8-2011

Raman Spectroscopic Study of Solid Solution Spinel Oxides

Brian D. Hosterman
University of Nevada, Las Vegas

Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations

Part of the Condensed Matter Physics Commons, Materials Science and Engineering Commons, and the Mineral Physics Commons

Repository Citation
http://digitalscholarship.unlv.edu/thesesdissertations/1087

This Dissertation is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
RAMAN SPECTROSCOPIC STUDY OF SOLID SOLUTION SPINEL OXIDES

by

Brian D. Hosterman

Bachelor of Science
Denison University
2001

Master of Science
University of Nevada, Las Vegas
2006

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy in Physics
Department of Physics
College of Sciences

Graduate College
University of Nevada, Las Vegas
August 2011
THE GRADUATE COLLEGE

We recommend the dissertation prepared under our supervision by

Brian D. Hosterman

entitled

Raman Spectroscopic Study of Solid Solution Spinel Oxides

be accepted in partial fulfillment of the requirements for the degree of

Doctorate of Philosophy in Physics
Department of Physics

John Farley, Committee Chair

Allen Johnson, Committee Member

Michael Pravica, Committee Member

Oliver Tschauner, Committee Member

Clemens Heske, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

August 2011
ABSTRACT

Raman Spectroscopic Study of Solid Solution Spinel Oxides

by

Brian D. Hosterman

Dr. John Farley, Examination Committee Chair
Professor of Physics
University of Nevada, Las Vegas

Solid solution spinel oxides of composition Mg\textsubscript{x}Ni\textsubscript{1-x}Cr\textsubscript{2}O\textsubscript{4}, NiFe\textsubscript{x}Cr\textsubscript{2-x}O\textsubscript{4}, and Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4} were synthesized and characterized using x-ray diffraction and Raman spectroscopy. Frequencies of the Raman-active modes are tracked as the metal cations within the spinel lattice are exchanged. This gives information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. The highest-frequency Raman-active mode, A_{1g}, is unaffected by substitution of the divalent tetrahedral cation, whereas the lower frequency vibrations are more strongly affected by substitution of the tetrahedral cation. The change in wavenumber of many phonons is nonlinear upon cation exchange. All detected modes of Mg\textsubscript{x}Ni\textsubscript{1-x}Cr\textsubscript{2}O\textsubscript{4} and Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4} exhibit one-mode behavior. Additional modes are detected in the NiFe\textsubscript{x}Cr\textsubscript{2-x}O\textsubscript{4} series due to cation inversion of the spinel lattice.

Results from the Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4} spinels are then applied to identifying the corrosion layers of three stainless steel samples exposed to lead-bismuth eutectic in a high-temperature, oxygen-controlled environment. The Raman spectrum of the outer cor-
rosion layer in all steels is identified as \(\text{Fe}_3\text{O}_4 \). The wavenumber of the \(A_{1g} \) mode for the inner corrosion layer indicates an iron chromium spinel oxide. Micro-Raman spectroscopy proves capable of determining structural and compositional differences between complex corrosion layers of stainless steels.
ACKNOWLEDGMENTS

I would like to thank the following people whose assistance and support in this dissertation has been invaluable and much appreciated: John Farley, Allen Johnson, Michael Pravica, Oliver Tschauner, Clemens Heske, Ning Li, Dale Perry, Amadeo Sanchez, James Norton, David Hatchett, Thomas Hartmann, Clay Crow, David Shelton, Daniel Koury, Peter Faught, Thao Ho Trung, John Kilburg, Bill O’Donnell, Sandip Thanki, Marcus Vasquez, Luke Wilson, Alexandra Léandre, Michael Rodríguez, Joseph Lussier, and Brittany Morgan. Funding is provided through the University of Nevada, Las Vegas Transmutation Research Program, administered through the Harry Reid Center for Environmental Studies, and is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>Transmutation</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2 CRYSTAL STRUCTURE AND VIBRATIONS</td>
<td>7</td>
</tr>
<tr>
<td>Vibrations</td>
<td>7</td>
</tr>
<tr>
<td>Phonons</td>
<td>11</td>
</tr>
<tr>
<td>Spinel structure</td>
<td>11</td>
</tr>
<tr>
<td>Corundum structure</td>
<td>15</td>
</tr>
<tr>
<td>Solid solutions</td>
<td>16</td>
</tr>
<tr>
<td>The Jahn-Teller effect</td>
<td>17</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER 3 RAMAN SCATTERING AND INFRARED ABSORPTION</td>
<td>22</td>
</tr>
<tr>
<td>Raman Scattering</td>
<td>23</td>
</tr>
<tr>
<td>Polarizability tensor</td>
<td>25</td>
</tr>
<tr>
<td>Infrared absorption</td>
<td>26</td>
</tr>
<tr>
<td>Wavenumbers</td>
<td>27</td>
</tr>
<tr>
<td>CHAPTER 4 PREVIOUS WORK</td>
<td>28</td>
</tr>
<tr>
<td>LBE-corroded steels</td>
<td>28</td>
</tr>
<tr>
<td>Identifying corrosion layers using Raman spectroscopy</td>
<td>31</td>
</tr>
<tr>
<td>Theoretical work of the spinel system</td>
<td>32</td>
</tr>
<tr>
<td>Assignment of the vibrations of spinel</td>
<td>33</td>
</tr>
</tbody>
</table>
Experimental work on the spinel vibrations .. 36
Experimental work on solid solution spinels 44

CHAPTER 5 EXPERIMENTAL SETUP ... 48
Spinel synthesis ... 49
X-ray diffraction ... 55
 Determination of lattice parameters ... 57
Infrared photoacoustic spectroscopy ... 58
Raman microscope ... 60
 Software and calibration ... 65
 Peak fitting ... 66
Error analysis ... 69

CHAPTER 6 OXIDE STANDARDS .. 71
Hematite, α-Fe$_2$O$_3$.. 71
Magnetite, Fe$_3$O$_4$.. 72
Chromium oxide, Cr$_2$O$_3$.. 77

CHAPTER 7 CHROMITES & FERRITES ... 79
FeCr$_2$O$_4$.. 79
MgCr$_2$O$_4$.. 81
NiCr$_2$O$_4$.. 83
NiFe$_2$O$_4$.. 87

CHAPTER 8 SOLID SOLUTION SPINELS 91
Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$... 91
NiFe$_x$Cr$_{3-x}$O$_4$... 98
Fe$_x$Cr$_{3-x}$O$_4$... 106
Discussion on solid solutions .. 113

CHAPTER 9 LBE-CORRODED STAINLESS STEELS 118

CHAPTER 10 CONCLUSIONS ... 124

APPENDIX A RIETVELD REFINEMENT RESULTS 127
NiCr$_2$O$_4$.. 128
Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$... 129
NiFe$_x$Cr$_{2-x}$O$_4$.. 130
Fe$_x$Cr$_{3-x}$O$_4$.. 131

REFERENCES .. 132

VITA .. 144
LIST OF TABLES

Table 1 \(C_{2v} \) Character table ... 10
Table 2 \(O_h \) character table .. 12
Table 3 Compiled Raman data on \(\text{AB}_2\text{O}_4 \) II-III spinels 37
Table 4 316L, D9, and HT9 stainless steels 49
Table 5 Silicon standard XRD spectrum .. 57
Table 6 Lattice parameters of synthesized spinels 59
Table 7 Neon calibration lines .. 66
Table 8 Argon emission lines ... 68
Table 9 Raman-active phonons of \(\alpha\)-Fe\(_2\)O\(_3\) 73
Table 10 Raman-active phonons of Fe\(_3\)O\(_4\) 75
Table 11 Raman-active phonons of Cr\(_2\)O\(_3\) 77
Table 12 Raman-active phonons of FeCr\(_2\)O\(_4\) 80
Table 13 Raman-active phonons of MgCr\(_2\)O\(_4\) 83
Table 14 Lattice parameters of NiCr\(_2\)O\(_4\) 86
Table 15 Raman-active phonons of NiCr\(_2\)O\(_4\) 88
Table 16 Raman-active phonons of NiFe\(_2\)O\(_4\) 90
Table 17 Rietveld refinements for NiCr\(_2\)O\(_4\) 128
Table 18 Rietveld refinements for Mg\(_x\)Ni\(_{1-x}\)Cr\(_2\)O\(_4\) 129
Table 19 Rietveld refinements for NiFe\(_x\)Cr\(_{2-x}\)O\(_4\) 130
Table 20 Rietveld refinements for NiFe\(_x\)Cr\(_{2-x}\)O\(_4\) 131
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiotoxicity of nuclear waste</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Spinel unit cell</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Raman scattering from a molecule</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Rayleigh and Raman scattering</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>SEM image of a stainless steel sample</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>EDS elemental map of a stainless steel sample</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Raman-active modes of chromites vs. $1/\text{m}^2$</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Wavenumber of A_{1g} mode for Zn and Mg spinels A_{1g} vs. $1/\text{m}^2$</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>Chromite Raman frequencies vs. ionic radius</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>Combustion synthesis schematic</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Synthesized spinel</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>Weak XRD spectrum of an iron chromite</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>Iron chromite showing corundum phase</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>Schematics of the reduction furnace</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>Spinel diffraction pattern containing Si standard</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>Rietveld refinement of MgCr$_2$O$_4$</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>Schematic of the micro-Raman spectrometer</td>
<td>61</td>
</tr>
<tr>
<td>18</td>
<td>Photograph of the micro-Raman spectrometer</td>
<td>62</td>
</tr>
<tr>
<td>19</td>
<td>Micro-Raman focused spot size</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>Uncalibrated neon emission spectrum</td>
<td>67</td>
</tr>
<tr>
<td>21</td>
<td>Calibrated argon emission spectrum</td>
<td>68</td>
</tr>
<tr>
<td>22</td>
<td>Raman spectrum of Cr$_2$O$_3$</td>
<td>70</td>
</tr>
<tr>
<td>23</td>
<td>Raman spectrum of α-Fe$_2$O$_3$</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>Peak fit of α-Fe$_2$O$_3$</td>
<td>73</td>
</tr>
<tr>
<td>25</td>
<td>Raman spectrum of Fe$_3$O$_4$</td>
<td>74</td>
</tr>
<tr>
<td>26</td>
<td>Raman spectra of Fe$_3$O$_4$ as a function of laser power</td>
<td>76</td>
</tr>
<tr>
<td>27</td>
<td>Raman spectrum of Cr$_2$O$_3$</td>
<td>78</td>
</tr>
<tr>
<td>28</td>
<td>Raman spectrum of FeCr$_2$O$_4$</td>
<td>80</td>
</tr>
<tr>
<td>29</td>
<td>X-ray diffraction spectrum of MgCr$_2$O$_4$</td>
<td>81</td>
</tr>
</tbody>
</table>
Figure 30 Raman spectrum of MgCr$_2$O$_4$... 82
Figure 31 XRD spectrum of NiCr$_2$O$_4$.. 85
Figure 32 c/a of tetragonal NiCr$_2$O$_4$... 87
Figure 33 Raman spectrum of NiCr$_2$O$_4$... 88
Figure 34 Raman spectrum of NiFe$_2$O$_4$... 89
Figure 35 Mixed versus synthesized spinel ... 92
Figure 36 Lattice constants of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ 93
Figure 37 Raman spectra of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ 94
Figure 38 Raman peak positions of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ 95
Figure 39 B-O bond distance of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ 97
Figure 40 IR peak positions of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ 98
Figure 41 Lattice parameters of NiFe$_x$Cr$_{2-x}$O$_4$ 100
Figure 42 Raman spectra of NiFe$_x$Cr$_{2-x}$O$_4$ 101
Figure 43 Raman peak positions of NiFe$_x$Cr$_{2-x}$O$_4$ 102
Figure 44 Vibrational peak positions of NiFe$_x$Cr$_{2-x}$O$_4$ 103
Figure 45 B-O bond distance of NiFe$_x$Cr$_{2-x}$O$_4$ 105
Figure 46 Lattice constants of Fe$_x$Cr$_{3-x}$O$_4$ 109
Figure 47 A_{1g} and $F_{2g}(3)$ positions of Fe$_x$Cr$_{3-x}$O$_4$ 112
Figure 48 Raman spectra of HT9 corrosion layers 119
Figure 49 Raman spectra of outer corrosion layer 120
Figure 50 A_{1g} position from LBE-corroded steels 121
Figure 51 Raman spectra of inner corrosion layer 123
CHAPTER 1

INTRODUCTION

The term “spinel” originated as a name for a typically red gemstone, though the gem also occurs in varying shades of pink, purple and blue. Spinel with a deep red color were often mistaken for rubies, and many large red gemstones in medieval jewelry and crowns are actually spinel instead of ruby. Although ruby and spinel look similar to the eye, the periodic arrangement of the atoms within these crystals are very different. Spinel, MgAl$_2$O$_4$, exists as a crystal lattice that has now simply been termed the spinel structure, which many compounds of the form AB$_2$X$_4$ share. Ruby, Al$_2$O$_3$, with chromium impurities, exhibits the crystal structure known as corundum. The common red rust, α-Fe$_2$O$_3$, also crystallizes into the corundum structure [1].

Metal oxides having the spinel structure, AB$_2$O$_4$, are important materials of technological and geological interest. Many varieties of spinels appear within the Earth’s crust, whose properties must be understood for geological considerations [2,3]. MgCr$_2$O$_4$, MgAl$_2$O$_4$, FeCr$_2$O$_4$, and Fe$_3$O$_4$ are all common minerals of the Earth’s crust. The low solubility of chromium within basaltic magma leads to the crystallization of chromite [4]. Olivine, (Mg,Fe)$_2$SiO$_4$, belonging to another class of crystal structures related to spinel, is the most abundant mineral within the upper mantle, and at high pressure undergoes a phase transition to the spinel structure [5–7]. This high-pressure phase of olivine is known as Ringwoodite. Olivine can also contain small amounts of other elements such as nickel and manganese [8].

Spinel oxides have been discovered in Martian meteorites [9]. The iron oxide spinel
magnetite, Fe$_3$O$_4$, named for its magnetic properties, provides evidence for magnetism on the red planet [10].

Spinels also hold much interest for technological applications. MgCr$_2$O$_4$ and MgAl$_2$O$_4$ are stable at high temperatures and have low coefficients of expansion, making them effective refractory materials, important to the steel, cement, and copper industries [11–13]. Recently, there has been much interest in the LiMn$_2$O$_4$ spinel as a low cost, safer cathode material for lithium batteries [14–16]. In addition to magnetite, many spinels have many interesting magnetic properties. Nickel and zinc ferrites have been studied for use as transformer cores and components in radio frequency coils [17]. Ultra-fine particles of ZnFe$_2$O$_4$ possess larger magnetism than bulk ZnFe$_2$O$_4$ [18].

In many circumstances, natural spinels are solid solutions of two or more AB$_2$O$_4$ spinels, where the mixing happens within the crystal structure. These are called solid solutions and are also of interest for their technological applications and geological relevance. The common mineral iron chromite, from which metallic chromium is extracted, is found in peridotite within the Earth’s mantle. Chromite ore is rarely pure FeCr$_2$O$_4$ and instead contains significant amounts of magnesium and aluminum to create a solid solution (Fe,Mg)(Cr,Al)$_2$O$_4$ [4, 9, 19]. The opposite end of this solid solution leads again towards the MgAl$_2$O$_4$ mineral, while containing minor inclusions of iron and chromium.

Many solid solution series are interesting to study because of magnetic or electrochemical properties of the ionic systems that arise from cation substitution. Magnetic properties of Zn$_{1-x}$Ni$_x$Fe$_2$O$_4$ are sensitive to atomic composition [17, 20]. Other metals, such as cobalt and nickel, have been examined as substitutes for manganese in LiMn$_2$O$_4$ and for alternative materials in rechargeable lithium batteries [15, 16].

NiFe$_x$Cr$_{2-x}$O$_4$ has been considered for use as a cheap cathodic material for the
reduction of NO\textsubscript{x} gases [21]. This series is also an interesting case to study ferri-
magnetism effects and the differences between the magnetic properties of ferrites and
chromites [22]. Ferrites exhibit strong ferrimagnetic ordering between the octahed-
ral and tetrahedral sites, but the addition of chromium leads to antiferromagnetic
interactions [23].

Corrosion

Corrosion is the oxidation reaction of a metal to form a metal oxide. Most people
are familiar with corrosion and the damage this process causes to metals. A piece
of unprotected iron develops flaky red spots and degrades over time. This occurs
because the pure iron reacts with oxygen in air to create the common red rust known
as hematite, α-Fe\textsubscript{2}O\textsubscript{3}. α-Fe\textsubscript{2}O\textsubscript{3} has little structural integrity, and crumbles away to
expose fresh iron underneath to the same oxidation conditions. Over time, the entire
 piece of iron will oxidize and fail.

Fewer people realize that oxidation is also necessary to protect materials. The ad-
dition of chromium to iron led to the development of the stainless steels. Chromium
reacts with air much faster than the iron-air reaction and forms Cr\textsubscript{2}O\textsubscript{3}, which, unlike
α-Fe\textsubscript{2}O\textsubscript{3}, is strong and protective in normal conditions. This surface chromium oxide
layer acts as a passivation layer that protects the underlying alloy from further oxida-
tion. Unfortunately though, in extreme conditions such as high temperatures, even
this chromium oxide layer can fail, and non-protective oxides begin to form, leading
to the eventual failure of the alloy.

