a Markov Model more flexible, we

assume that the outcomes or observations of the model are a

probabilistic function of each state [8]. This makes the Markov Model a

Hidden Markov Model. The “hidden” in Hidden Markov Models comes

17

from the fact that the observer does not know in which state the system

may be in, but has only a probabilistic insight on where it should be.

18

CHAPTER 3

HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) separate the observations from the

states; the observations (outputs) are visible, but the state sequences

that led to them are hidden. It’s “Markov” because the next state is

determined solely from the current state. It is “Hidden” because the

actual state sequences are hidden [10]. In this thesis we talk about

discrete Hidden Markov Models. This type of HMM has discrete

observation symbols. In this thesis the term HMM implies Discrete HMM.

A set of five elements can be used to describe an HMM.

 In the following section the elements of an HMM and their notation

are defined.

3.1 Elements of an HMM

We define Q to be a fixed state sequence of length T, and corresponding

observations O:

Q = q1, q2, · · · , qT

O = o1, o2, · · · , oT

T is the number of observations in the sequence

We can define an HMM as a 5-tuple (S, V, π, A, B)

HMM Notation: λ = (A, B, π)

 N: Number of states in the Model.

19

There are a finite set of states in a model. The states in a HMM are

hidden but there is a lot of significance to these states in defining

an HMM. We denote the individual states as S1, S2, S3, …, Sn .

S = { S1, S2, S3, …, Sn }

 M: Number of distinct symbols observable in states.

These symbols correspond to the observable output of the system

that is being modeled. We denote the individual symbols as v1, v2,

v3, …, vM

V = { v1, v2, v3, …, vM }

 A: State transition probability distribution

A is transition array that store the state transition probabilities,

A={ aij }

 aij= P(qt=Sj/qt-1=Si), i ≥1 and j ≥ N

aij, the probability of moving from state Si to Sj at time t

At each time t, a new state is entered which depends on the

transition probability distribution of the state at time t – 1.

Transition to the same state is also possible. An important point

about transition probabilities is that they are independent of time;

the probability of moving from state Si to state Sj is independent of

time t

20

 B: Observation symbol probability distribution

B = { bj(k) } is the output symbol array that stores the probability of

an observation Vk being produced from the state j, independent of

time t. Observation symbol probability or Output Emission

Probability estimates are also independent of time; the probability

of a state emitting a particular output symbol does not vary with

time.

 B = { bj(k) } , bi(k) = P(xt = vk/qt = Sj) 1≤ j ≤ N and 1≤ k ≤ M

 bi(k), the probability of emitting symbol vk when state Sj is entered

at time t

After each transition is made a symbol is outputted based on the

output probability distribution which depends only on the current

state.

 π: Initial state distribution

π = { Πi } is the initial probability array that stores the probability of

the system starting at state i in an observation. It is the probability

of state Si being the start state in an observation sequence.

π = { Πi }, Πi = P (q1 = Si), 1≤ i ≤ N

Πi , the probability of being in state I at time t=1

A complete specification of an HMM consists of the above five elements,

{S, V, π, A, B}. We usually use a compact notation λ=(A, B, π) to

represent the above complete parameter set of HMM.

The following are obvious constraints on the elements of an HMM.

21

 for all i

 for all i

As each aij represents the probability P (/), the laws of probability

require that the values of the outgoing arcs from a given state must sum

to one. Same laws of probability apply to Initial Probabilities and Output

Emission Probabilities.

3.2 Canonical Problems of HMM

The operations of an HMM are characterized by state sequence Q and the

observation sequence O.

Q = q1, q2, · · · , qT

O = O1, O2, · · · , OT

Q is a fixed state sequence of length T, and corresponding observation

sequence is O. T is total number of observation in the observation

sequence and Ot is one of the symbols from V (Output variables). Using

an HMM, we can generate an observation sequence O = O1, O2, · · · , OT.

We can also estimate the most probable state sequence Q= (q1, q2, · · · ,

qT) given the set of observations O =(O1, O2, · · · , OT). Here the

observations are assumed to have statistical independence; the Model

has discrete observation (output) symbols. For an HMM to perform all

these we need appropriate values of N, M, A, B and π. These values can

be obtained by a learning process.