Spinel structured metal oxides are a major product formed during corrosion.
Magnetite, Fe\textsubscript{3}O\textsubscript{4}, is often reported during the corrosion of high-iron stainless steels
[24, 25]. NiCr\textsubscript{2}O\textsubscript{4} is a common product formed from high-nickel alloys in oxidizing
environments [26–28]. MnCr\textsubscript{2}O\textsubscript{4} has also been reported to be produced on nickel-
based and high-nickel alloys in corrosive environments, [29], and even as an agent for further corrosion [30].

Hemmi et al. report that a NiFe$_2$O$_4$ layer passivates the surface of a nickel and cobalt alloy by restricting the dissolution of metals [31]. A protective layer containing MnCr$_2$O$_4$ is found during the corrosion of nickel-based alloys in a high-temperature steam environment [32].

Corrosion of complicated alloys is not completely understood. Alloys are often developed via “cook and look” methods, where many different alloys are created and the alloys with desirable properties are selected without a complete understanding of the mechanics of corrosion. To fully understand the corrosion process, it is necessary to know the chemical species of the oxides within the corrosion layers. Corrosion is also a large concern for the nuclear industry, and materials must be engineered to maximize the lifetime of reactors, where high temperatures lead to corrosive environments.

Transmutation

Even if the public recovers from the recent nuclear catastrophe in Japan, in order for a nuclear power revival to occur, public fear regarding nuclear waste must be addressed. Projects such as Yucca Mountain were proposed to deal with long term storage of radioactive nuclear waste. Because the Yucca project is indefinitely abandoned, other methods of dealing with the long term dangers of nuclear waste storage need to be developed. A facility designed to store untreated nuclear waste must protect against radiation from the nuclear waste products, which can have very long lifetimes. If a full nuclear revival does happen, a single site such as Yucca mountain will be inadequate, and many more storage facilities will be required to store the increasing amount of waste. The negative attitude that the public holds towards such storage facilities is an enormous roadblock that will be difficult, if not impossible, to
Only about one percent of the fission products within spent nuclear waste creates issues with long term storage. The majority of nuclear waste is in the form of uranium, which can be recycled or disposed of as low level waste. The storage problem arises with plutonium and other minor actinides (neptunium, americium, curium), which have half-lives on the order of hundreds of thousands of years. Engineering containment vessels, in addition to a storage facility to house these vessels, that are safe for such a long period of time, is very difficult.

Transmutation provides an alternative solution for dealing with radioactive waste. Transmutation is the process of changing one element into another via nuclear reactions. The problematic, long-lived actinides can be transmuted into elements with much shorter half-lives. This is achieved in high-Z materials via neutron bombardment. The absorption of neutrons by the nucleus of an atom leads to instability, and the atom decays to a more stable, less radioactive isotope. As evident from Figure 1, the toxicity of these dangerous transuranics are reduced by several orders of magnitude via transmutation [33].

Lead-bismuth eutectic (LBE) has been proposed as both a spallation target for the production of neutrons, and as a coolant in nuclear reactors. LBE is an alloy containing 45 percent lead and 55 percent bismuth by weight. LBE is classified as an eutectic because its melting point (124°C) is less than the melting point of either pure lead (327°C) or pure bismuth (271°C), and is the lowest melting point for any mixture of lead and bismuth. This low melting point, along with its boiling point (1670°C) gives the material a wide range of operating temperatures. LBE is also inert to both air and water, giving it an advantage over other available liquid-metal coolants, such as sodium, which violently reacts with water. However, in a nuclear environment, the LBE will be heated to a high temperature and can potentially corrode the stainless
Figure 1. Radiotoxicity of nuclear waste with and without transmutation [33].

Steel pipes through which the liquid metal flows.

Metallics such as iron will dissolve in the liquid LBE at the operational temperatures of the nuclear facility. This dissolution corrosion can be mitigated by the formation of a passivating, protective oxide layer. If small amounts of oxygen are added to the LBE, oxide layers are formed that inhibit the dissolution corrosion. However, the mechanics of the corrosion, and the actual oxides produced, is not completely understood. The present work will examine these corrosion layers formed on three grades of stainless steel exposed to lead-bismuth eutectic in a high-temperature, oxygen-controlled environment.
The arrangement of atoms into molecules or crystal lattices is fundamentally important to the physical, electronic, and chemical properties of a material. A crystal is a solid constructed from a periodic array of atoms. A lump of pure iron has a crystal structure, as the iron atoms organize into a periodic arrangement to minimize free energy.

Vibrations

The vibrational properties of different molecules and crystal structures are unique, and can also be used to identify the composition and structure of a material. Group theory provides a mathematical tool for studying vibrational properties of crystal structures. A group is a set of elements and an operation, such that the operation combines two elements of the group into an element of the group. A complete discussion on group theory is unnecessary here, but a few concepts need to be presented as relevant terms will be used during the discussion of theory and data. Other authors have presented detailed introductions of group theory and its application to vibrations [34–36].

Molecules and crystals have geometries with varying degrees of symmetry. Symmetry operations, such as rotations, are geometric transformations that leave a molecule indistinguishable from its original orientation. For example, if one rotates a cube with 6 identical surfaces 90 degrees about any axis normal to, and in the center of a square surface, the new position is equivalent to the original orientation. However,
if one dimension of the cube is lengthened, creating rectangles out of four of the six sides, some of the symmetry elements of the cubic system are lost. The system is now indistinguishable from the original orientation when rotated 90 degrees about an axis normal to the two remaining square faces and 180 degrees when rotated about an axis normal to the rectangular face.

There are seven basic crystal systems: cubic, hexagonal, rhombohedral, tetragonal, orthorhombic, monoclinic, and triclinic. These systems are constructed from characteristic symmetry elements, created by a periodic arrangement of identical particles. The cubic system is created by translating a particle along the \(x, y, z \) axes at a periodic distance. The tetragonal system is created similarly, except that the distance along one axis differs from the other two. Some of the crystal systems have different arrangements that still obey the same symmetry elements. For example, a cube constructed with a particle at each corner, can also have a particle in the center of each face. This face-centered system still obeys all the symmetry elements of the cubic system. There are 14 distinct geometries, associated with arrangement of identical particles, distributed among the seven crystal systems called the Bravais lattices.

Most natural occurring crystal systems are not Bravais lattices. Instead of a single particle at each lattice site, the system contains an identical group of particles at each lattice site. These systems are constructed using the basis vectors of the Bravais lattice.

A total of five symmetry elements lead to 32 crystallographic point groups. The identity operator, \(E \), leaves the structure unchanged. The rotation operator, \(C_n \), rotates the structure through an angle of \(360^\circ/n \) about an axis, where \(n \) is an integer. Vertical and horizontal mirror plane operators, \(\sigma_v \) and \(\sigma_h \), reflect all atoms in the structure about a plane. A center of inversion operator, \(i \), reflects all points in the
structure across a center of symmetry. The rotation reflection operator, S_n, also known as an improper rotation, involves both a rotation and a reflection.

The symmetry elements of a point group may be combined into classes. The ammonia molecule has both a rotation of 120° and a rotation of 240° around its principal axis as symmetry elements. It also has three mirror planes that intersect the principal axis. These elements form two separate classes.

The symmetry operations can be represented by matrices. A set of matrices that describe the symmetry operations is known as a representation. A representation will depend upon the choice of basis coordinates. To prevent confusion as to which representation is being used, irreducible representations are introduced. Any arbitrary representation can be described by a linear combination of these irreducible representations. The trace of a matrix is the sum of its diagonal elements and is called a character. The character of a representation is independent of the choice of basis coordinates. The number of irreducible representations belonging to a point group is equal to the number of symmetry classes of the point group. This allows the construction of a square character table that lists the characters of each symmetry class for every irreducible representation. There are the same amount of irreducible classes as there are symmetry classes of the point group.

As an example, the character table of the C_{2v} point group is shown in Table 1. Water, H_2O, belongs to this point group and thus, all vibrational modes of gas phase water are well known. The top header row of the character table labels the point group and identifies which, and how many, symmetry elements belong to the group. The C_{2v} point group contains the identity element, a rotation of 180 degrees, and two orthogonal vertical mirror planes. The remaining four rows identify the characters of the orthogonal irreducible representation matrices. A and B are one-dimensional representations. Other point groups may have two and three dimensional representations,
which are identified by the E and F labels, respectively. Any normal vibration of the molecule can be represented by one of these irreducible representations. Herzberg’s equations and knowledge of the atoms within the molecule can be used to determine the number of vibrations in each representation [35]. Using the equation for the C_{2v} group, water has two A_1 vibrations and a single B_2 vibration.

The two rightmost columns of Table 1 give the infrared and Raman activity of the representations. A vibration is infrared-active if the vibration species contains a translational motion (T_x, T_y, T_z) and Raman-active if the vibration species contains an element of the polarizability tensor, α_{ij}. For the water molecule example, the A_1 and B_2 species have both translational and polarizability elements. Therefore, all three vibrational modes of water are infrared and Raman-active. If the structure contains the center of inversion symmetry element, then modes can only be Raman-active or infrared-active, but not both. These selection rules will be discussed in more detail in the following chapter.

Factor group analysis is another common approach for determining the vibrational modes of a crystal [37]. The factor group is isomorphic to the point group. This analysis examines how many times an irreducible representation is contained in the general reducible representation for the crystal. White and DeAngelis utilize this analysis for the spinel lattice to identify the normal modes of the lattice [38].
The five symmetry elements discussed above completely describe molecular symmetry. However, to describe an infinite crystal lattice, two additional symmetry elements are required. A particle can also be translated along an axis of the crystal. The two extra symmetry elements that result are the screw axis and the glide plane. A screw axis is a translation along an axis, followed by a rotation about that axis. The glide plane also involves a translation along an axis, but is instead followed by a reflection about a plane parallel to the axis. This leads to a total of 230 space groups required to describe the structural symmetry of crystals [39].

Phonons

The quantized modes of vibrations in a crystal lattice are called phonons. A phonon represents the collective motion of the entire lattice from one normal mode of vibration, which can be represented by one of the irreducible representations. Phonons can interact with other particles, such as photons and electrons. The photon-phonon interaction is the basis for vibrational spectroscopy techniques used to study crystals, such as Raman scattering and infrared absorption. Phonons contribute to the specific heat of crystals, as the energy added to a crystal can create phonons. The phonon density of states of different materials has been extensively studied and reported.

Spinel structure

The spinel class of oxides, AB$_2$O$_4$, where A and B represent differing cations and O is oxygen, belongs to space group $Fd\bar{3}m$ (O$_h^7$), a cubic lattice consisting of 8 molecules within the unit cell, for a total of 56 atoms. This space group belongs to the O$_h$ point group, having the character table shown in Table 2. The unit cell of spinel is shown in Figure 2.

Because of the large number of atoms within the spinel unit cell, it is common to
Table 2. The character table of the the O\textsubscript{h} point group, to which the spinel system belongs.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>8C\textsubscript{3}</th>
<th>6C\textsubscript{2}</th>
<th>6C\textsubscript{4}</th>
<th>3C\textsubscript{2}</th>
<th>i</th>
<th>6S\textsubscript{4}</th>
<th>8S\textsubscript{6}</th>
<th>3\sigma_{h}</th>
<th>6\sigma_{d}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A\textsubscript{1g}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{2g}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{1u}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{2u}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{g}</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{u}</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{1g}</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{1u}</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{2g}</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{2u}</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

\(x^2 + y^2 + z^2\)

\((2z^2 - x^2 - y^2, x^2 - y^2)\)

\((R_x, R_y, R_z)\)

\((x, y, z)\)

\((xz, yz, xy)\)

Figure 2. The unit cell of a normal AB\textsubscript{2}O\textsubscript{4} spinel contains 8 molecules. The A2+ and B3+ cations occupy the tetrahedral and octahedral sites, respectively. To simplify the image, only the front half of the unit cell’s interior is shown. The tetrahedral cations are bonded to four oxygen atoms, whereas the octahedral cations are bonded to six oxygen atoms, shown to the right of the unit cell.
identify sub-units within the spinel unit cell, also displayed in Figure 2. A tetrahedral unit, AO₄ is comprised of the cation at the center of a cube and four oxygen atoms in the nonadjacent corners. The octahedral unit consists of a cation surrounded by six oxygen atoms, two along each dimensional axis, to form a BO₆ octahedron.

The tetrahedra within the spinel lattice are isolated from one another. No sides of a tetrahedron are in contact with other tetrahedra. The octahedral units, on the other hand, do share a single edge. Two oxygen atoms are shared between adjacent octahedra.

Atoms other than oxygen can occupy the anion position of the spinel lattice. Sulfur and selenium belong to the same periodic group as oxygen and many spinels are composed of these elements. A class of compounds known as the “cyanospinels” with formula, A₂M(CN)₄, also exist. Spinels containing oxygen are exclusively examined in the present work, though work on spinels composed of sulfur and selenium will be referenced.

In a normal spinel, shown in Figure 2, the A²⁺ cations occupy the tetrahedral positions, and the B³⁺ cations occupy the octahedral positions. A completely inverse spinel places one half of the B³⁺ cations onto all of the tetrahedral positions and the remaining half on the octahedral sites, while the A²⁺ cations fill up the remaining half of the octahedral positions. Spinel systems may exist in a state between completely normal and inverse, and thus an inversion parameter is defined, ξ, which indicates the fraction of A²⁺ cations occupying octahedral positions.

Spinels often have cations with valences other than +2 or +3. Different classes of spinels are often defined by the valences of the spinel’s cations. The spinels in the present work belong to the normal and inverse class of II-III spinels, as they contain cations with valences of +2 and +3. γ-Ni₂SiO₄, containing Ni²⁺ and Si⁴⁺, is an example of a II-IV spinel. LiMn₂O₄ is constructed with Li¹⁺ occupying the
tetrahedral sites of the lattice, and Mn$^{3+}$ and Mn$^{4+}$ occupying the octahedral sites. Many cation deficient spinels also exist, such as γ-Fe$_2$O$_3$, having octahedral vacancies.

Inversion of the spinel lattice leads to the existence of BO$_4$ tetrahedra and AO$_6$ octahedra. Inversion occurring in usually normal spinels is often referred to as cation disorder. Cation disorder has been reported to cause discrepancies in the vibrational spectra of spinels. The extra observed peak in synthetic spinels has often been attributed to aluminum cations occupying the tetrahedral position [2, 7, 40]. Many of the extra peaks in the inverse spinel NiAl$_2$O$_4$ are reported to be a result of the random distribution of the divalent nickel within the octahedral sites, where each cation configuration contributes locally to the additional peaks [41].

Although 56 atoms are present within the spinel’s unit cell, only 14 atoms are necessary to construct the simplest primitive cell. The factor group analysis presented first by White and DeAngelis [38] shows that the 42 normal modes of spinel, 3 acoustic modes and 39 optical modes, belong to the symmetry species

$$A_{1g}(R) + E_g(R) + F_{1g} + 3F_{2g}(R) + 2A_{2u} + 2E_u + 5F_{1u}(IR) + 2F_{2u}.$$ \hfill (2.1)

The (R) and (IR) identify Raman- and infrared-active vibrational species, respectively. The E_g and F_{2g} modes are doubly and triply degenerate, respectively. The three acoustic modes belong to a single F_{1u} species. A common notation exists in most of the literature to distinguish between the Raman and IR modes belonging to the same representation, and will be used in the present work. The three Raman-active F_{2g} modes are labeled $F_{2g}(1)$, $F_{2g}(2)$, and $F_{2g}(3)$, where $F_{2g}(1)$ is the lowest-frequency F_{2g} mode and $F_{2g}(3)$ is the highest-frequency mode of this vibrational species. Conversely, the four IR-active F_{1u} modes are labeled ν_1, ν_2, ν_3, and ν_4 in descending value of frequency. ν_1 is the highest-frequency F_{1u} mode, whereas ν_4 is the lowest-frequency mode.
Because the spinel structure has an inversion symmetry element, the active modes are mutually exclusive. Thus, the vibrational modes are either infrared- or Raman-active, but not both.

The atomic positions within a crystal can be defined as a fraction of the lattice parameter of the unit cell, \(a \). The ideal spinel lattice assumes that the oxygen atoms are arranged as a cubic close-packed array. However, the oxygen position of many spinels deviates slightly from this ideal geometry, and instead are displaced along a direction perpendicular to the diagonal of the cube, and an oxygen parameter, \(u \), is defined, where \(u = 3/8 \) for the ideal structure. Hill et al. list the mathematical expressions for calculating distances between neighboring atoms within the spinel lattice. The A-O and B-O bond distances are given by

\[
\begin{align*}
\text{A-O} & : a\sqrt{3}(u - 0.125) \quad (2.2) \\
\text{B-O} & : a\sqrt{3u^2 - 2u + 0.375}, \quad (2.3)
\end{align*}
\]

where \(a \) is the lattice parameter, and \(u \) is the oxygen parameter [42].