22

For an HMM to perform the above mentioned tasks we characterize it in

terms of solving three fundamental problems. We can use HMMs to solve

real problems with real data by solving these three problems. So much

being said about the three problems let us now discuss what these

problems are.

Problem 1

Evaluation:

Given an observation sequence O and a model λ, what

is the probability of the observation sequence, P(O|λ)?

P(O|λ)= P(O1,O2,…, OT | λ) = ?

Problem 2

Decoding:

Given an observation sequence O and the model λ,

what is the most probable state transition sequence Q

for O?

Q* = arg max Q=(q1, q2, …, qT) P(Q, O | λ) = ?

Problem 3

Training:

Given a training sequence O, find a model λ, specified

by parameters (A, B, π) to maximize P(O|λ) (we

assume for now that Q and V are known).

P (O | λ = (A, B ,π)) < P (O | λ ' = (A' , B ' ,π'))

λ* = argmaxλ P(O|λ)

Among the three problems only the evaluation problem has a direct

solution. The other problems are harder and involve optimization

techniques like dynamic programming. There are specific algorithms for

each problem that explain a best way to solve them. The problem of

23

evaluation is solved using the Forward and Backward iterative

algorithms. The second problem is solved using the Viterbi Algorithm,

also an iterative algorithm that output best path by sequentially

considering each observation symbol of O. The last problems which deals

with training an HMM can be solved by using Baum- Welch or Maximum

Likelihood Estimation (MLE). The decision between these two algorithms

can be made based on the training data available for the learning

process.

Problem

Solution

Evaluation 1) Forward Algorithm

2) Backward Algorithm

Decoding Viterbi Algorithm

Training 1) Supervised - Maximum
Likelihood Estimation (
MLE)

2) Unsupervised- Baum-
Welch Algorithm

Table 1: Problems of HMM

We will now discuss in detail how these algorithms solve the three

problems associated with HMM. The section is divided based on the

problem that has to be addressed. Each algorithm is explained

mathematically using equations that make use of HMM Notation, λ= (A,

B, π).

24

3.2.1 Evaluation

Problem 1 is the evaluation problem. Given a model and a sequence of

observation the question is how to compute the probability that the

observation sequence is produced by the model. Here we are trying to see

how well a particular observation sequence matches the given model.

This is an extremely important point. If there is a situation where a

choice has to be made among several competing HMMs, the model which

best suits the observation sequence can be found using Evaluation.

The simplest way to solve the evaluation problem is by following

the Brute-Force approach. In this approach we enumerate every state

sequence of length T (the number of observations) and calculate the

probability of each state sequence producing the given observation

sequence.

Consider one such fixed state sequence

 Q= q1,q2,…, qT

Here q1 is the initial state of the sequence. Now find the probability of

the observation sequence O for the selected state sequence of length T

 P(O| Q, λ) =

The below equation is valid for our HMM as we are dealing with discrete

HMM.

P(O| Q, λ) =
 .

 . . .

The probability for the model to emit our fixed state sequence is

P(Q| λ) =
 .

 .
 . . .

25

The joint probability that O and Q occur simultaneously is simply the

product of the two terms.

P(O, Q| λ) = P(O| Q, λ) * P(Q| λ)

This is just one state sequence. Our goal is to obtain P (O| λ), not P(O,

Q| λ)

So, to obtain the probability of the model λ emitting O we sum P(O, Q| λ

) over all the possible state sequences.

P(O| λ) =

=

This approach can be followed but the computations get very long.

There is a problem of computational complexity as the calculations to be

done are exponential. This is because our model has N states and at

every t= 1, 2, …, T, there are N possible states which can be reached. So

there are NT possible state sequences of length T and for each such state

sequence about 2T calculations are required. To be precise we need (2T-

NT) multiplications and NT-1 additions. The computational complexity is

O (NTT). Even if we have small N and T, this is not feasible: for N = 5 and

T = 100, there are ~1072 computations needed.

There is a more efficient procedure to solve Problem 1. It is called

Forward- Backward Procedure.

26

3.2.1.1 Forward Algorithm

Luckily, there is no need for so many computations. We can perform a

recursive evaluation, using an auxiliary variable αt(i), called the forward

variable.

)|)(,,...,,()(21 itt qtiOOOPi

αt(i), the probability of the partial observation sequence until time t and

internal state qt = Si given the model λ.

How does αt(i) help?

 αt(i) makes a recursive calculation possible because in a first-order

HMM, the transition and emission probabilities only depend on the

current state [6]. These recursive calculations reduce the numbers of

calculations needed to obtain P (O| λ).

We can solve αt(i) inductively as follows

Step 1: Initialization

 , 1 ≤ i ≤ N

Step 2 : Induction

Figure 5: Operations for computing the forward variable αj (t + 1)

27

 Here we calculate α , the next step, using the previous one

αt(i). αt+1(j) represents the probability of the observation sequence up to

time t + 1 and being in state Sj at time t + 1.

 1 ≤ t ≤ T-1, 1 ≤ j ≤ N

 According to the above equation is the probability of

observing symbol Ot+1 when in state Sj (bj(Ot+1)), times the sum of the

probabilities of getting to state Sj from state Si times the probability of the

observation sequence up to time t and being in state Si [1].Note that we

have to keep track of ,for all N possible internal states. These values

are used in the termination step.

Step 3: Termination:

Figure 6: Computing αj(t)

N

i

tijtjt iaObj
1

11)()()(

28

If we know αT(i) for all the possible states, we can calculate the overall

probability of the sequence given the model, P(O | λ)

N

i

T iOP
1

)()|(

The forward algorithm allows us to calculate P(O|λ). As it can be

seen from the above algorithm it has a computational complexity O(N2T).

This is linear in T, rather than exponential as compared to the Brute

Force approach. This means that it is feasible. Apart from calculating

P(O|λ) this algorithm is also used in Baum Welch Algorithm for

unsupervised learning.

3.2.1.2 Backward Algorithm

The α values computed using the forward algorithm are sufficient for

solving the first problem, P(O | λ). However, in order to solve the third

problem, we will need another set of probabilities, the β values. In the

same manner as forward variable we define a backward variable, .

We denote the backward variable as the probability of the partial

observation sequence after time t, given state Si at time t.

 = P (Ot+1, Ot+2 , …, OT |qt = Si, λ) , 1 ≤ t ≤ T, 1≤ i ≤ N

Just like α’s, β's can also be computed using the following

backward recursive procedure:

Step 1: Initialization

The initialization step arbitrarily defines to be 1 for all i.

 =1, 1 ≤ i ≤ N

29

This algorithm is backwards in the sense that the time interval t are from

T to one.

Step 2: Induction

Figure 7: Computing β

Here we calculate β
t
 i , the next step, that makes use of the previous one

β

β

 = β

 , t=T-1, T-2, . . . , 1 1 ≤ i ≤ N

In order to have been in state Si at time t and to account for the

observation sequence from time t+1 on, you have to consider all possible

states Sj at time t+1, accounting for the transition from Si to Sj (aij), as

well as observation Ot+1 in state j (), and then account for the

remaining partial observation sequence from state j (β

) [1].

30

Step 3: Termination

Again the computation of β

 , 1 ≤ t ≤ T, 1≤ i ≤ N require N2T

calculations.

We will see later how the backward as well as the forward

algorithms are used to solve problems 2 and 3 of HMM.

3.2.2 Decoding

Problem 2 deals with decoding. In decoding we attempt to uncover the

hidden part of the HMM. In other words we try to find the optimal state

sequence for a given observation sequence. Unlike evaluation, in

decoding there is no single optimal sequence.

One possible solution to this problem is to choose states which are

individually most likely and then find the single best state sequence that

guarantees that the uncovered observation sequence is valid. This

solution has several drawbacks. The most common solution to the

decoding problem is the Viterbi algorithm which also uses partial

sequences and recursion.