Corundum structure

Corundum is the name originally given to Al\(_2\)O\(_3\), which, though similar to the term spinel describing the structure adopted by many AB\(_2\)O\(_4\) compounds, is also the generic term that applies to isomorphic compounds of Al\(_2\)O\(_3\), having the general formula B\(^2\)O\(^3\). \(\alpha \)-Fe\(_2\)O\(_3\) and Cr\(_2\)O\(_3\) adopt the corundum structure, a hexagonal lattice belonging to the \(\overline{R}3c \) space group. The structure is a hexagonal close-packed array of oxide ions with two-thirds of the octahedral sites being filled with the B\(^{3+}\) cations.

The vibrational spectra of corundum-structured oxides are well known [1,43,44], and will not be studied in depth here. Two corundum-structured oxides, \(\alpha \)-Fe\(_2\)O\(_3\) and Cr\(_2\)O\(_3\), will be discussed when relevant to discussions on oxides. Several authors have reported data on the Fe\(_x\)Cr\(_{2-x}\)O\(_3\) solid solution series [45,46].
Solid solutions

Solid solutions are mixtures of different pure compounds where the mixing occurs within the crystal lattice as opposed to crystals of one pure spinel mixed with crystals of the other pure spinel. A solid solution of Mg$_{0.5}$Ni$_{0.5}$Cr$_2$O$_4$ is a normal spinel lattice with one half of the tetrahedral sites occupied by nickel and the remaining half occupied by magnesium. A solid solution is very different from a simple 50-50 physical mixture of pure MgCr$_2$O$_4$ and NiCr$_2$O$_4$, as the latter contains two different normal spinel lattices: one with all of the tetrahedral sites occupied by nickel, and the other with all of the tetrahedral sites occupied by magnesium.

Vibrational data on spinels and solid solution spinels of the form A$_x$B$_{1-x}$C$_y$D$_{2-y}$O$_4$ can give a tremendous amount of information regarding phonon dependencies on different elemental composition of the spinel lattice. Experimental data may support or refute current vibrational models.

Three different spinel solid solution series were synthesized and examined in the present work. Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ was studied first because the cation substitution is relatively simple. Both MgCr$_2$O$_4$ and NiCr$_2$O$_4$ are normal spinels [47, 48]; only the tetrahedral divalent cation is being exchanged from Ni$^{2+}$ to Mg$^{2+}$. This gave us an opportunity to examine the impact of the divalent cation on the vibrational modes.

The second synthesized series was NiFe$_x$Cr$_{2-x}$O$_4$. This series involves the substitution of the trivalent cation from Cr to Fe within the spinel lattice. In addition, the role of inversion upon the vibrational modes can be studied, as NiFe$_2$O$_4$ is an inverse spinel [49]. Cr$^{3+}$ has the largest octahedral site preference of the three cations, but Ni$^{2+}$ has a larger octahedral preferences than Fe$^{3+}$ [50]. Because of this, as the amount of iron, x, is increased, the series transitions from a normal spinel lattice to a completely inverse spinel lattice. In NiFe$_2$O$_4$, the Ni$^{2+}$ cations occupy one half of the octahedral positions, and Fe$^{3+}$ occupy the remaining half of the octahedral sites and
all of the tetrahedral sites. Mixed spinels of the form NiFe$_x$Cr$_{2-x}$O$_4$ could be likely products in the corrosion of nickel-based alloys.

The third solid solution series studied in this work was Fe$_x$Cr$_{3-x}$O$_4$. This series is the most relevant to the corrosion research on iron-based stainless steels exposed to LBE. FeCr$_2$O$_4$ is a normal spinel, and Fe$_3$O$_4$ is an inverse spinel [51,52], so vibrational spectroscopy of this series can also investigate the role of lattice inversion on the vibrational modes.

The Jahn-Teller effect

Some spinels exhibit slight distortions from the spinel structure. In many instances, this is due to the Jahn-Teller effect involving degenerate electron orbital energy states. The valence electrons of the transition metals fill various levels within the d orbitals. Jahn and Teller showed that a nonlinear molecule will distort along a vibrational coordinate to remove the orbital degeneracy of an electronic state [53]. Electrons that do not contribute to the molecular binding do not produce this distortion. The degeneracy is created by a crystal having multiple electronic configurations with the same energy. Dunitz and Orgel explain these Jahn-Teller distortions by applying crystal field theory to the spinel structure [54]. Their discussions of crystal field stabilization are applicable to comparing members of the same crystal structure and their arguments will be summarized.

In an octahedral or tetrahedral field, the energy levels of the d orbitals are split into a doublet, e_g ($d_{x^2-y^2}, d_{z^2}$), and a triplet, t_{2g} (d_{xy}, d_{xz}, d_{yz}). In the octahedral arrangement, the e_g orbitals point directly at the anions, which causes destabilization. For this octahedral configuration, the e_g doublet has a higher energy than the t_{2g} triplet. The t_{2g} orbitals are more stable in this configuration because the orbitals point between the axes of the anions. For the tetrahedral configuration, the energy
levels are inverted: the t_{2g} orbitals have a higher energy than the e_g orbitals.

For the triply degenerate lower t_{2g} level of the tetrahedral configuration, a tetragonal distortion removes the degeneracy by splitting the energy levels into a singlet and a doublet. The new tetragonal unit cell has two lattice parameters, c and a, instead of just a, though the unit cell is redefined so that as it approaches cubic, the a parameter is equal to the lattice parameter of the spinel lattice divided by $\sqrt{2}$. For such comparisons to the cubic lattice, the c/a ratio of the distorted cell is often compared to this factor of $\sqrt{2}$. The energy level arrangement is determined by the c/a ratio of the tetragonal geometry.

Dunitz and Orgel further hypothesize that the distortion has no directional preference, and will be along any of the three coordinate axes, independent of the neighbors of the tetrahedral or octahedral unit [54]. This randomness indicates that the overall lattice still appears cubic, though the x-ray diffraction peaks may be broadened. However, as the temperature is lowered, the interaction between neighboring distortions becomes more significant, and a transition temperature exists distortions occur in a single direction.

An excellent example of the Jahn-Teller effect in spinels is Ni^{2+} in the tetrahedral configuration. Ni^{2+} in the tetrahedral configuration has eight electrons in the d orbitals. The lower e_g doublet is completely filled with four electrons, but the upper t_{2g} triplet will be degenerate because there are three orbitals for the four remaining electrons. After an electron occupies each triplet level, a single remaining electron is available to occupy any of the three orbitals of this triplet, all of which have the same energy. This degeneracy is lifted by elongating the bonds along the z-axis. As a result, the d_{xy} orbital becomes a single lower-energy, non-degenerate state occupied by the single remaining electron.

Nickel is mentioned because NiCr_2O_4 was studied and a Jahn-Teller distortion of
the lattice is expected. This distortion to the $I4_1/amd$ space group will be discussed with the results of NiCr$_2$O$_4$. Another nickel spinel studied in the present work, NiFe$_2$O$_4$, is a completely inverse spinel structure, in which the e_g doublet of Ni$^{2+}$ in an octahedral configuration contains a single electron in each level, indicating the absence of a Jahn-Teller distortion for NiFe$_2$O$_4$.

Cr$^{3+}$ has five electrons in the d orbital. In either the octahedral or tetrahedral configuration, there will be one electron filling each of the e_g and t_{2g} orbitals. This configuration has no degeneracy, and thus there is no Jahn-Teller distortion for Cr$^{3+}$ in the octahedral site.

Fe$^{2+}$ and Fe$^{3+}$ have 6 and 5 electrons, respectively, when bonded in a tetrahedral or octahedral configuration. A 5-electron configuration has no Jahn-Teller distortion in either the tetrahedral or octahedral configuration. For the 6 electrons of Fe$^{2+}$ in the octahedral configuration, the degeneracy exists in the mostly non-bonding t_{2g} orbitals, leading to only small Jahn-Teller distortions. Likewise, in the tetrahedral configuration, the degeneracy occurs in the e_g orbitals, which are mostly non-bonding. Any Jahn-Teller distortion due to iron in the octahedral or tetrahedral sites will be too small to detect [54].

X-ray diffraction

The atoms within a crystal lattice form regular planes with spacing d between each plane. Coherent x-rays incident upon these regular planes can reflect off these planes and constructively interfere if the path length difference is a multiple of the wavelength of the light. Knowing the angle at which the light scatters from these planes allows determination of the distance between each plane. Many different planes may exist in a regular crystal lattice, defined by coplanar atoms in the various crystal sites throughout the lattice. The incident x-rays will therefore be capable of scattering
off all these planes which leads to constructive interference at many different angles. Information about the crystal structure can be determined from this diffraction pattern.

The spacing between atomic planes, \(d \), is determined using Bragg’s law,

\[
2d \sin \theta = m\lambda,
\]

where \(\theta \) is the angle between the incident light and the lattice planes, \(m \) is an integer describing the order, and \(\lambda \) is the wavelength of the incident light. X-rays are used because, to achieve measurable diffraction, the wavelength must be on the order of \(d \). Because the x-ray diffraction (XRD) spectrum and structure of spinel are well known, the lattice parameter can be calculated by knowing the Miller indices of each spinel diffraction peak.

Miller indices are reciprocal fractions along each dimension that define a plane within the lattice, and are commonly denoted as three numbers, \(hkl \), that represent the fraction in each dimension of the lattice. For the cubic system, the dimensions are the standard cartesian coordinates \(x, y, z \). For example, the (100) represents a plane in the yz plane. The (200) surface would be a yz plane halfway along the \(x \) dimension of the crystal.

For a cubic lattice, the diffraction spacing, \(d \), can be related to the lattice parameter, \(a \), and the Miller indices, \((hkl) \), by

\[
d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}.
\]

Intensities of the x-ray diffraction peaks are affected by many variables such as the electron distribution around any atom or ion and the structure of the crystal. Scattering of the x-rays occur from the electron cloud surrounding the atom or ion, and therefore the intensities are a sum of all scattering from the electron cloud. Because the spacing within the electron cloud is smaller than the wavelength of the
incident x-ray, partially destructive interference occurs from the sum, and an atomic scattering factor, f_0, can be calculated for atoms and ions. The structure factor, F_{hkl}, describes how the atomic arrangement of the crystal affects the x-ray diffraction peaks. The Rietveld refinement method, named for Hugo Rietveld who developed the method, incorporates all of the variables that affect diffraction peaks, and involves a least squares fit to refine structural information of the sample [55].

X-ray diffraction is a common and powerful tool for determining the crystal structure of a material. However, sample preparation is crucial, and the technique cannot examine all varieties of samples. The sample must be a single crystal, a uniform surface, or a powder, all of which require long-range order for coherent x-ray diffraction. Vibrational spectroscopy can thus be a more practical approach to the study of corrosion layers upon a steel, or any non-uniform sample, because it is a more local probe.
RAMAN SCATTERING AND INFRARED ABSORPTION

The Raman effect, named for the Nobel prize work by Chandrasekhra Venkata Raman in 1928 [56], is an inelastic light scattering effect resulting from the excitation or de-excitation of vibrational modes. In the simple case of a single molecule, Figure 3, an incident photon can either scatter elastically, known as Rayleigh scattering, or scatter inelastically and excite or absorb a vibrational mode of the molecule. In a crystal lattice, the photon may scatter from a lattice phonon that will change the energy of the phonon. The energy loss or gain of the inelastically scattered photon corresponds to the energy of a vibrational level, or phonon level, of the system. If a phonon is created at a higher energy state, then the scattered photon will have less energy than the incident photon. Alternatively, a phonon can be annihilated, resulting in a scattered photon having greater energy than the incident photon.

Raman scattering is a phenomenon with a low probability of occurrence. Only one in 10^6 of incident photons is inelastically scattered. Because the majority of incident light is Rayleigh scattered, Raman detector systems must remove this elastically scattered light from the collected light, or else the Rayleigh scattered light can overwhelm the weaker Raman signal.

Raman scattering is typically performed non-resonantly, meaning that the energy of the incident photons does not equal any energy difference between any phonon levels of the lattice. In the most common conceptual description, the photon excites the system to a virtual state before decaying to the ground state (Rayleigh) or an
Figure 3. The cartoon displays Rayleigh and Raman scattering processes. An incident photon can either scatter elastically or inelastically from a molecule. Most often, the inelastic process results in a vibrating molecule and a photon of less energy [56].

Stokes scattering and anti-Stokes scattering are the terms applied to whether a phonon is created or annihilated, respectively. Anti-Stokes scattering is a much weaker effect than Stokes scattering. All Raman data collected in this study, used for purposes of determining peak positions, are Stokes signals, corresponding to scattered photons of lower energy than the incident photons.

Raman Scattering

In a classical approach [35], the oscillating electric field E of the incident light with frequency ν_0 and amplitude E_0 can be written as

$$E = E_0 \cos 2\pi \nu_0 t.$$ \hspace{1cm} (3.1)

This electric field interacts with and distorts the electron cloud of the lattice, inducing an electric dipole P given by

$$P = \alpha E,$$ \hspace{1cm} (3.2)
where α is the polarizability of the lattice.

If the lattice is vibrating with frequency ν_m and amplitude q_0, then the nuclear displacement can be written as

$$q = q_0 \cos 2\pi \nu_m t. \quad (3.3)$$

For small amplitudes, α is a linear function of q, and can be expanded as

$$\alpha = \alpha_0 + \left(\frac{\partial \alpha}{\partial q} \right)_0 q + \ldots, \quad (3.4)$$

where the partial derivative is evaluated at the equilibrium nuclear position.
Combining equations 3.1, 3.2, 3.3, and 3.4 gives

\[P = \alpha E_0 \cos 2\pi \nu_0 t \]

where the first term on the right side of the equality in Equation 3.5 is the Rayleigh scattering term, which has a frequency equal to the incident frequency, \(\nu_0 \). The Stokes and anti-Stokes terms, having frequencies shifted from the incident frequency, are \(\nu_0 - \nu_m \) and \(\nu_0 + \nu_m \), respectively. The partial derivatives of the polarizability act as coefficients for the Stokes and anti-Stokes terms, thus indicating that these Raman terms are non-zero only if there is a change in the polarizability \(\frac{\partial \alpha}{\partial q} \neq 0 \) when the molecule vibrates. If the polarizability does not change during a vibration, this coefficient is zero, and the vibration is not Raman-active.

Polarizability tensor

Electron clouds are three-dimensional entities, and an incident electric field can induce a dipole in directions perpendicular to the direction of polarization. Therefore, Equation 3.2 must be a tensor to incorporate the \(x, y, \) and \(z \) directions. In matrix form, this equation can be written as

\[
\begin{pmatrix}
P_x \\
P_y \\
P_z
\end{pmatrix} =
\begin{pmatrix}
\alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\
\alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\
\alpha_{zx} & \alpha_{zy} & \alpha_{zz}
\end{pmatrix}
\begin{pmatrix}
E_x \\
E_y \\
E_z
\end{pmatrix},
\]

(3.6)

where the \(3 \times 3 \) matrix on the right side of Equation 3.6 is called the *polarizability tensor*, \(\alpha_{ij} \). The polarizability tensor is symmetric, obeying

\[
\alpha_{ij} = \alpha_{ji}.
\]

(3.7)
If any of the components of this tensor change during a vibration, the vibration is Raman-active. The intensities of the Raman fundamentals are therefore determined by $\partial \alpha_{ij}/\partial Q$ where Q is a normal coordinate of the lattice. Even though α_{ij} is symmetric, $\partial \alpha_{ij}/\partial Q$ may not be symmetric.

Approaching Raman scattering using quantum mechanics requires the use of the Kramers-Heisenberg formula for a two-photon scattering process [36]. The virtual state that the system transitions to is unknown, and so all virtual states must be summed over. In addition, the excitation to and relaxation from the virtual state occurs simultaneously. This Kramers-Heisenberg formula can be shown to be related to the classical polarizability tensor.

Infrared absorption

A quantum mechanical treatment [36] of the vibrations of a crystal as a harmonic oscillator shows that phonon energies are quantized, with

$$E_i = (n_i + \frac{1}{2})\hbar \nu_i,$$

(3.8)

where n_i is the quantum number and ν_i is the normal frequency associated with the normal coordinate Q_i [34].

A crystal is capable of directly absorbing a photon that corresponds to an energy of vibration, given in Equation 3.8. Because photons are polarized, the electric field of the photon must be capable of interacting with the vibration. An electric field will create a force on charged particles, such as the positive and negative ions constituting the crystal. As the electric field points in one direction, the electric dipole may be stretched along an axis of the crystal. As the electric field points in the opposite direction, the electric dipole becomes compressed. This results in a vibration of the system. This photon-dipole interaction leads to the selection rule for infrared absorption. Vibrations are infrared-active if there is a change in the dipole moment.
during the vibration. If the dipole is not changed during the vibration, an incident photon will not be capable of exciting the vibration.

Wavenumbers

Raman and infrared spectra are often plotted as intensity versus wavenumber (cm$^{-1}$). A wavenumber can easily be calculated from a known light frequency ν, using

$$\text{wavenumber} = \frac{1}{\lambda} = \frac{\nu}{c} \text{ (cm}^{-1})$$

(3.9)

where ν is the frequency of the photon, and c is the speed of light in a vacuum, 2.998×10^{10} cm/s.