3.2.2.1 Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm that

computes the most likely state transition path given an observed

sequence of symbols. It is actually very similar to the forward algorithm,

except that we will be taking a “max”, rather than a “ ∑ “, over all the

possible ways to arrive at the current state under consideration.

N

i

iOp
1

1)()|(

31

However, the formal description of the algorithm involves some

cumbersome notations [11].

We need to define the following quantity for solving the problem

using Viterbi Algorithm.

δt(i) is the probability of the most probable path ending in state Si at time

t

By induction we have

To retrieve the state sequence we need to keep track of the

argument which maximize δ , for each t and j. We use an array ψt(j)

for back tracking the state sequence.

The Viterbi Algorithm is as follows

Step 1: Initialization

Step 2: Recursion

)())((max)(1
1

tjijt
Ni

t obaij

Step 3: Termination

)|,...,,,...,,(max)(2121 tt
q

t oooiqqqPi

)())((max)(11 tjijt
i

t obaij

)()(11 obi ii

0)(1 i

Ni 1

))((maxarg)(1
1

ijt
Ni

t aij

NjTt 1,2

)(max
1

iP T
Ni

32

P* gives the state-optimised probability

Q* is the optimal state sequence (Q* = {q1*,q2*,…,qT*})

Step 4: Backtrack State Sequence

Viterbi algorithm is similar to Forward algorithm except for the

backtracking step and the maximization over previous states instead of

summation. So, the time complexity here is O(N2T). We can use a trellis

structure is clearly explain the Viterbi Algorithm

3.2.3 Training

The problem 3 in HMM is training an HMM to obtain the most likely

parameters that best models a system, given a set of sequences

originated from this system.

There is no known way to analytically solve for the model which

maximizes the probability of the observation sequence(s). So we come up

with models λ = (A, B, π) which locally maximizes P(O).

 HMM = Topology + Statistical parameters

During the training process we compute the statistical parameters of the

HMM. The topology is already designed. So the input to a training

algorithm would be a database of sample HMM behaviour and output is

the transition, emission and initial probability distribution of HMM. Thus

we can conclude that given a set of examples from a process, we should

)(maxarg
1

iq T
Ni

T

)(11

 ttt qq 1,...,2,1 TTt

33

be able to estimate the model parameters λ = (A, B, π) that best describe

that process.

 There are two standard approaches to the learning task based on

the form of the examples (database available for learning process),

supervised and unsupervised training. If the training examples contain

both the inputs and outputs of a process, we can perform supervised

training. It is done by equating inputs to observations, and outputs to

states, but if only the inputs are provided in the training data then we

must use unsupervised training. Unsupervised training guesses a model

that may have produced those observations. Maximum Likelihood

Estimation (MLE) comes under supervised training and Baum-Welch

Algorithm comes under supervised training.

3.2.3.1 Supervised Learning

The easiest solution for creating a model λ is to have a large corpus of

training examples, each annotated with the correct classification. If we

having such tagged training data we use the approach of supervised

training.

Maximum Likelihood Estimation (MLE):

MLE is a supervised learning algorithm. In MLE, we estimate the

parameters of the model by counting the events in the training data. This

is possible because the training examples for a MLE contain both the

inputs and outputs of a process. We equate inputs to observations and

outputs to states and easily obtain the counts of emissions and

34

transitions. These counts can be used to estimate the model parameters

that represent the process.

aij =

bi () =

There is a possibility of aij or bi () being zero. For example

consider the case where state i is not visited by the sample training data

then aij=0. In practice when estimating a HMM from counts it is

normally necessary to apply smoothing in order to avoid zero counts and

improve the performance of the model on data not appearing in the

training set.

3.2.3.2 Unsupervised learning

Key idea of unsupervised learning is iterative improvement of model

parameters. We can use iterative expectation-maximization algorithm,

Baum-Welch to find local maximum of P (O | λ).

Baum- Welch Algorithm

Baum-Welch algorithm uses the forward and backward algorithms to

calculate the auxiliary variables α, β.