For Raman spectra, the wavenumber shift relative to the wavenumber of the incident laser is usually plotted. This Raman shift, ν_r, can be calculated in wavenumbers using

$$\nu_r = \frac{\Delta \nu}{c} = \frac{\nu_i - \nu_s}{c}$$

(3.10)

where ν_i and ν_s are the frequencies of the incident and scattered photons, respectively. The Raman shift is the difference between the wavenumbers of the Raman-scattered photon and the Rayleigh-scattered photon.
CHAPTER 4

PREVIOUS WORK

The present work was partly motivated by an ambition to augment the results from our group on the LBE-corroded steels acquired with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), and x-ray photoelectron spectroscopy (XPS) done before, and in parallel, with the present work [57–59]. The work then expanded into a more comprehensive account of the vibrational properties of the spinel system, as uncertainty regarding the assignment of the vibrational modes of spinel is apparent. As such, a summary of the previous work from our research group will be presented, as well as a summary of the large amount of experimental data and theoretical models on the vibrational modes of the spinel lattice. Doing so will highlight the gaps in knowledge that the present work will attempt to complete.

LBE-corroded steels

Our previous work characterized the compositional and morphological properties of the corrosion layers of stainless steel samples exposed to lead-bismuth eutectic (LBE) [57–59]. One of the conclusions was that the surface treatment of the steel was crucial to reducing the severity of corrosion damage sustained by the steel [59]. Cold-rolling the surface of the stainless steel leads to a better preservation of the chromium oxide layer.

SEM images from our previous work also clearly show that at least two corrosion layers are formed during the corrosion process on these steels exposed to LBE [57]. A cross-section SEM image of a LBE-corroded stainless steel sample is shown in
Figure 5. SEM image of a cross section cut from a stainless steel. A dual oxide layer is visible [60].

Figure 5. The outer oxide layer grows outwards from the original surface, while the inner oxide layer grows inwards.

In energy dispersive x-ray spectroscopy (EDX), the sample is bombarded by electrons, and the resulting characteristic x-rays emitted by the sample are used to produce an elemental map of the sample. Different SEM images highlighting the elemental composition of the corrosion layers are shown in Figure 6. The image proves that the outer corrosion layer contains only iron and oxygen, while the inner layer also contains chromium. Nickel is enhanced in the inner oxide layer compared to the bulk metal.

In x-ray photoelectron spectrometry (XPS), the sample is bombarded by x-rays, and the energies of the resulting photoelectrons from the top few atomic layers are
analyzed. XPS is capable of determining oxidation states of elements, which can give clues to the molecular species existing within a sample. In previous work by our group, XPS studies of LBE-corroded steels observed that iron and chromium are oxidized, while the nickel within the inner corrosion layer is metallic [60].

As powerful as SEM, EDX, and XPS techniques are, structural and chemical ambiguities can remain. These techniques can accurately identify the existence of iron, chromium, oxygen, and other elements within the corrosion layer, but cannot accurately differentiate between α-Fe$_2$O$_3$, Fe$_3$O$_4$, or other oxidation products. Fortunately, vibrational spectroscopy is a technique capable of determining the vibrational modes of a solid, and these vibrational modes are strongly dependent of the crystal symmetry.
Identifying corrosion layers using Raman spectroscopy

Many researchers have used Raman spectroscopy to study the corrosion layers on alloys exposed to a variety of extreme conditions. The common method to identify corrosion products is to compare Raman spectra of the unknown corrosion layers with the known spectra of standard oxide compounds, such as α-Fe$_2$O$_3$, Fe$_3$O$_4$, Cr$_2$O$_3$, and other compounds [25,61–65]. The best-matching spectral “fingerprint” then identifies the chemical species within the corrosion layer.

For example, Cunha et al. studied the oxides formed on 316L stainless steel in a high-temperature pressurized water reactor environment and determined the corrosion layer to be composed of spinels of nickel, iron, and chromium [24]. Kim et al. studied NiCr$_2$O$_4$ and NiFe$_2$O$_4$ powders to identify corrosion layers of a nickel-based alloy in a high-temperature water environment [64]. Renush et al. examined the corrosion layers on Fe-Cr-Ni alloys at various temperatures and reported the formation of α-Fe$_2$O$_3$, Fe$_3$O$_4$, and Cr$_2$O$_3$ [66]. Boucherit et al. examined Fe and Fe-Mo alloys and observed evidence of spinel layers formed over the bulk iron [67]. Gardiner et al. identified the spinel and corundum phases in the corrosion layers formed on Fe-Cr stainless steels [25]. Other studies have shown evidence of the formation of spinels such as FeCr$_2$O$_4$ [68] and MnCr$_2$O$_4$ [30,69] as corrosion products.

All of these studies, with the exception of Cunha et al. [24], assumed that the corrosion products identified are pure end-member chromites and ferrites, as opposed to a solid solution of two or more end-member oxides containing iron, nickel, chromium, or other elements from the alloy. The use of Raman spectroscopy to identify solid solutions requires a database of experimentally measured Raman spectra of standard compounds.
Theoretical work of the spinel system

A database of experimentally measured Raman spectra of standard compounds is valuable for identifying chemical species, but a purely experimental database would suffer from some definite limitations. There are a very large number of possible solid solutions, and accordingly, a purely empirical approach is a large undertaking. The development and testing of theoretical models of such solid solutions can lead to insight and the recognition of series regularities. Many researchers have worked to develop and use models to calculate the vibrational modes of spinels \([8, 70–77]\). Such calculations can provide crucial support in the assignment of vibrational modes as correct calculations could predict frequencies, intensities, and atomic motions of the vibrations of solid solution spinel systems.

Before the development of computers to perform calculations, researchers used group theory to investigate the vibrations of spinel. In early work, Waldron assumed the primitive cell of spinel was composed of two tetrahedral AO\(_4\) units and a B\(_4\) unit \([78]\). The nearest-neighbor interactions from the octahedral cations were assumed to be small and ignored. This approach allowed all of the vibrations to be identified from the \(T_d\) point group of the AO\(_4\) tetrahedron. The interaction between neighboring tetrahedral units was also assumed to be small. This approach predicts eight infrared-active \(F_2\) modes, however only four distinct infrared-active modes are typically reported for spinels.

White et al. approached the spinel lattice with a group theoretical analysis of the spinel unit cell \([38]\). Their method predicted the observed four infrared and five Raman-active modes. They assumed the atomic motions derived from Waldron’s two AO\(_4\) and B\(_4\) units. Verble employed a similar approach in a study of Fe\(_3\)O\(_4\) \([79]\), which includes diagrams of the vibrations. Similar to the models by Waldron and White et al., the octahedral cations remain at rest during all vibrations. Similar calculations of
the atomic motions were performed by Yamanaka et al. in a study of the vibrations of γ-Ni$_2$SiO$_4$ [8].

Vibrations of spinel sulfides and selenides ACr_2X_4, with X being S or Se, mainly chalcogenides, with A being Cd, Fe, Mn, and Zn, were calculated by Gupta et al. [73–75] who find the B-X interaction to dominate the A-X interaction. Gupta et al. and also Sinha, in a study of chromites, support the hypothesis that the B-O interaction is more important than the A-O interaction [77, 80]. Recently, Kushawaha et al. have performed calculations on several chromites, ACr_2O_4, with $\text{A} = \text{Co}$, Mn, Zn [81, 82]. They report stronger interactions for the octahedral B-O bond than the tetrahedral A-O bond. However, work by Sinha et al. has shown stronger A-O force constants for MgAl_2O_4 and ZnCr_2O_4 [83].

Wakamura et al. performed calculations to model the behavior of $\text{Zn}_{1-x}\text{Cd}_x\text{Cr}_2\text{S}_4$ [84]. The low-frequency mode ν_4 was observed to have a large discontinuity in wavenumber as zinc was substituted for cadmium. They concluded that the behavior of this mode results from large differences in the force constants of the two end members.

Assignment of the vibrations of spinel

The literature is inconsistent with regard to the assignment of the specific atomic motions within the spinel lattice during the Raman-active vibrations. However, the common atomic motions assigned to the vibrations of spinel from the literature will be summarized.

The highest-frequency A_{1g} mode is assigned as the symmetric breathing mode of the AO_4 unit within the spinel lattice [7, 8, 79]. The oxygen atoms move away from the tetrahedral cation along the direction of the bonds. Neither the tetrahedral nor octahedral cations are in motion during this vibration.
The second highest-frequency Raman-active mode is the $F_{2g}(3)$ mode. The literature disagrees about the assignment of atomic motions during the vibration, which has been reported as either the antisymmetric breathing mode of the AO_4 unit [8,79], or as an asymmetric bending motion of the oxygens bonded to the tetrahedral cation [7].

The $F_{2g}(2)$ mode was shown by Verble to be a translation along one direction of the lattice, with the cation and oxygen atoms moving in opposite directions [79]. Verble also assigns the E_g mode as a symmetric bending motion of the oxygen anions within the AO_4 unit [79]. This assignment is supported by other researchers [14,85]. Most of the literature agrees that the lowest-frequency Raman-active mode, $F_{2g}(1)$, is a complete translation of the AO_4 unit within the spinel lattice [8,14,79,85,86].

There is very little discussion of the motion of the octahedral cations during these vibrations. This results from the assumption that the simplest unit of the spinel lattice is composed of two AO_4 tetrahedra and a B_4 tetrahedron. Many researchers seem to use this assumption in assigning all vibrational modes to motions involving solely the AO_4 unit [7,8,79,87]. The octahedral cations are assumed to remain at rest. Every oxygen atom is bound to three octahedral cations and only a single tetrahedral cation. Even if the cation remains at rest, the bonding force between octahedral cations and the oxygen atoms must be relevant for determining phonon energies.

However, as Preudhomme et al. have shown with extensive experimental data in their series of infrared studies on spinels, the assumption that the higher-frequency vibrations depend solely upon the tetrahedral cations may be incorrect, at least for the normal II-III spinels, and instead depend more strongly on the nature of the octahedral cation [88].

Marinković Stanojević et al. assign many vibrations to octahedral cations in their study of $ZnCr_2O_4$ [89]. All high-frequency modes, Raman and infrared, are assigned to vibrations involving the CrO_6 octahedron, and the low-frequency modes are assigned
to the ZnO tetrahedron. The A_{1g} mode is assigned to the symmetric breathing mode of the octahedral unit. The Raman-active E_g mode is assigned as a complex vibration involving both zinc and chromium atoms. The lowest-frequency infrared-active mode, ν_4, is assigned as a bending mode of the chromium octahedron.

Laguna-Bercero et al. studied the NiAl$_2$O$_4$ inverse spinel and argued that the A_{1g} mode depends upon the octahedral cations [41]. They predict that the complicated A_{1g} mode is due to the random occupation of the octahedral sites by the Ni$^{2+}$ and Al$^{3+}$ cations. The possible configurations lead to slight differences in the energies of this vibrational mode, creating the multiple A_{1g} modes.

Hwang et al. examined chromium substituted LiMn$_2$O$_4$, a spinel containing both Mn$^{3+}$ and Mn$^{4+}$ in the octahedral sites [90]. Li$^{2+}$ occupies all tetrahedral sites. They interpret the two A_{1g} modes as resulting from tetragonally distorted Mn$^{3+}$O$_6$ and undistorted Mn$^{4+}$O$_6$ octahedra.

Additional modes may appear in vibrational spectra due to local distortions of the crystal lattice. These defects do not affect the long-range ordering of the system, and are often undetectable by x-ray diffraction. However, vibrational spectroscopy is very sensitive to these defects. The additional modes due to local distortions of the lattice are known as local modes.

Preudhomme et al. argued that, as the cations are exchanged in these mixed spinel systems, there are three different ways that the vibrational modes can vary [91]. They define the terms localized and complex to describe two behaviors, with a third being a combination of localized and complex. The term localized can be confused with the common usage of local modes, as described above. Chang et al. define the terms one-mode behavior and two-mode behavior [92] to describe the same phenomena that Preudhomme et al. emphasized, which have become more common in the literature.

One-mode behavior describes phonons in mixed systems that vary continuously
from the frequency of one end member to the frequency of the other end member. Alternatively, two-mode behavior of a mixed crystal system possesses two distinct vibrational modes, close to the frequency of both end members, with intensities proportional to the fraction of each pure member within the mixed system. Both one- and two-mode behavior can occur where the two distinct modes also shift in frequency upon cation substitution. Two-mode behavior may be evidence of local crystallization of the two end members within the sample. This may occur on a scale small enough to not be resolvable using x-ray diffraction.

Experimental work on the spinel vibrations

Many Raman studies of pure spinel oxides, AB$_2$O$_4$, have appeared in the literature. The wavenumbers of the five Raman-active modes for various spinel oxides are shown in Table 3. These data allow investigation of the Raman-active modes for any patterns due to replacement of the tetrahedral and octahedral cations.

The chromites are all normal II-III spinels and vary only by the divalent cation occupying the tetrahedral sites. Cr$^{3+}$ has a greater preference for the octahedral site than other cations [50, 103]. The A$_{1g}$ mode for all chromites, with the exception of cadmium, varies significantly less than the other Raman-active modes. This could indicate that this mode is mostly independent of the divalent cation species. The change in the A$_{1g}$ mode for CdCr$_2$O$_4$ from the other chromites is only approximately 7%. The F$_{2g}$(1) mode seems to have a much greater dependence on the divalent cation: The F$_{2g}$(1) modes of CdCr$_2$O$_4$ and MgCr$_2$O$_4$ differ by approximately 40%.

The F$_{2g}$(2) and F$_{2g}$(3) modes of CdCr$_2$O$_4$ are similar to the other chromites, even with the much heavier cadmium atom occupying the octahedral site. The F$_{2g}$(1), E$_g$, and A$_{1g}$ modes are all lower than the respective modes of the other chromites.

Many of the ferrites exhibit inversion of the cations between the tetrahedral and
<table>
<thead>
<tr>
<th>Spinel</th>
<th>F$_{2g}$(1)</th>
<th>E$_g$</th>
<th>F$_{2g}$(2)</th>
<th>F$_{2g}$(3)</th>
<th>A$_{1g}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdCr$_2$O$_4$</td>
<td>134</td>
<td>343</td>
<td>499</td>
<td>600</td>
<td>647</td>
</tr>
<tr>
<td>CoCr$_2$O$_4$</td>
<td></td>
<td>454</td>
<td></td>
<td></td>
<td>692</td>
</tr>
<tr>
<td>CuCr$_2$O$_4$</td>
<td>190</td>
<td></td>
<td></td>
<td>623</td>
<td>680</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>686</td>
</tr>
<tr>
<td>MgCr$_2$O$_4$</td>
<td>227</td>
<td>447</td>
<td>544</td>
<td>614</td>
<td>687</td>
</tr>
<tr>
<td>MnCr$_2$O$_4$</td>
<td>457</td>
<td>511</td>
<td></td>
<td>600</td>
<td>671,685</td>
</tr>
<tr>
<td>NiCr$_2$O$_4$</td>
<td>181</td>
<td>425</td>
<td>511</td>
<td>580</td>
<td>686</td>
</tr>
<tr>
<td>ZnCr$_2$O$_4$</td>
<td>180</td>
<td>430,457</td>
<td>511</td>
<td>605</td>
<td>687</td>
</tr>
<tr>
<td>Ferrites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoFe$_2$O$_4$</td>
<td>210</td>
<td>312</td>
<td>470</td>
<td>576</td>
<td>624sh, 695</td>
</tr>
<tr>
<td>MgFe$_2$O$_4$</td>
<td>217</td>
<td>333</td>
<td>486</td>
<td>554</td>
<td>646, 715</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>193</td>
<td>306</td>
<td></td>
<td>538</td>
<td>668</td>
</tr>
<tr>
<td>NiFe$_2$O$_4$</td>
<td>460sh, 492</td>
<td></td>
<td>574sh, 595</td>
<td>654sh, 702</td>
<td></td>
</tr>
<tr>
<td>ZnFe$_2$O$_4$</td>
<td>221</td>
<td>246</td>
<td>355</td>
<td>451</td>
<td>647</td>
</tr>
<tr>
<td>Aluminates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoAl$_2$O$_4$</td>
<td>201</td>
<td></td>
<td></td>
<td>516</td>
<td>615</td>
</tr>
<tr>
<td>MgAl$_2$O$_4$</td>
<td>311</td>
<td>410</td>
<td>492</td>
<td>671</td>
<td>772</td>
</tr>
<tr>
<td>ZnAl$_2$O$_4$</td>
<td>197</td>
<td>417</td>
<td>509</td>
<td>658</td>
<td>758</td>
</tr>
<tr>
<td>Other Spinels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoCo$_2$O$_4$</td>
<td>194</td>
<td>482</td>
<td>522</td>
<td>618</td>
<td>691</td>
</tr>
<tr>
<td>ZnGa$_2$O$_4$</td>
<td>638</td>
<td>467</td>
<td>611</td>
<td>714</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Compiled Raman data from the literature on AB$_2$O$_4$ spinels. Shoulders of peaks are marked with sh. Data from the present work are not included.
octahedral sites. NiFe$_2$O$_4$ and Fe$_3$O$_4$ are completely inverse spinels [104]. MgFe$_2$O$_4$ has an inversion parameter of $\xi = 0.90$ [105, 106]. At ambient conditions, CoFe$_2$O$_4$ has an inversion parameter of $\xi = 0.95$ [96]. Raman spectra of these inverse spinels is more complicated and show additional Raman-active modes over the five predicted by group theory.

Unlike the other ferrites in Table 3, ZnFe$_2$O$_4$ is a normal spinel [18]. However, nanostructured powders of various synthesis and treatment methods have exhibited differing degrees of inversion [107]. As a normal spinel, ZnFe$_2$O$_4$ can be compared to ZnCr$_2$O$_4$ to examine the effect of only replacing the octahedral cation on the Raman-active modes. The A$_{1g}$ mode is located at 647 cm$^{-1}$, a much greater departure from any of the A$_{1g}$ modes of the other chromites, with the exception of CdCr$_2$O$_4$. This suggests that the A$_{1g}$ mode has a greater dependence upon the octahedral trivalent cation than the tetrahedral divalent cation. MgAl$_2$O$_4$ and MgCr$_2$O$_4$ can also be compared as both are normal spinels and differ only by the octahedral cation. The A$_{1g}$ mode of MgAl$_2$O$_4$ has a 12% greater frequency than the A$_{1g}$ mode of MgCr$_2$O$_4$.

The E$_g$, F$_{2g}(2)$, and F$_{2g}(3)$ modes of ZnFe$_2$O$_4$ differ greatly from the other chromites and ferrites. However, Wang et al. made these assignments from powder samples [98], and the assignments need confirmation by polarization studies on a single crystal sample.

The wavenumber of the A$_{1g}$ mode varies more strongly among the ferrites than the chromites. If this mode is dependent only on the AO$_4$ unit of the lattice, the frequency should be nearly identical for all ferrites, because they, with the exception of ZnFe$_2$O$_4$, are inverse spinels with Fe$^{3+}$ in the tetrahedral position. From these compiled results on chromite and ferrites, the A$_{1g}$ mode appears to depend more on the octahedral cation than the tetrahedral cation. The F$_{2g}(1)$ mode remains similar to the other ferrites, as well as the chromites. The other three modes, E$_g$, F$_{2g}(2)$, and
F\textsubscript{2g}(3), are dramatically lower than the corresponding modes in any of the chromites.

Figure 7 is a plot of the wavenumbers of the Raman-active modes from the literature, versus the reciprocal of the square root of the mass of the tetrahedral cation for various chromites in the literature. This simple “mass on a spring” model predicts a wavenumber proportional to the reciprocal of the square root of the cation mass. The data show a linearly increasing Raman shift for the F\textsubscript{2g}(1) and F\textsubscript{2g}(2) modes. The wavenumber of the A\textsubscript{1g} and E\textsubscript{g} phonons remain mostly constant, with only cadmium chromite having a significantly smaller frequency. The F\textsubscript{2g}(3) mode shows no overall dependence on the mass of the tetrahedral cation. Malavasi et al. create a similar plot for what they label “peak 2” of some normal AMn\textsubscript{2}O\textsubscript{4} spinels, where A = Mn, Mg, and Zn [108]. The wavenumber of this mode is in the 470-510 cm-1 range, which suggests that it may be the F\textsubscript{2g}(2) mode. If this assignment is correct, it is consistent with the behavior of the F\textsubscript{2g}(2) mode for the chromites with different tetrahedral composition.

Figure 8 is a plot of the wavenumbers of the A\textsubscript{1g} modes versus the reciprocal of the square root of the octahedral cation mass for various MgB\textsubscript{2}O\textsubscript{4} and ZnB\textsubscript{2}O\textsubscript{4} spinels. The figure shows a similar dependence upon substitution of the octahedral cation within the normal spinel lattice. Only ZnGa\textsubscript{2}O\textsubscript{4} breaks the trend seen in both plots. MgFe\textsubscript{2}O\textsubscript{4}, unlike the other spinels plotted in Figure 7, is an inverse spinel. However, Wang et al. report an unidentified peak at 646 cm-1 on the low frequency side of the A\textsubscript{1g} mode, similar to the shoulder of the A\textsubscript{1g} mode on NiFe\textsubscript{2}O\textsubscript{4}. This data point is included to test the validity of the common interpretation that shoulders on the A\textsubscript{1g} mode of the inverse spinels are due to the two distinct octahedra formed by the divalent and trivalent cations occupying the octahedral site of the inverse spinel lattice. The MgFe\textsubscript{2}O\textsubscript{4} data are consistent with this argument, as assigning the 646 cm-1 mode to the A\textsubscript{1g} behavior of the FeO\textsubscript{6} unit in the inverse lattice agrees very
Figure 7. The wavenumbers of the Raman-active modes, from the literature, of various chromites plotted versus the reciprocal of the square root of the tetrahedral cation mass. Data from the present work on NiCr$_2$O$_4$ and MgCr$_2$O$_4$ is also included.

well with the ZnFe$_2$O$_4$ data. If this lower frequency feature can be assigned to the FeO$_6$ of the inverse lattice, the higher frequency A_{1g} feature, 715 cm$^{-1}$ for MgFe$_2$O$_4$ and 702 cm$^{-1}$ for NiFe$_2$O$_4$, should be assigned to the divalent cation occupying the octahedral position.

Raman spectra of the CoFe$_2$O$_4$, MgFe$_2$O$_4$, and NiFe$_2$O$_4$ inverse spinels exhibit shoulders on the A_{1g} mode [96, 97, 109]. A common interpretation of these shoulders is that the distinct AO$_6$ and BO$_6$ octahedral units within the inverse lattice create the two features. However, as Laguna-Bercero et al. point out, if this were the case, the
Figure 8. The Raman shifts of the A_{1g} mode of some (a) MgB$_2$O$_4$ and (b) ZnB$_2$O$_4$ spinels show a large, but similar dependence on the octahedral cation. The Raman spectrum of MgFe$_2$O$_4$ displays two possible A_{1g} modes.
ratio of intensities of these features should be proportional to the amount of inversion within the spinel [41], and this is not seen in any of the inverse spinels in Table 3. Fe$_3$O$_4$, although an inverse spinel, does not contain these dual A$_{1g}$ features. This may be attributed to fast electron hopping between the Fe$^{3+}$ and Fe$^{2+}$ cations occupying the octahedral sites [23, 51]. As a result, a valency of +2.5 is often quoted for the octahedral site of Fe$_3$O$_4$.

Laguna-Bercero et al. report that the A$_{1g}$ mode of NiAl$_2$O$_4$ contains more than two shoulders, and perform a fit using four peaks to the broad A$_{1g}$ mode [41]. They argue that modeling the mode as solely based on the two distinct octahedra is insufficient. Instead, they argue that the mode is due to the tetrahedra, but the octahedral cations neighboring the tetrahedra must also be accounted for. Because the Al and Ni cations randomly occupy these neighboring sites, there are several different configurations, which create the four components of the broad A$_{1g}$ mode.

In their study of NiAl$_2$O$_4$, Laguna-Bercero et al. report that the compilation of II-III spinel oxides show that the E_g mode is closely related to the bond distance between the octahedral cation and the oxygen [41]. Laguna-Bercero et al. report that the normal spinels have a slightly larger oxygen coordinate, u, than the inverse spinels, which leads to a large difference in the E_g mode of the inverse NiAl$_2$O$_4$ and normal MgAl$_2$O$_4$. Specifically, the longer bond distance of the inverse spinels leads to a smaller frequency of the E_g mode. Table 3 supports this claim, as the inverse ferrites all have lower, but similar E_g frequencies. The normal chromites, with the exception of CdCr$_2$O$_4$, also have similar E_g frequencies. The solid solutions studied in this work provide a good opportunity to examine this effect and the results will be presented in Chapter 8. Because structure is determined by x-ray diffraction, the bond distances can be determined directly from measurements of the lattice parameter, a, and the oxygen parameter u [42].
The $F_{2g}(1)$ mode of the inverse ferrites, if only a translation of the tetrahedral unit within the lattice, should not vary greatly. With the exception of Fe_3O_4, many of the ferrites do have a similar $F_{2g}(1)$ frequency. Interestingly, even the normal ZnFe_2O_4, has a similar $F_{2g}(1)$ mode.

Gasparov et al. reported small shifts in the A_{1g} and $F_{2g}(3)$ modes for Fe_3O_4 with small substitutions (1-4% by molar amount) of aluminum, nickel, and manganese [110]. One of their main conclusions was that the frequency of these two modes decreases as the ionic radius of the dopants increase. Work by Malavasi et al. on AMn_2O_4 ($\text{A} = \text{Mn, Mg, Zn}$) shows a decrease in wavenumber of one of their reported Raman-active modes upon an increase of the ionic radius [108]. Figure 9 plots the wavenumbers of the Raman-active modes from the literature versus the ionic radii (in pm) [111] for different chromites. The A_{1g}, E_g, and $F_{2g}(2)$ modes decrease in frequency with increasing ionic radius, but the decrease is entirely due to the Cd cation. The $F_{2g}(3)$ mode shows no dependence on the ionic radius, with or without the Cd data points.

The wavenumber of the spinel vibrational modes depend upon the lattice parameter of the spinel lattice. The lattice parameter of spinel decreases with increasing pressure [112]. Wang et al. has performed many studies of various spinels and reports that all of the detected vibrational modes increase with increasing pressure [47, 48, 95, 97, 98]. As the distance between the positive and negative cations gets smaller, the resulting electrostatic force will increase. The high pressure data on chromites presented by Sawaoka et al. shows that the volume of MgCr_2O_4 decreases by 5% as the pressure is increased to 8 GPa. [112] Wang et al. reports wavenumber increases of 2 to 4 cm$^{-1}$ per GPa for the Raman-active modes of MgCr_2O_4, NiCr_2O_4, and ZnCr_2O_4 [47, 48]. Combining these two changes, using

$$\frac{\Delta\nu}{\Delta V} = \frac{\Delta\nu}{\Delta P} \frac{\Delta P}{\Delta V},$$

(4.1)
Figure 9. The Raman frequencies of various chromites plotted versus the ionic radius of the tetrahedral cation.

yields an approximate increase in the Raman shift of 0.32 to 0.64 cm$^{-1}$ per 0.1% decrease in unit cell volume.

Experimental work on solid solution spinels

Although there has been a large amount of experimental work on pure spinels, solid solution spinel systems have not been examined to the same extent using vibrational spectroscopy. The relationship between the vibrational modes and cation substitution is complicated, as the vibrational modes can be dependent upon the mass of the cations, the bonding forces, and the ionic radii. All these variables change with
substitution of one cation with another.

Infrared absorption data exist on some spinel solid solutions. Preudhomme et al. studied zinc spinels, chromites, and rhodites, which are all normal spinels, using infrared spectroscopy [88]. They presented the dependence of the four infrared-active modes upon the methodical exchange of either the divalent or trivalent cation for the \(\text{Mg}_x\text{Co}_{1-x}\text{Cr}_2\text{O}_4 \) and \(\text{ZnCr}_x\text{Rh}_{2-x}\text{O}_4 \) series.

Basak and Ghose studied infrared spectra of three different substituted \(\text{CuCr}_2\text{O}_4 \) spinels [113]. Two of the solid solutions substituted the \(\text{Cu}^{2+} \) cation with \(\text{Mg}^{2+} \) and \(\text{Cd}^{2+} \). The third substituted \(\text{Cr}^{3+} \) with \(\text{Rh}^{3+} \). They report a broadening of the \(\nu_1 \), \(\nu_2 \), and \(\nu_3 \) modes for any lattice containing more than one atomic species of cation on either the tetrahedral or the octahedral site.

The two higher frequency infrared-active modes are often broad [88]. Preudhomme et al. instead refer to these two modes as regions of absorption as they notice distinct shoulders or even splitting of these modes. They provided evidence that, for the normal II-III spinels, these modes are dependent upon the trivalent octahedral cation. Preudhomme et al. also examined the infrared-active modes of different II-III spinels to test if the infrared-active modes depend upon the mass of the divalent or trivalent cation [88]. For the compiled infrared data on different chromites, \(\text{ACr}_2\text{O}_4 \) with \(A = \text{Mg}, \text{Zn}, \text{Co}, \text{Ni}, \text{Mn}, \text{and Cd} \), they concluded that the lower-frequency infrared-active modes have a small dependence on the mass of the divalent cation.

Work by Gupta et al. on mixed chalcogenides has shown good agreement for the infrared-active modes [73]. Sinha also observed agreement with measured higher-frequency infrared-active modes of the \(\text{Cu}_x\text{Mg}_{1-x}\text{Cr}_2\text{O}_4 \) series, although a third mode of lower frequency showed less agreement [77]. Himmrich et al. also performed calculations on \(\text{ZnCr}_2\text{O}_4 \) which showed good agreement with experimental infrared and Raman spectroscopic results [114].
Raman spectroscopic studies of solid solutions of spinels is less common than infrared absorption data. McCarty et al. studied the spinel system $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ [45] over the range of $1 \leq x \leq 3$. Only the A_{1g} mode was visible in all of their Raman spectra. They observed that the wavenumber of the A_{1g} mode is inversely proportional to the lattice parameter of the $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ system.

Nakagomi et al. studied the $\text{Mg}_x\text{Fe}_{3-x}\text{O}_4$ spinel system and reported two A_{1g} phonons that they suggest to result from coexisting MgO$_4$ and FeO$_4$ tetrahedrons [106]. They argue that the two-mode behavior results from the large mass difference of the Fe and Mg cations. They also conclude that the increased tetrahedral site, due to substituting Fe$^{3+}$ with Mg$^{2+}$, decreases the frequency of the vibrational modes.

Recently, Bahlawane et al. studied the cobalt-iron system $\text{Co}_{3-x}\text{Fe}_x\text{O}_4$ and reported the most significant effect on the A_{1g} mode during the initial substitution at the octahedral site of the spinel lattice, before the iron began entering the tetrahedral sites and inverting the lattice [115]. The A_{1g} mode developed a shoulder on the high-frequency side of the mode, once inversion of the lattice began occurring. The E_g mode suffered a smaller change, but this change was also observed during the initial substitution, before inversion of the lattice occurred.

Malézieux et al. studied the $\text{MgCr}_x\text{Al}_{2-x}\text{O}_4$ system by examining both natural and synthetic spinel samples [116]. The A_{1g} mode of their synthetic samples also shows an inverse relationship between the wavenumber of this mode and the lattice parameter. The lattice parameter increases linearly, while the position of the A_{1g} mode decreases linearly from 760 cm$^{-1}$ at the MgAl_2O_4 end of the series to 685 cm$^{-1}$ at the MgCr_2O_4 end. Malavasi et al. examined the tetragonally distorted $\text{Mg}_{1-x}\text{Mn}_x\text{Mn}_2\text{O}_4$ spinel system [108]. Their data also support the A_{1g} mode wavenumbers as inversely proportional to the lattice parameter of the spinel, although the shift in wavenumber of the Raman-active mode is only approximately 1%.
Identification of solid solutions in corrosion layers requires knowledge of the behavior of the vibrational modes over the entire range of composition. For example, Cunha et al. made the assumption that the Raman peaks of solid solutions could be fitted linearly between the two pure end-member spinels [24]. They wanted to identify unknown oxide layers on corroded 316L stainless steel and recognized that a solid solution spinel may be formed in the corrosion layer. They identified the inner oxide layer as a mixture of Fe$_3$O$_4$, FeCr$_2$O$_4$, and Cr$_2$O$_3$ [24]. They reported an outer oxide layer, consisting of Ni$_{0.75}$Fe$_{2.25}$O$_4$ inverse spinel, with Fe$_3$O$_4$ also forming in the intermediate layer. This identification of Ni$_{0.75}$Fe$_{2.25}$ will be inaccurate if the frequencies of the Raman-active modes do not shift linearly upon nickel substitution in Fe$_3$O$_4$.

Raman spectroscopic data are available in the literature for a number of pure AB$_2$O$_4$ spinels oxides, but certainly not all. However, Raman data of solid solutions is much more limited and fragmentary. In a solid solution of spinels, the wavenumber shifts in vibrational modes upon composition change are not known experimentally, or understood theoretically. Experimental data will be an invaluable asset for those checking models and calculations of the vibrational modes of spinel.

Trends noticed from the compiled data of the Raman-active vibrations of spinels can be examined from data on solid solutions. In addition, conclusions made by other researchers regarding the behavior of these modes can be tested for general application on all spinels.
CHAPTER 5

EXPERIMENTAL SETUP

Three series of solid solution spinel oxides were synthesized, in order to study the effect of cation substitution on the vibrational modes of spinel. A micro-Raman spectrometer was constructed for the purposes of this research and will be discussed in detail below. A Varian FTS FTIR spectrometer, fitted with a photoacoustic detector, was also used for taking complementary infrared-absorption spectra on the \(\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4 \) series. X-ray diffraction was performed on all samples using a Bruker AXS D8 Advance Vario diffractometer with a Johannson-type primary monochromator.