B-W algorithm is a special case of the EM algorithm:

 E-step: calculation of and

 M-step: iterative calculation of λ’

E-step :

35

In order to describe the procedure for solving the problem we need to

first define

 is the probability of being in state Si at time t, and state Sj at time

t+1, given λ, O.

)|(

)()()(
),(

11,

OP

jobai
ji

ttjjit

t

N

i

N

j

ttjjit

ttjjit

t

jobai

jobai
ji

1 1

11,

11,

)()()(

)()()(
),(

Figure 8: Operations for computing

After defining

 define γ

γ

 = P (= | O, λ)

36

 is the probability of being in state Si at time t for a given observation

sequence O and model λ.

We can relate and by summing over j

 = expected number of transitions from state Si to Sj

 = expected number of transitions from Si to Sj.

Using these formulas we can re-estimate the parameters of an HMM.

M- Step:

A set of reasonable re-estimation formulas for a π, A and B are

 ̂

)(ˆ
1 i , the expected frequency of state i at time t=1

 jia ,
ˆ

i

ji

,
s state from ns transitioofnumber expected

s state tos state from ns transitioofnumber expected
ˆ jia

)(

),(
ˆ

i

ji
a

t

t

ij

)(ˆ kb j

i

ki

s statein timesofnumber expected

 vsymbol observe and s statein timesofnumber expected
)(ˆ kbi

)(

)(
)(ˆ ,

j

j
kb

t

kot t

j
t

N

j

tt jii
1

),()(

37

It we define the current model as λ= (A, B, π), and use these

values on the right hand side of the above equations we get the re-

estimated model =().

It has been established by Baum and his colleagues that

 P (O |) > P(O | λ)

If we iteratively use in place of λ and repeat the re-estimation

calculation we can improve the probability of O being observed from the

model. This process is continued until some threshold value is reached

that is when there is not much difference between and λ.

3.3 HMM Examples

3.3.1 Example 1: Coin Tossing Experiment

Consider the coin tossing experiment of Markov Models but here the

person on the other side of the curtain has several coins both biased and

un-biased with him. He selects one of his several coins and tosses it.

Then he tells us the outcome (H, T), but not the coin selected. He does

this several times and the outcome obtained after each trial is recorded

as an observation. Here the coins will be the hidden states and H, T are

the observations.

 We make an assumption that the person has three coins and

chooses among these three based on some probabilistic event [1]. This is

the graphical representation of the example 1 model that has 3 coins.

38

Figure 9 : HMM-Coin Tossing Experiment

3.3.1 Example 2: Stock Market Index

Consider the second example of Stock Market Index. It has three states

representing stocks in the stock market which are associated with all the

observations that represent the variations in these stocks.

Figure 10 : Hidden Markov Model-Stock Market Index

39

 Here the variations in stock market, up, down and unchanged

are output variables and Bull, Bear and Even are hidden states. Given an

observation sequence up-down-down, we cannot say exactly what state

sequence produced these observations. We use some probabilistic

functions that determine the most probable state sequence.

Parameters of this Model are

States:

Bull, Bear and Even

These are the internal states corresponding to the three stocks of the

example

Transition Probabilities:

Initial Probabilities (π):

Output Emission Probabilities (B):

40

CHAPTER 4

IMPLEMENTATION OF HMM

In this thesis we implemented a numerically stable HMM in C++

programming language. In order to test the working of the HMM, we

considered a simple real-time example and modelled it as an HMM. To

keep the model very simple and easy to understand we consider an

example of Stock Market Index with three stocks. There can be three

variations possible to the values of these stocks.

 We know that HMM can be characterized as solving three

fundamental problems evaluation, decoding and training. Before getting

to the implementation of the solution for these three problems, I will

explain a major aspect in the understanding of HMM, the representation

of a model file in source code.

4.1 Representation of HMM Model

For the Stock Market Index example we assume a fixed vocabulary that

consists of three ascii characters u, d and n representing up, down and

unchanged variations of stock value. When a symbol is not observed in

the data, its count is automatically set to zero, effectively excluded from

the model.