LBE-corroded stainless steels were obtained from the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia, on contract from Los Alamos National Lab. The compositions of the three stainless steels are shown in Table 4. 316L stainless steel is a stainless steel containing small amounts of carbon. D9 is a nuclear grade stainless steel containing small amounts of titanium to help reduce void swelling of the steel in a reactor environment [117]. Void swelling results from the neutron flux within a reactor displacing atoms within the stainless steel lattice, creating voids. HT9 stainless steel is a ferritic alloy which is common as cladding and structural components because of its high-temperature strength and radiation tolerance.

Samples of these stainless steels were exposed in a LBE loop at the IPPE at temperatures of 550°C for 1000, 2000, and 3000 hours. The oxygen concentration in the LBE was controlled and maintained at levels of \(10^{-6}\% \) by weight. The steel
samples were rods and hollow tubes of approximately 10 cm in length and 1 cm in diameter. Cross sections were cut from the steels and mounted in epoxy so that the corrosion layers could be better examined. Sample polishing was performed on the samples using increasingly smaller grit. The final polish was performed with a 5 µm diamond dust. Sample preparation was previously performed by Koury [60].

Spinel synthesis

Synthesis of the pure and solid solution spinels studied here closely follows a simple combustion method described by other researchers [118, 119]. In a 100 ml beaker, stoichiometric amounts of metal nitrates, purchased from Alfa Aesar and of 98% or greater purity, was mixed with urea and a small amount of water, just enough to dissolve the ingredients. The solution was then placed in a furnace set to a temperature of approximately 375°C for 15 to 20 minutes. In order to protect the inside of the furnace from contamination caused by the explosive combustion reaction, the 100 ml beaker was placed on top of another wide dish containing a small amount of quartz wool at the base. Another beaker was then placed upside down over the top of the 100 ml beaker. This setup allowed gases to escape from the reaction through the quartz wool, but also filtered any spinel from being expelled during the combustion. This multiple beaker setup can be seen in Figure 10.

The recipe for NiCr₂O₄ will serve as an example of the calculations necessary for the synthesis of the spinels. A redox reaction of nickel(II) nitrate, Ni(NO₃)₂·6H₂O,
Figure 10. The combustion synthesis was contained within a series of beakers and quartz wool. This setup was then placed and heated inside a furnace.

chromium(III) nitrate, Cr(NO$_3$)$_3$·9H$_2$O, and urea, CO(NH$_2$)$_2$ yields NiCr$_2$O$_4$, CO$_2$, N$_2$, oxygen, and water. The Ni$^{2+}$ and Cr$^{3+}$ remain at the same oxidation state, but the nitrogens in the nitrates change from +5 to 0, while the nitrogens in the urea change from −3 to 0. The carbon and hydrogen remain at +4 and +1, respectively. Thus, every nitrogen from the nitrate requires five electrons to change from +5 to 0.

\[
5e^- + NO_3^- \Rightarrow \frac{1}{2}N_2 + 3O^{2-} \quad (5.1)
\]

Every nitrogen from the urea gives up 3 electrons to change oxidation state from −3 to 0, for a total of 6 electrons from every urea molecule.

\[
3O^{2-} + CO(NH_2)_2 \Rightarrow CO_2 + N_2 + 2H_2O + 6e^- \quad (5.2)
\]

One Ni$^{2+}$ and two Cr$^{3+}$ ions are required for the spinel, indicating a total of 8 nitrogens from the metal nitrates. These 8 nitrogens require a total of 40 electrons to change to an oxidation state of 0, which are given up by $40/6 = 6.67$ molecules of urea. The
resulting mole ratio of nickel nitrate : chromium nitrate : urea is 1:2:6.67.

The actual weights of the compounds must be calculated using the molecular weights of the reagents, including the waters of hydration, as appropriate. The waters of hydration pass through the reaction without change. For NiCr$_2$O$_4$, 0.73 g of Ni(NO$_3$)$_2$·6H$_2$O, 2.00 g of Cr(NO$_3$)$_3$·9H$_2$O, and 1.00 g of urea are required to balance the stoichiometry. The reactions of any of the other spinels and solid solution spinels are essentially the same, since the number of nitrates do not change when different cations of the same charge are selected. Reagents for synthesis of all spinels were measured within 0.2% of the desired weight.

The combustion reaction produces a light, fragile foam that is easily crumbled into a powder. The foam product is shown in Figure 11. The chromium end spinels
produce a very light foam, whereas the iron end spinels are much more dense.

\[\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4 \] was synthesized using the above described method without need for any additional treatment to the samples. 22 samples of this series were synthesized, varying the magnesium content in increments of \(\Delta x = 0.1 \), and each composition being synthesized twice. The \(\text{NiFe}_x\text{Cr}_2-x\text{O}_4 \) and \(\text{Fe}_x\text{Cr}_{3-x}\text{O}_4 \) series required additional preparation to achieve the spinel phase for all samples within these two series.

On the high iron end of the \(\text{NiFe}_x\text{Cr}_2-x\text{O}_4 \) series, the combustion synthesis did not result in a high-crystalline spinel phase. XRD patterns of the as-synthesized samples contained broad and weak diffraction peaks. Ramalho et al. synthesized \(\text{NiFe}_2\text{O}_4 \) and calcined the powder at 700\(^\circ\)C for two hours after the combustion reaction [120]. The samples in this series were all heated to 700\(^\circ\)C for 12 hours in air immediately following the combustion synthesis. After this calcination, XRD patterns showed more intense and sharp diffraction patterns, characteristic of the spinel phase. A total of 22 different \(\text{NiFe}_x\text{Cr}_2-x\text{O}_4 \) samples over the entire range of \(0 < x < 2 \) were synthesized and calcined. The iron content was varied by 0.1 between each sample, with an additional sample having \(x = 0.05 \), to investigate only a small substitution of iron into the \(\text{NiCr}_2\text{O}_4 \) lattice.

The \(\text{Fe}_x\text{Cr}_{3-x}\text{O}_4 \) system also required additional preparation after the combustion process. Similar to the \(\text{NiFe}_x\text{Cr}_2-x\text{O}_4 \) series, acquired XRD spectra of these samples possessed only weak spinel phase diffraction peaks. As an example, Figure 12 displays the XRD spectrum of an \(\text{Fe}_x\text{Cr}_{3-x}\text{O}_4 \) sample with \(x = 2.2 \) immediately after the combustion reaction. Some samples also had crystallized with significant impurities of a corundum phase instead of being entirely spinel. The XRD spectrum of a sample of this series with \(x = 0.6 \) is shown in Figure 13. The peaks are characteristic of the corundum phase. This was not too surprising as \(\text{Fe}_3\text{O}_4 \) is known to oxidize to the \(\alpha\text{-Fe}_2\text{O}_3 \) at high temperature [1,121].
Figure 12. X-ray diffraction pattern of the as-combusted Fe$_{2.2}$Cr$_{0.8}$O$_4$. The diffraction spectra of many as-combusted Fe$_x$Cr$_{3-x}$O$_4$ samples were similar and exhibit very weak spectra.

A reduction environment was assembled to reduce the secondary phase within the as-combusted Fe$_x$Cr$_{3-x}$O$_4$ powders from the corundum phase to the spinel phase. In a reducing environment, the following reaction occurs, which converts corundum phase hematite into spinel phase magnetite:

$$6\text{Fe}_2\text{O}_3 \Rightarrow 4\text{Fe}_3\text{O}_4 + \text{O}_2$$ \hspace{1cm} (5.3)

This reaction can be performed using hydrogen gas, which removes oxygen from the corundum phase to produce water and the iron-chromium spinel.

A sketch of the apparatus making up the reducing furnace can be seen in Figure 14. A stainless steel guard tube, open at one end, was placed inside a Thermodyne 79300 vertical tube furnace. Inside this guard tube, a 2” diameter quartz tube was inserted,
Figure 13. The XRD patterns of some $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ samples were characteristic of the corundum phase, instead of the spinel phase, immediately after combustion.

also open at the top. The open end of the large quartz tube was covered with an attachment having two ports, to allow a reducing gas to flow in and out of the guard tube. For holding a small amount of the powder sample, a 0.25 in. quartz tube was sealed at one end, and a window was cut 1” from the end, where the powder could be stored. This quartz tube was slid into one of the ports on the top of the 2” quartz tube. The reducing gas was a mixture containing 2% H_2 and 98% argon. The gas flow was controlled at 20.0 sccm with a MKS Mass-Flo gas flow controller. The gas inlet was connected directly to the 0.25 in. quartz tube containing the sample. The window allowed gas to escape the quartz tube and eventually exit the system through the second port on the top piece. The temperature of the furnace was set to 700°C. The sample was allowed to reduce overnight and cooled to room temperature over a
Figure 14. Schematics of the reducing furnace. The Fe$_x$Cr$_{3-x}$O$_4$ series required heating to 700$^\circ$C in a reducing environment of a hydrogen and argon gas mixture. The sample was placed at the bottom of the quartz tube.

period of eight hours under gas flow.

The literature examines the iron content range of $1 \leq x \leq 3$ for Fe$_x$Cr$_{3-x}$O$_4$ [122–124]. This begins with FeCr$_2$O$_4$, where Fe$^{2+}$ occupies the tetrahedral position. From $1 \leq x \leq 3$, Fe$^{3+}$ is substituted for Cr$^{3+}$. Samples over the range of $0.8 \leq x \leq 3$, and in increments of 0.2, were synthesized and studied in this work.

X-ray diffraction

The Bruker D8 Advance diffractometer uses a copper source with K$_{\alpha_1}$ wavelength of 1.54063 Å. Scans were done over a 2θ range of 10 to 120 degrees with a step size
of 0.008 degrees. Acquisition time was four hours. Topas 4.2 software was used to fit the x-ray diffraction patterns using the Pearson VII peak function, an approximation of the Voigt function.

X-ray diffraction was performed on all synthesized samples to prove that the synthesis process actually produced the desired spinel phase. X-ray diffraction patterns were calibrated using a high-crystalline silicon standard. The silicon powder was mixed with the spinel powder in an approximate 1:5 weight ratio of silicon to spinel. The mixture was then mixed and ground in an agate mortar before being placed onto the sample stage. A few drops of alcohol were then added onto the powder to create a slurry that could be evenly spread across the surface of the sample stage. The alcohol does not react with any of the spinel samples. The Topas software was used for the analysis of the diffraction data and for determining the lattice parameters of the spinels. The silicon standard is exclusively fitted first to provide the calibration for the x-ray diffraction pattern. The x-ray diffraction pattern of silicon is well known [125]. The NIST-quoted positions of these lines using the Kα₁ radiation of copper are shown in Table 5.

The diffraction spectrum of spinel is very different than the spectrum of another common phase of metal oxides, the corundum phase, shown in Figure 13. A diffraction spectrum acquired with the Bruker diffractometer of Fe₁.₄Cr₁.₆O₄, containing the silicon standard used for calibration, is shown in Figure 15.

Typically, the XRD pattern of most of the samples showed that a very small amount of the crystalline sample, usually less than 3%, of the powder, existed as the corundum phase. The most likely product would be either Cr₂O₃ for the chromite samples and α-Fe₂O₃ for the ferrite samples, or a solid solution of α-Fe₂O₃ and Cr₂O₃.
Table 5. The XRD spectral lines of the silicon standard used for calibration.

<table>
<thead>
<tr>
<th>hkl</th>
<th>Angle (2θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>28.439</td>
</tr>
<tr>
<td>220</td>
<td>47.297</td>
</tr>
<tr>
<td>311</td>
<td>56.115</td>
</tr>
<tr>
<td>400</td>
<td>69.120</td>
</tr>
<tr>
<td>331</td>
<td>76.365</td>
</tr>
<tr>
<td>422</td>
<td>88.017</td>
</tr>
<tr>
<td>511</td>
<td>94.937</td>
</tr>
<tr>
<td>440</td>
<td>106.690</td>
</tr>
<tr>
<td>531</td>
<td>114.071</td>
</tr>
<tr>
<td>620</td>
<td>127.516</td>
</tr>
<tr>
<td>533</td>
<td>136.858</td>
</tr>
</tbody>
</table>

Determination of lattice parameters

Spinel is a cubic lattice, and thus only a single lattice parameter is required to define the dimensions of the unit cell. As described above, knowing the angle of the diffraction peaks for all of the Miller planes determines the lattice parameter a. Because each peak gives a value for the lattice parameter, an average can be calculated using all of the diffraction peaks from a diffraction spectrum. The Topas software uses the Rietveld refinement method to determine the lattice parameter of the crystal structure [55]. The oxygen parameter u was also refined during the process. The x-ray diffraction spectrum of MgCr$_2$O$_4$ with a silicon standard, the Rietveld fit and residual is shown in Figure 16.

Table 6 shows good agreement of the lattice parameters of the pure AB$_2$O$_4$ spinels synthesized in this work with values reported from literature. The weighted profile R-factors for refinements from all samples were usually between 1.0 and 3.0. The full results of the Rietveld refinements can be seen in Appendix A.
Figure 15. X-ray diffraction pattern of Fe_{1.4}Cr_{1.6}O_{4} spinel powder mixed with a high-crystalline silicon standard. The x-ray diffraction data is in black. The Rietveld fit and residual is in red and blue, respectively. Full Rietveld refinement results is located in Appendix A.

Infrared photoacoustic spectroscopy

Fourier transform infrared spectroscopy (FTIR) is a common technique used for measuring the infrared-active vibrational modes of a sample. Light from a broad spectrum infrared source is collimated and sent into an interferometer. The interferometer contains a beamsplitter that divides the light into two separate paths where one light path is reflected from a movable mirror. The other beam is reflected from a fixed mirror. A path length difference between the two beams creates an interference pattern when the beams recombine, which contains the intensity information of all wavelengths from the infrared source. A computer can then calculate the Fourier
Figure 16. X-ray diffraction pattern of MgCr$_2$O$_4$. The fit from the Rietveld refinement is shown in red and the residual is shown in blue. The R_{wp} for the fit is 2.90. Full Rietveld refinement results are located in Appendix A.

<table>
<thead>
<tr>
<th>Spinel</th>
<th>This work</th>
<th>literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCr$_2$O$_4$</td>
<td>8.3344(2)</td>
<td>8.3329(1) [52], 8.3341 [126]</td>
</tr>
<tr>
<td>NiCr$_2$O$_4$</td>
<td>8.3185(3)</td>
<td>8.3198 [127]</td>
</tr>
<tr>
<td>NiFe$_2$O$_4$</td>
<td>8.3389(2)</td>
<td>8.3391 [127]</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td>8.3771(2)</td>
<td>8.3765(2) [52]</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>8.3908(4)</td>
<td>8.398(1) [45]</td>
</tr>
</tbody>
</table>

Table 6. Lattice parameters of synthesized spinels. Full Rietveld refinement results are located in Appendix A.
transform of the detected signal to determine the intensities of all of the frequencies contained within the infrared light.

Photoacoustic spectroscopy is a method for measuring the infrared absorption of a sample by detecting induced heating within the sample. The induced heating creates thermal waves that transfer to a gas that fills the sample chamber. A microphone detects the acoustic waves from the gas.

Infrared data on the $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ series were acquired with a Varian FTS FTIR spectrometer equipped with a photoacoustic detector. The low frequency limit of the equipment is 375 cm$^{-1}$, above the lowest-frequency IR-active mode. Therefore, only three of the four infrared-active modes are reported for the $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ series.

Raman microscope

Raman microscope systems have the advantage of obtaining good spatial resolution by focusing to a spot size on the order of only a few micrometers using a focusing objective lens. However, lasers are intense sources of light, and this small spot size creates a very high power density on the sample, which can lead to significant sample heating. Heating of the sample results in broadening of the Raman-active modes, as well as shifts to lower frequencies, due to the vibrational modes of a heated sample requiring less energy to excite. This heating may also lead to oxidization of the sample.

The Raman microscope system was constructed specifically for use in the present work, and thus will be explained in detail. A simple diagram of the major components of the micro-Raman system is shown in Figure 17, and a picture of the laboratory setup is shown in Figure 18.

The excitation source is a Lexel RamanIon krypton ion laser tuned to 647.1 nm. The power output was most commonly set to a very low power of about 5 mW,
though the power was further reduced by neutral density filters, to prevent heating effects, as described above, that could lead to shifted Raman peaks or damaged samples. There is also access to a Spectra-Physics BeamLok argon ion laser tuned to 514.5 nm. This gives the option for an alternative excitation source if fluorescence or other problems arise with the krypton laser. For example, the fluorescence from the green-colored Cr$_2$O$_3$ powder due to excitation from the krypton ion laser overwhelmed the Raman spectrum. However, the excitation with the argon laser does not result in the fluorescence, and the Raman spectrum is easily detected from the background.

The laser light passes through a spatial filter containing a 10 µm pinhole, before being sent to the entrance port of a Nikon MM-40 Measuring Microscope. A beamsplitter with an anti-reflective coating on one side, to prevent interference from reflections at both the top and bottom surfaces, directs the light down through the microscope objective to be focused onto the sample. The objective also collects the scattered light from the sample, where the light travels back up through the beam-
Figure 18. Photograph of the micro-Raman spectrometer. The krypton ion laser is located underneath the optical table. The beam is directed up through the hole seen at the bottom right corner of the image.