 The number of states is stored in a variable N. This example has 3

states 0, 1 and 2 each representing Bull, Bear and Even stocks

respectively.

An N-state HMM is represented by the following arrays:

41

1. Initial state probability (I)

I is an array of length N (0-indexed), with I[s] representing the

initial probability of being at state s.

2. State transition probability matrix (A)

A is a 0-indexed two-dimensional array (NxN), with A[i][j]

representing the probability of going to state j from state i.

3. Output probability matrix (B)

B is a 0-indexed two-dimensional array (MxN), with B[o][s]

representing the probability of generating output symbol "o" at

state "s". M is the number of unique symbols (currently 3,

stored in SYMNUM).

Note that the observed character “o” cannot be used directly as an

index to access the entries of matrix B; it must be normalized by

subtracting the lowest character “ ! “ [11].

 4.1.1 HMM Representation on the disk file

An HMM can be encoded as a text file. The syntax is very simple. So, it

will be explained by means of an example.

42

Figure 11: Screenshot of the Stock Market Index HMM Model file.

These are some of the rules associated with writing a model file.

Failing to following any of these rules will fail the document from being

considered as a model file. There could be any number of spaces between

the numbers or words. All the white space characters are treated the

same and if the model file has several white spaces they are treated as a

single one.

43

But keywords "InitPr", "OutputPr", and "TransPr" is strict There should

not be any variations in how they are written.

In the Model file

- The first number is the number of states

- The number after each keyword is the number of entries following

it that should be associated with this keyword

- The entries not specified imply that the values are zero.

The keyword “InitPr” represents Initial Probabilities, “TransPr” represents

Transition Probabilites and “OutputPr” represents Output Emission

Probabilities [11].

Also let us see how an observation sequence would look like on a

disk file.

Figure 12 Screen shot of an observation sequence file

44

The sequence file contains a list of observations represented by their

ascii values.

Model file and sequence files are the inputs, outputs of HMM.

The implementation of HMM is divided based on the three problems of

HMM

4.2 Evaluation Problem

Problem: Given an observation sequence O and a model λ, what is the

probability of the observation sequence, P(O|λ) ?

Solution: Forward Algorithm and Backward Algorithm

Functions:

void ComputeAlpha(int *seq, int seqLength);

void ComputeBeta(int *seq, int seqLength);

Variables:

Array alpha[][]

alpha[t][i] = prob. of generating observations up to time t and being in

state i at time t

Parameters:

- Observations

*seq- the sequence of observed symbols, and is an array of length

seqLength. It is 0-indexed, and seq[t] is the index of the symbols at

time t, which can be used directly to access matrix B, B[seq[t]][i].

- HMM model file

45

Output: The probability that the given sequence has been generated by

this model

Implementation:

Step 1:

Figure 13 Forward Algorithm-Initialization code snippet

Step 2:

Figure 14 code snippet to compute alpha values

Similarly Backward Algorithm has been implemented. One of the

algorithms can be used to compute P(O | λ)

46

4.3 Decoding

Problem: This problem is the discovery of the most likely sequence of

states that generated a given output sequence.

Solution: This can be computed efficiently using the Viterbi algorithm. A

trackback is used to detect the maximum probability path travelled by

the algorithm. The probability of travelling such sequence is also

computed in the process.

Functions:

void Decode(char *seqFile);

ComputeStep(char *seq, int t, int i)

Parameters: model file and an observations sequence.

Variables:

delta[T][N], psy[T][N], stateSequence[T], lnProbability

Output: The sequence of states that most likely produced the sequence -

a tagged sequence file

Implementation:

Step 1:

Figure 15 Viterbi Algorithm-Initialization-code snippet

47

Step 2:

Compute Step

Figure 16 Viterbi Algorithm Compute Step

In this function we compute δ and Ψ values. Using these values we

compute the most probable state sequence.

Step 3: Termination

Figure 17 Viterbi Algorithm-termination code snippet

48

StateSequence array stores the most probable state sequence.

The output of a HMM id a tagged sequence file which looks like this

Figure 18: screen shot of tagged sequence file

4.4 Training

Problem: Find the most likely parameters that best models a system

given a set of sequences that originated from this system.

4.4.1 Supervised Training

Solution: MLE

Functions:

void CountSequence(char *seqFile);

 void UpdateParameter();

Parameters: tagged sequence file

49

Output: Model file

Implementation:

Accumulate the following counts

- count how many times it starts with state i

- count how many times a particular transition happens

- count how many times a particular symbol would be generated

from a particular state

Figure 19 screen shot of Counting in MLE

50

Using these counts relative frequencies are computed to obtain

parameters of an HMM. This is done in the function UpdateParameters.

Figure 20: code snippet for UpdateParameters() of MLE

4.4.2 Unsupervised Training

Solution: Baum-Welch Algorithm

Functions:

- Train(char *seqFile); train an HMM with an untagged sequence

using Baum-Welch algorithm

- RandomInit(); initialize parameters of HMM to some random

values

- double UpdateHMM(int *data, int seqLength);re-estimates the

parameters of the HMM.

Parameters: A sequence file, Number of States and Output Variables

Output: Model file

Implementation:

51

We first initial probabilities values to the matrices A, B and π to

random values using a function RandomInit.

 We train for many epochs.

As we train, we keep track of how well the current HMM models

the data (P(O | λ)). Additionally, we keep track of a history of how

the model has fit the data in previous epochs (meanFit). As the

HMM settles into a stable state, currentFit will asymptote to a

particular value. The time-averaged meanFit will asymptote to this

value also (though more slowly).

 When the currentFit becomes very similar to the meanFit, the

model isn't changing, so we stop training. The code in function

Train shows how this is done

Figure 21 cone snippet of function train-BW Algorithm

52

The train function has the following steps in it

Step1:Initial probabilities values of the matrices A, B and π are set to

random values using a function RandomInit.

Step 2:UpdateHMM function re-estimates the λ values to obatain λ’

Figure 22 code snippet of UpdateHMM function

AccumulateCounts function in UpdateHMM accumaulates counts

using training data. These counts are needed for updating the

parameters of HMM. It first computes the gamma's based on the alpha's

and beta's and uses these to compute the following counts.

- counting for initial state distribution

- counting for output probabilities

- count for state transition probabilities

53

Step 3: Calculate Mean-fit. It the meant fit is less than or equal to a

certain threshold value stop re-estimating.

The output of Baum-Welch Algorithm is a Model File that

represents that best represents the observation sequence.

54

CHAPTER 5

IMPLEMENTATION ISSUES OF HMM

There are two practical issues associated with the implementation of

HMM.

1) numerical scaling of conditional probabilities to model long

sequences

2) smoothing of poor probability estimates caused by sparse training

data

5.1 Scaling

When implementing a HMM, long observation sequences often result in

the computation of extremely small probabilities. These values are

usually smaller in magnitude than the smallest value a normal floating

point number in a system can hold. This results in a significant problem

called floating-point underflow.

This numerically instability is seen Viterbi and Forward Algorithms of

HMM. When Viterbi and forward algorithms are applied to long

sequences it results in extremely small probability values that could

underflow on most machines. We solve this problem differently for each

algorithm:

5.1.1Viterbi underflow

As the Viterbi algorithm only multiplies probabilities, a simple solution to

underflow problem is to log all the probability values and then add those

values instead of multiplying them.

55

If all the values in the model matrices (A, B, λ) are stored logged, then at

runtime only addition operations are needed. But in our implementation

model matrices are not logarithmic values.

This is how we convert floating numbers to log and instead of

multiplying we add them.

 delta[0][i] = Math.log(I[i]) + Math.log(B[cIndex][i]);

In the code as you can see in order to compute the delta value we

just added the log values of I[i] and B[cIndex][i] instead of multiplying

them. Similar scaling is applied to other computations of Viterbi

Algorithm.

5.1.2 Forward algorithm underflow

The forward algorithm sums probability values, so using log values here

will not help in preventing underflows. The most common solution to this

problem is to use scaling coefficients that will keep the probability values

in the dynamic range of the machine. These scaling coefficients should

not be dependent on anything except for time t.