A 50X objective was used for most data collection. In the event of sample heating, detected in the Fe\textsubscript{x}Cr\textsubscript{3−x}O\textsubscript{4} series by the appearance of Raman-active modes characteristic of the corundum phase, a 10X or 20X objective or neutral density filters were used to further cut down the power density. If used, the neutral density filters were placed between the spatial filter and the entrance port of the microscope. Alternatively, the sample could be left out of the field of focus to reduce the laser intensity. These methods reduce the intensity of the Raman signal and require longer acquisitions to compensate for the weak signal. Acquisition times of fifteen minutes were required for many samples.

An experiment was performed to determine the focused spot size of the laser
on the sample. The laser was focused through the 50X microscope objective onto a razorblade. The intensity of laser reflection was recorded as the razorblade was moved out of the beam path in 0.25 μm increments. The micrometer drive was only accurate down to 0.5 μm increments, so a simple lever arm was constructed to reduce the effective movement by a factor of two. This procedure was performed five times, giving a spot size of 3.3 ± 0.2 μm. Results from one of the trials can be seen in Figure 19.

The lowest power setting available to the krypton laser is approximately 5 mW. However, after passing through the spatial filter and beamsplitter within the microscope, only about 1 mW is incident upon the sample. Even with this low power, the focused laser spot leads to an intensity of approximately 25 W/mm², high enough to cause noticeable heating effects or thermal broadening on many samples. Two
neutral density filters could be placed in the beam path to further cut down the power to approximately 0.5 mW or 0.1 mW, if necessary. Most spectra were acquired with 0.5 mW of laser intensity at the sample. The Fe$_x$Cr$_{3-x}$O$_4$ series was especially sensitive to laser power, and the power was kept to 0.1 mW to prevent sample heating.

The microscope objective collects and collimates the scattered light. This light passes through the beamsplitter within the microscope and exits the upper port of the microscope, where it is directed to the monochromator. A double convex lens of focal length 45 mm focuses the light onto the entrance slit of a Horiba Jobin-Yvon Triax 550 monochromator. The monochromator contains a grating of 600 lines/mm and is blazed at a wavelength of 500 nm. The collimated light from the 50X objective has an approximate diameter of 2 mm at the 45 mm focal length lens. This setup adequately matches the 6.4 f-number of the monochromator to fill the mirrors within the monochromator. The f-number $f/#$ of an optical system is given by

$$f/# = \frac{f}{A},$$

where f is the focal length of the lens and A is the aperture diameter of the light.

A Princeton Instruments liquid nitrogen cooled Spec 10 CCD detector was used for photon counting. The temperature of the CCD was maintained at -120°C during data acquisition. The CCD has a width of 1340 pixels that must be manually calibrated for wavelength position.

A Kaiser Optical Systems, Inc. holographic notch filter was placed in the light path between the exit port of the microscope and the focusing lens into the monochromator to eliminate the intense Rayleigh scattered light, which would quickly saturate the detector, and hide any Raman-scattered light at small wavenumbers. The notch filter allows the monochromator to detect Raman-scattered photons as low as 100 cm$^{-1}$.

The microscope stage accommodates for a wide range of sample sizes. A large 1” thick sample is as easily accommodated as a microscope slide. The stage has
micrometer drives for three-axis motion. The standard oxide powders and synthesized spinel powders were placed on a microscope slide and put under the objective of the Raman microscope. The microscope has a viewport for visual inspection of focusing the laser upon the sample. This allows different spots on a sample to be inspected, such as the cross-section samples of the LBE-corroded stainless steels, where the different corrosion layers may give different Raman spectra.

Software and calibration

The WinSpec software used for data acquisition from the CCD can communicate with the detector, but cannot communicate with the monochromator. Separate software controls the grating within the monochromator, and allows a selected wavelength to be centered on the detector. However, the software does not know this position or the dispersion of the grating. Therefore, any time the grating position is adjusted, the spectral range falling on the detector must be calibrated. Calibration is achieved using a UVP brand neon pen-lamp. Neon has many emission lines in the 650-700 nm range [128], where Raman shifts from the 647.1 nm excitation source are located. This range of wavelengths corresponds to Raman shifts of approximately 50 to 1500 cm$^{-1}$. The neon spectral lines are fitted with a Gaussian profile. A new calibration is acquired every day, even if the grating was not moved from the previous day.

To check the accuracy of the calibration, the emission lines of argon visible at a grating position of 705 nm, were examined. The neon calibration spectrum, shown in Figure 20, was analyzed and used as a calibration for the argon spectrum, shown in Figure 21. As can be seen in Table 8, the agreement between these lines and literature is very good.

To check the precision of the calibration method, several neon spectra were ac-
Table 7. Neon emission lines used for calibration of spectrometer at grating positions of 670 nm and 700 nm [128].

<table>
<thead>
<tr>
<th>Neon lines (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>653.29</td>
</tr>
<tr>
<td>659.90</td>
</tr>
<tr>
<td>667.82</td>
</tr>
<tr>
<td>671.70</td>
</tr>
<tr>
<td>692.95</td>
</tr>
<tr>
<td>702.41</td>
</tr>
<tr>
<td>703.24</td>
</tr>
<tr>
<td>705.91</td>
</tr>
<tr>
<td>717.39</td>
</tr>
</tbody>
</table>

quired and fitted. During the course of a single day, five new neon calibration spectra were acquired without moving the grating within the monochromator. At the grating position of 670 nm, four neon lines are detected within the 1340 pixel width of the detector. The standard deviation of the positions of these lines is 0.6 pixels. These neon calibration spectra were then applied to a previously acquired α-Fe$_2$O$_3$ spectrum to check the variability in the Raman peak centers after WinSpec had performed a linear fit using data from each individual neon calibration. The standard deviation in the α-Fe$_2$O$_3$ Raman-active modes using the five different neon calibrations is 0.3 cm$^{-1}$. This is the same deviation arrived at for the uncalibrated system, because at this grating position, each pixel represents approximately 0.5 cm$^{-1}$.

Peak fitting

SeaSolve PeakFit software was used for fitting of all spectral peaks, to determine wavenumbers and intensities of spectral lines. The background is fitted with a third order polynomial and subtracted from the spectrum. The spectra are also cleaned of random noise spikes with the software. As phonons behave identically throughout
the crystal system, Raman peaks are fitted using Lorentzian profiles. Emission lines from the neon pen lamps were fitted with Gaussian line profiles, due to the thermal broadening of the heated neon gas within the lamp.

As an example of an extreme background subtraction, a raw spectrum of Cr$_2$O$_3$ using the krypton laser is shown in Figure 22. This spectrum has a large sloping background due to sample fluorescence from the 647.1 nm excitation line. The fluorescence is caused from the laser energy exciting an electronic level of Cr$_2$O$_3$ and emitting photons of longer wavelengths as the electrons relax to the ground state. The same spectrum, with a third order polynomial fitted to the background and subtracted, is shown in Figure 22. A random noise spike, that is also seen at low wavenumbers in the original spectrum, has also been removed with the program.
Figure 21. Argon spectrum at a grating position of 705 nm. The x-axis has been calibrated to the neon lines visible in this spectral range.

<table>
<thead>
<tr>
<th>This work</th>
<th>NIST [128]</th>
</tr>
</thead>
<tbody>
<tr>
<td>696.56(2)</td>
<td>696.54</td>
</tr>
<tr>
<td>703.02(8)</td>
<td>703.03</td>
</tr>
<tr>
<td>706.68(2)</td>
<td>706.72</td>
</tr>
<tr>
<td>714.70(2)</td>
<td>714.70</td>
</tr>
</tbody>
</table>

Table 8. Argon emission lines, in nm, measured in this work compared, to NIST spectral tables.
Error analysis

Raman data was acquired at several spots on all samples studied. Raman spectra were fit using the PeakFit software which calculates the standard error of the peak centers used in the fit. A weighted mean was calculated for the Raman shift of all modes of the synthesized solid solutions using the peak centers and uncertainties determined by PeakFit for all acquired spectra. The weighted mean is given by

\[x = \frac{\sum(x_i/\sigma_i^2)}{\sum(1/\sigma_i^2)}, \]

(5.5)

where \(x_i \) is the wavenumber of the mode from each fitted peak, and \(\sigma_i \) is the uncertainty in the position of each peak. The uncertainty of the peak center is calculated using the standard deviation of the average added in quadrature with the uncertainty of the weighted mean. This was done because the peak centers of any given composition were occasionally outside of the uncertainties reported by PeakFit.
Figure 22. (a) Using PeakFit, a third order polynomial has been fitted to the background and subtracted from the Raman spectrum of Cr$_2$O$_3$ acquired using the krypton laser as the excitation source. (b) The raw spectrum of Cr$_2$O$_3$ showing the fluorescence background resulting from the krypton laser.
OXIDE STANDARDS

Standards are used to confirm that the micro-Raman system is working properly as the vibrational spectra of common standards are well characterized, and acquired data can be compared to literature. Several powder oxide standards were purchased and studied with the Raman system developed in the present work. The α-Fe_2O_3, Fe_3O_4, and Cr_2O_3 powder standards are brand Alfa Aesar and are greater than 99.9% pure.

Hematite, α-Fe_2O_3

Hematite, α-Fe_2O_3, is the common culprit when iron rusts and erodes. The powder sample from Alfa Aesar is a red powder, and thus is a very strong Raman scatterer under the red 647.1 nm excitation source. Because of the strong Raman signal, α-Fe_2O_3 was often used as a quick signal check to verify that the Raman system was aligned and working properly.

The spectrum of α-Fe_2O_3, shown in Figure 23, is well known and will not be examined in detail [1]. However, the spectrum does give a good opportunity to recognize the resolution capabilities of the micro-Raman system. This spectrum was acquired at a very low laser power of 0.1 mW, achieved with neutral density filters. Without the neutral density filter, there is enough heating of the sample that thermal broadening makes the 291 and 298 cm$^{-1}$ modes difficult to resolve. In agreement with de Faria et al., the peak at approximately 295 cm$^{-1}$ is identified as a superposition of the 291 and 298 cm$^{-1}$ peaks. This peak resolved into two peaks is shown in Figure 24.
Figure 23. Raman spectrum of α-Fe$_2$O$_3$. The laser power at sample is approximately 0.1 mW. The red lines indicate the position of the intense α-Fe$_2$O$_3$ modes and will be used in other figures for reference.

The Raman spectrum of α-Fe$_2$O$_3$ is well known, and as evident from Table 9, there is very good agreement of the seven Raman-active modes between data acquired in this work and the literature [1].

Magnetite, Fe$_3$O$_4$

Magnetite is an inverse spinel structured oxide, containing both Fe$^{3+}$ and Fe$^{2+}$ cations. The inversion indicates that the Fe$^{3+}$ cations occupy the tetrahedral and half of the octahedral sites, whereas the Fe$^{2+}$ iron cations occupy the remaining octahedral sites. The formula for magnetite is occasionally written as Fe$^{3+}$,(Fe$^{2+}$Fe$^{3+}$)O$_4$, where the parentheses represent equal occupancy of the octahedral site by the divalent and trivalent iron. The extra electron on the octahedral site can move around and thus
Figure 24. The two α-Fe$_2$O$_3$ modes at 291 and 298 cm$^{-1}$ can be fit accurately with two peaks using PeakFit.

<table>
<thead>
<tr>
<th>This work</th>
<th>de Faria et al. [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>226.0(3)</td>
<td>226.7</td>
</tr>
<tr>
<td>245.4(4)</td>
<td>245.7</td>
</tr>
<tr>
<td>291.8(3)</td>
<td>292.5</td>
</tr>
<tr>
<td>298.6(3)</td>
<td>299.3</td>
</tr>
<tr>
<td>410.8(3)</td>
<td>410.9</td>
</tr>
<tr>
<td>498.5(5)</td>
<td>497.1</td>
</tr>
<tr>
<td>612.8(4)</td>
<td>611.9</td>
</tr>
</tbody>
</table>

Table 9. Raman-active phonons, in cm$^{-1}$, of α-Fe$_2$O$_3$ compared to literature.
a valency of +2.5 is occasionally stated for the average valency of the iron occupying the octahedral site.

A Raman spectrum of Fe₃O₄ is shown in Figure 25. The Raman spectrum of Fe₃O₄ is also relatively well known, though there is no universal acceptance for the wavenumbers of the lower frequency modes, as evidenced in Table 10. Most of the literature reports a large peak around 670 cm⁻¹ as the A₁g phonon. This peak is easily observed with the Raman microscope in this experiment. Intensities of the other phonons are very weak, and only the E₉ and F₂g(3) phonons were detected in the present work.

Fe₃O₄ easily oxidizes into α-Fe₂O₃ upon heating in air, which has been reported numerous times [1,51,121,129]. The effect is easily observed with our Raman system,
This work	[45]	[1]	[51]
$F_{2g}(1)$ | - | - | 193
E_g | 295(2) | - | 301.6 306
$F_{2g}(3)$ | 531(2) | 542 | 533.6 538
A_{1g} | 667(1) | 671 | 662.7 668

Table 10. Raman-active phonons of Fe$_3$O$_4$, in cm$^{-1}$, compared to literature.

as shown in Figure 26. Increasing the laser power that illuminates a sample of pure Fe$_3$O$_4$ powder begins to show α-Fe$_2$O$_3$ modes in the Raman spectra above approximately 1 mW of laser power. The peaks shift to lower wavenumbers with increasing temperature resulting from the increasing laser power. Also, a visible red-colored spot appears on the black-colored magnetite sample where the laser is incident on the powder. The oxidation to α-Fe$_2$O$_3$ is permanent; lowering the laser power does not cause the sample to revert to Fe$_3$O$_4$.

Fe$_3$O$_4$ does not immediately transition to α-Fe$_2$O$_3$. The literature reports an intermediate transition through maghemite, γ-Fe$_2$O$_3$ [1]. γ-Fe$_2$O$_3$ also crystallizes into the spinel structure containing only Fe$^{3+}$, with 1/6 of the octahedral sites vacant [129, 130]. The Raman spectrum of maghemite has three broad features located at 350, 500, and 700 cm$^{-1}$ [1, 67, 131] and is easily recognized in Figure 26.

The temperature at which these conversions occur is only a few hundred degrees above room temperature. The literature differs slightly on the exact temperature. De Faria et al. reports that the conversion of magnetite to maghemite occurs at approximately 200°C, and the subsequent conversion to hematite occurs at 400°C [1]. Shebanova et al. studied magnetite at increasing laser powers and report that the hematite conversion began at 300°C, but did not report an intermediate γ-Fe$_2$O$_3$ phase [121].
Figure 26. Raman spectra of Fe$_3$O$_4$ as a function of increasing laser power from the krypton ion laser. γ-Fe$_2$O$_3$ features appear just before the α-Fe$_2$O$_3$ features dominate the spectrum, indicating permanent conversion to α-Fe$_2$O$_3$. In the top spectrum, (H) marks α-Fe$_2$O$_3$ modes and (M) marks the only visible Fe$_3$O$_4$ mode.

Spectra acquired from a single spot on Fe$_3$O$_4$ powder, taken as a function of increasing laser power, can be seen in Figure 26. The broad maghemitite features appear just before the intense hematite modes dominate the spectrum. The permanence of the conversion is evident. The Raman spectrum is still characteristic of hematite after lowering the laser power back to the original low power, as evident in the top spectrum of Figure 26. Nevertheless, the sample is not completely converted. The main A$_{1g}$ peak of the Fe$_3$O$_4$ powder is still visible in all spectra.

The A$_{1g}$ mode of the intermediate γ-Fe$_2$O$_3$ phase was fitted with two peaks, to represent the occupied and unoccupied octahedral sites. The low-frequency side of the mode has a frequency of 669 cm$^{-1}$, in agreement with the A$_{1g}$ mode of Fe$_3$O$_4$.
which would represent the octahedral sites occupied by iron. The high-frequency side of the mode is located at 710 cm\(^{-1}\), in agreement with Boucherit et al., who also report 710 cm\(^{-1}\) for the high-frequency side of this mode [67]. This may be evidence of this shoulder of the A\(_{1g}\) mode being due to vacancies on some of the octahedral sites.

Chromium oxide, Cr\(_2\)O\(_3\)

The green chromium oxide powder, Cr\(_2\)O\(_3\), also has a well characterized Raman spectrum [44]. The powder fluoresces under the red 647.1 nm excitation source and the large amount of longer wavelengths emitted from the fluorescence creates a large background that overwhelms the Raman spectrum, as shown previously in Figure 22. This motivated the use of the argon ion laser, tuned to 514.5 nm. The spectrum is seen in Figure 27, demonstrating that the use of the green excitation source eliminated the fluorescence background from the Raman spectrum of Cr\(_2\)O\(_3\). The Cr\(_2\)O\(_3\) lines detected with both the krypton laser (Figure 22) and argon laser (Figure 27) agree well with the literature, as seen in Table 11.