The scaling coefficient in our implementation is:

This is how the scaled forward variable looks like

56

In our implementation array eta (eta[t]) is the scaling coefficient. The

code below shows the calculation of scaling coefficients and normalizing

the alpha values.

Figure 23: source code to calculate scaling coefficients

5.1.2.1 Normalized Forward Algorithm

Step 1:

The code below shows the calculation of scaling coefficients and

normalization of alpha values in step 1 of forward algorithm.

Figure 24 : source code to compute normalized alpha values

57

Step 2:

This is how the above equation is implemented in code.

Figure 25: Step 2 of Normalized Forward Algorithm

Similar coefficients and Normalization is down in Backward Algorithm.

5.2 Smoothing

Smoothing technique is used to solve the problem that occurs during the

learning process. The output of learning in HMM is the estimated

probabilities for vocabularies and transitions. Sparse training data

causes poor probability estimates. Unseen words have emission

probabilities of zero. Smoothing is the process of flattering probability

58

distribution so that all word sequences can occur with some probability.

This often involves redistributing weight from high probability regions to

zero probability regions.

In practice when estimating a HMM from counts it is normally

necessary to apply smoothing in order to avoid zero counts and improve

the performance of the model on data not appearing in the training set.

This is how we implemented the concept of smoothing in our HMM.

Figure 26: Smoothing in HMM

59

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, the theoretical aspects of a discrete HMM are implemented

by dividing it into three canonical problems. The practical issues that

arise during the implementation are also addressed which makes the

HMM numerically stable. This Numerical stable HMM can be used in

making application without worrying about genome length observation

sequences or training data.

 This thesis considered the output variables of the HMM to be

discrete symbols but can be expanded to continuous output variables.

Using this HMM as a basis and adding several features specific to the

application under consideration, application specific HMM can be

developed.

60

BIBLIOGRAPHY

[1] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition

[2] Wikipedia

 http://en.wikipedia.org/wiki/Hidden_Markov_model

[3] Hidden Markov Model in C#

 http://crsouza.blogspot.com/2010/03/hidden-markov-models-in-

c.html

[4] Daniel Jurafsky, James H. Martin. Speech and language processing

[5] Definition of HMM

 http://www.wordiq.com/definition/Hidden_Markov_model

[6]Data Mining- Hidden Markov Models

 http://www.csse.monash.edu.au/courseware/cse5230/2004/asse

ts/week09.pdf

[7] Barbara Resch. Hidden Markov Models - A Tutorial for the Course

Computational Intelligence

[8] Hidden Markov Models by Marc Sobel

[9] Hidden Markov Models by Phil Blunsom

[10] Hidden Markov Models by John Fry, San Jose State University

[11] A Brief Note on the Hidden Markov Models (HMMs) by ChengXiang

Zhai

[12] Chapter 4: Hidden Markov Models by Prof. Yechiam Yemini,

Columbia University

http://crsouza.blogspot.com/2010/03/hidden-markov-models-in-c.html
http://crsouza.blogspot.com/2010/03/hidden-markov-models-in-c.html
http://www.google.com/search?tbo=p&tbm=bks&q=+inauthor:%22Daniel+Jurafsky%22
http://www.google.com/search?tbo=p&tbm=bks&q=+inauthor:%22James+H.+Martin%22

61

VITA

Graduate College
University of Nevada, Las Vegas

Usha Ramya Tatavarty

Degrees:
 Bachelor of Technology in Computer Science, 2009
 Jawaharlal Nehru Technological University, India

Thesis Title: Implementation of Numerically Stable Hidden Markov Model

Thesis Examination Committee:
Chairperson, Dr. Kazem Taghva, Phd.

Committee Member, Dr. Ajoy K. Datta, Phd.
Committee Member, Dr. Laxmi P. Gewali, Phd.

Graduate College Representative, Dr. Venkatesan Muthukumar,
Phd.

	Implementation of numerically stable hidden Markov model
	Repository Citation

	tmp.1321662160.pdf.tX0n8