<table>
<thead>
<tr>
<th>647.1 nm</th>
<th>514.5 nm</th>
<th>Mougin et al. [44]</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>310</td>
<td>296.3</td>
</tr>
<tr>
<td>353</td>
<td>351</td>
<td>350.4</td>
</tr>
<tr>
<td>530</td>
<td>531</td>
<td>528.5</td>
</tr>
<tr>
<td>556</td>
<td>552</td>
<td>554.2</td>
</tr>
<tr>
<td>617</td>
<td>609</td>
<td>615.0</td>
</tr>
</tbody>
</table>

Table 11. Raman-active phonons, in cm\(^{-1}\), of Cr\(_2\)O\(_3\), acquired with the krypton (647.1 nm) and argon (514.5 nm) lasers, compared to literature.
Figure 27. Raman spectrum of Cr$_2$O$_3$ taken with the 514.5 nm emission line of an argon laser. The green lines represent the positions of Cr$_2$O$_3$ Raman-active modes and will be used in other figures for reference.
CHAPTER 7

CHROMITES & FERRITES

All of the spinels synthesized and studied in the present work are II-III spinels, having +2 and +3 cations occupying the tetrahedral and octahedral sites of the lattice. The lattice parameters of all synthesized AB_2O_4 spinels, determined from the x-ray diffraction data, are shown in Table 6 and agree well with the literature. Full Rietveld refinement results are shown in Appendix A.

FeCr_2O_4

Iron chromite, FeCr_2O_4, is a normal spinel, with Fe^{2+} occupying all of the tetrahedral sites of the lattice. FeCr_2O_4 is a very common element within the Earth, and it is surprising that little Raman data exists on this mineral in its pure form. Existing data is often from natural chromite ore samples containing magnesium and aluminum impurities. The Raman-active modes from different studies are listed in Table 12. FeCr_2O_4 from the present study is also included. The FeCr_2O_4 data from Wang et al. is obtained from a sample that contains 3.5% Al_2O_3 by weight, and 8% Mg in the tetrahedral sites [9]. The meteorite sample from Chen et al. contains approximately 2.5% MgO, 3% TiO_2, and 6% Al_2O_3, by weight percent [19]. McCarty et al. only assign the intense peak at 686 cm$^{-1}$ as the A_{1g} mode [45].

The Raman spectrum of FeCr_2O_4 can be seen in Figure 28. The spectrum is very similar to the Raman spectrum of Fe_3O_4. Only two modes are intense enough to be distinguished from the background noise. The A_{1g} phonon is located at 678 cm$^{-1}$, greater than the A_{1g} position of Fe_3O_4, located at 667 cm$^{-1}$.
Table 12. Raman-active phonons, in cm$^{-1}$, of FeCr$_2$O$_4$ compared to literature.

<table>
<thead>
<tr>
<th></th>
<th>This Work</th>
<th>[45]</th>
<th>[9]</th>
<th>[19]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{2g}(3)$</td>
<td>531(1)</td>
<td>522</td>
<td>500</td>
<td>595</td>
</tr>
<tr>
<td>shoulder</td>
<td>635(2)</td>
<td>639</td>
<td>631</td>
<td></td>
</tr>
<tr>
<td>A_{1g}</td>
<td>678(1)</td>
<td>686</td>
<td>684</td>
<td>677</td>
</tr>
</tbody>
</table>

Figure 28. Raman spectrum of FeCr$_2$O$_4$.

80
Magnesium chromite, \(\text{MgCr}_2\text{O}_4 \), is also a normal spinel. The x-ray diffraction spectrum of \(\text{MgCr}_2\text{O}_4 \), characteristic of all of the spinels, can be seen in Figure 29. The synthesized spinel contains less than 2\% corundum phase impurity. Four out of the five predicted Raman-active modes, reported by Wang et al. [48], are detected. These detected modes of \(\text{MgCr}_2\text{O}_4 \) are shown in Figure 30, and agree well with the literature [48].

Acquired spectra from multiple spots on the sample demonstrated nonuniformity: two additional modes were detected in some of the spectra, as shown in Figure 30(a). Wang et al. suggest that the 361.9 and 792.1 cm\(^{-1}\) features they detected may be due to partial inversion of the \(\text{Mg}^{2+} \) and \(\text{Cr}^{3+} \) cations [48]. Cation disorder has often
Figure 30. Two different Raman spectra of MgCr$_2$O$_4$: one (a) with additional Raman-active mode, and (b) after heating the sample to 700°C for 24 hrs, the extra modes are not detected. The green reference lines indicate the wavenumbers of the Raman-active modes of Cr$_2$O$_3$.

been attributed as the cause of the extra features in the Raman spectrum of MgAl$_2$O$_4$ spinel [2,7,40]. The second additional feature is a shoulder on the high-frequency side of the $F_{2g}(2)$ mode. This shoulder was detected in all spectra showing the 351 cm$^{-1}$ feature, indicating that they are due to the same phenomenon. This phonon was not reported by Wang et al. in their work [48]. The wavenumbers of these additional modes match very well with the spectrum of Cr$_2$O$_3$, and are indicated by the green lines in Figure 30. The additional features are removed after heating the sample to 700°C for a period of 24 hrs and all spectra acquired from different spots on the sample then resemble Figure 30(b).

Extra phonons in the Raman spectra of MgAl$_2$O$_4$ have been previously attributed
Table 13. Raman-active phonons of MgCr$_2$O$_4$ compared to literature.

<table>
<thead>
<tr>
<th>This work</th>
<th>Wang et al. [48]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>226.5</td>
</tr>
<tr>
<td>350(2)</td>
<td>361.9</td>
</tr>
<tr>
<td>446(1)</td>
<td>446.9</td>
</tr>
<tr>
<td>542(1)</td>
<td>544.1</td>
</tr>
<tr>
<td>612(1)</td>
<td>614.1</td>
</tr>
<tr>
<td>685(1)</td>
<td>686.8</td>
</tr>
<tr>
<td>-</td>
<td>792.1</td>
</tr>
</tbody>
</table>

to cation inversion [2, 7, 40]. However, work by Cynn et al. who show that the cation disorder occurs in natural spinels after increasing the temperature to 1200K and remains so after quenching [7]. Because no additional features appear after heating the sample to 700°C, the extra modes are probably not a result of cation disorder, and instead due to the small amount, roughly 3%, of Cr$_2$O$_3$ detected in the sample by x-ray diffraction.

The Raman-active mode reported by Wang et al. at 226.5 cm$^{-1}$ [48] was not detected in the spectrum of pure MgCr$_2$O$_4$ acquired in this study. The feature is probably too weak to be distinguished from the background, since Wang et al. also show a very weak intensity for this mode [48]. Evidence that a feature exist in this area is supported by examining the entire Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ series, presented in the next chapter, and noticing that the lowest F$_{2g}$(1) mode increases from 190 cm$^{-1}$ at $x = 0$ to 210 cm$^{-1}$ at $x = 0.9$. This F$_{2g}$(1) mode decreases in intensity as the magnesium content is increased.

NiCr$_2$O$_4$

NiCr$_2$O$_4$ undergoes a first order phase transition to spinel at approximately 310 K from the tetragonal space group $I4_1/amd$ [132–134]. This is due to a Jahn-Teller di-
tortion of the Ni$^{2+}$ tetrahedron [54]. As Dunitz et al. report, the Jahn-Teller distortion exists above the 310 K, but the random orientation of the distortion within the spinel lattice makes the lattice appear statistically as spinel phase [54]. Only below the transition temperature does the lattice become ordered enough to identify the tetragonal distortion. As the transition temperature is very close to room temperature, XRD data reflects the presence of the tetragonal NiCr$_2$O$_4$ phase.

Wojtowicz reported the coexistence of cubic and tetragonal phases of NiCr$_2$O$_4$ between 27°C and 34°C [134]. At 27°C, the c/a ratio of the tetragonal phase is 1.022, and never decreases below 1.016 within the phase transition temperature range.

Several NiCr$_2$O$_4$ samples were synthesized and treated differently following the combustion synthesis. Several samples were left untreated following the combustion. Two samples were heated in air: one was heated to a temperatures of 400°C, the other heated to 700°C. One sample was cooled to -10°C by placing it into a common freezer for 48 hrs. Another sample was placed into the reducing environment of flowing hydrogen and argon gas at a temperature of 500°C for 24 hrs, as detailed in the synthesis section. X-ray diffraction was performed on all of these samples and repeated on some of the untreated samples. Both the spinel and tetragonal phases are detected in all samples in varying amounts. Performing a Rietveld refinement with only the $I4_1/amd$ or spinel phase results in a very poor fit compared to the refinement using both cubic and tetragonal phases. Repeated data on untreated samples showed inconsistent ratios between cubic and tetragonal NiCr$_2$O$_4$. This may be a result of fluctuating temperatures within the XRD laboratory. The temperature of the room is controlled by the air conditioning unit of the room. The temperature of the samples in the Bruker instrument was not measured by the instrument. It is also possible that the grinding the powder for preparation may trigger the tetragonal transformation. Full Rietveld refinement results on the NiCr$_2$O$_4$ samples is shown in Appendix A.
Figure 31. Diffraction spectrum of NiCr$_2$O$_4$ heated to 700°C in air. A smaller angle selection is shown to emphasize the splitting of the NiCr$_2$O$_4$ diffraction peaks, which is due to the presence of tetragonal phase NiCr$_2$O$_4$, in addition to the spinel phase.

The diffraction spectrum of NiCr$_2$O$_4$ heated to 700°C in air can be seen in Figure 31, which is characteristic of all NiCr$_2$O$_4$ samples. The samples were fitted with both spinel and tetragonal phases within the powder samples, indicating varying ratios of spinel to tetragonal phase present. However, the lattice parameters are consistent among the different samples and agree well with the literature. Table 14 displays some of the prepared NiCr$_2$O$_4$ samples compared to previous work.

The c/a ratio for the tetragonal phase of all samples is between 1.022 and 1.016, lending support to the hypothesis that the samples are within the two-phase region of the transition range. During this two-phase regime, there should be a correlation between the amount of cubic and tetragonal phases, and the c/a ratio of the tetragonal
Table 14. Lattice parameters of cubic and tetragonal NiCr$_2$O$_4$. The first two are values reported from the literature [127, 132] while the latter three are samples from the present work.

<table>
<thead>
<tr>
<th></th>
<th>lattice parameter (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spinel</td>
</tr>
<tr>
<td>Crottax et al. [132]</td>
<td>a = 8.3155(7)</td>
</tr>
<tr>
<td></td>
<td>c = 8.4301(6)</td>
</tr>
<tr>
<td>Ziemniak et al. [127]</td>
<td>a = 8.3186</td>
</tr>
<tr>
<td></td>
<td>c = 8.4337</td>
</tr>
<tr>
<td>Untreated sample</td>
<td>a = 8.3178(3)</td>
</tr>
<tr>
<td></td>
<td>c = 8.4275(4)</td>
</tr>
<tr>
<td>Cooled to -10°C for 48 hrs</td>
<td>a = 8.3185(3)</td>
</tr>
<tr>
<td></td>
<td>c = 8.4329(4)</td>
</tr>
<tr>
<td>Reduced at 500°C for 24hrs</td>
<td>a = 8.3189(3)</td>
</tr>
<tr>
<td></td>
<td>c = 8.4290(5)</td>
</tr>
</tbody>
</table>

Figure 32 plots the c/a ratio versus the ratio of the amount of cubic phase to tetragonal phase. The correlation is not strong, but is consistent with a decreasing c/a ratio as the proportion of spinel phase NiCr$_2$O$_4$ increases. The uncertainties of each ratio were calculated by summing the individual percent uncertainties of a and c in quadrature.

The introduction of another cation into the tetrahedral position of the lattice, such as Fe$^{3+}$ or Mg$^{2+}$, removes the Jahn-Teller distortion at this temperature. No XRD spectra on Mg$_{0.1}$Ni$_{0.9}$Cr$_2$O$_4$ or NiFe$_{0.05}$Cr$_{1.95}$O$_4$ exhibited the tetragonal distortion, and instead resemble the x-ray diffraction spectrum shown in Figure 29.

The Raman spectrum of NiCr$_2$O$_4$ is shown in Figure 33. Four of the five Raman lines predicted for spinel are detected here. The E_g and $F_{2g}(2)$ modes agree well with the spectrum reported by Wang et al. [47], shown in Table 15. There is a small deviation to smaller wavenumber for the $F_{2g}(1)$ and A_{1g} modes. The $F_{2g}(3)$ mode was too weak to be distinguished from the background. Wang et al. locate this mode
Figure 32. c/a ratio of tetragonal phase NiCr$_2$O$_4$ as the amount of cubic phase increases. A line is drawn as a rough guide for the eye.

at a Raman shift of 580 cm$^{-1}$.

NiFe$_2$O$_4$

NiFe$_2$O$_4$ is an inverse spinel, with the tetrahedral sites completely filled with Fe$^{3+}$, and the octahedral sites occupied in equal molar amounts by the remaining Fe$^{3+}$ and Ni$^{2+}$ cations. This inversion occurs because nickel has a higher preference for the octahedral sites than iron [50]. The Raman spectrum of NiFe$_2$O$_4$ is shown in Figure 34 and agrees well with the literature [64]. The F$_{2g}$(2), F$_{2g}$(3), and A$_{1g}$ modes all have shoulders. Graves et al. examined a single crystal sample of NiFe$_2$O$_4$ to identify the character of some of these shoulders [109]. They assigned the low-frequency shoulder of the A$_{1g}$ mode as having E$_g$ character and the low-frequency
Figure 33. Raman spectrum of NiCr$_2$O$_4$.

<table>
<thead>
<tr>
<th>NiCr$_2$O$_4$</th>
<th>This work</th>
<th>Wang et al. [47]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{2g}(1)</td>
<td>191(1)</td>
<td>181</td>
</tr>
<tr>
<td>E_g</td>
<td>429(1)</td>
<td>425</td>
</tr>
<tr>
<td>F_{2g}(2)</td>
<td>508(1)</td>
<td>511</td>
</tr>
<tr>
<td>F_{2g}(3)</td>
<td>-</td>
<td>580</td>
</tr>
<tr>
<td>A_{1g}</td>
<td>676(2)</td>
<td>686</td>
</tr>
</tbody>
</table>

Table 15. Raman-active phonons of NiCr$_2$O$_4$ compared to literature.
Figure 34. Raman spectrum of NiFe$_2$O$_4$.

shoulder of the $F_{2g}(3)$ mode as having A_{1g} character. The position of the Raman lines and shoulders can be seen in Table 16.

A possible explanation of these extra modes is the inversion of the NiFe$_2$O$_4$ lattice. The existence of both Fe$^{3+}$ and Ni$^{2+}$ occupying the octahedral sites leads to separate vibrational frequencies for the NiO$_6$ and FeO$_6$ octahedra. The A_{1g} mode of LiMn$_2$O$_4$ has a similar structure as NiFe$_2$O$_4$, which Hwang et al. attribute to the presence of Mn$^{3+}$O$_6$ and Mn$^{4+}$O$_6$ [90]. These additional modes will be examined further in the discussion on NiFe$_x$Cr$_{2-x}$O$_4$.

89
<table>
<thead>
<tr>
<th>NiFe$_2$O$_4$</th>
<th>This Work</th>
<th>Kim et al. [64]</th>
<th>Graves et al. [109]</th>
</tr>
</thead>
<tbody>
<tr>
<td>shoulder</td>
<td>189(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F$_{2g}$(1)</td>
<td>211(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E$_g$</td>
<td>333(1)</td>
<td></td>
<td>339</td>
</tr>
<tr>
<td>shoulder</td>
<td>456(1)</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>F$_{2g}$(2)</td>
<td>487(1)</td>
<td>492</td>
<td>490</td>
</tr>
<tr>
<td>shoulder</td>
<td>568(1)</td>
<td>574</td>
<td>579 (A_{1g})</td>
</tr>
<tr>
<td>F$_{2g}$(3)</td>
<td>590(1)</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>shoulder</td>
<td>663(2)</td>
<td>654</td>
<td>666 (E_g)</td>
</tr>
<tr>
<td>A_{1g}</td>
<td>704(1)</td>
<td>702</td>
<td>700</td>
</tr>
</tbody>
</table>

Table 16. NiFe$_2$O$_4$ Raman-active phonons compared to literature.
CHAPTER 8

SOLID SOLUTION SPINELS

A solid solution assumes substitution on the octahedral or tetrahedral sites with a different cation species. This is very different than a simple mixture of the two end-member crystals. The solid solutions synthesized from the combustion reaction must be tested whether or not the solid solution is actually formed, or if only a heterogeneous mixture of two pure spinels is created. This was directly tested using the NiFe$_x$Cr$_{2-x}$O$_4$ system. Pure NiCr$_2$O$_4$ and NiFe$_2$O$_4$ were mixed in a 3:1 ratio and compared to NiFe$_x$Cr$_{2-x}$O$_4$ with $x = 0.5$. Raman spectra of each sample are shown in Figure 35 and show that the mixture is a sum of the two pure spinels NiCr$_2$O$_4$ and NiFe$_2$O$_4$. Lines from both pure NiCr$_2$O$_4$ and NiFe$_2$O$_4$ are present in the spectrum. Summation of the two individual spectra of NiCr$_2$O$_4$ and NiFe$_2$O$_4$ does not result in the same spectrum as the solid solution sample.

Cunha et al. assumed a linear change in phonon frequency for the different mixed oxides as the Ni$^{2+}$ cation is substituted for Fe$^{2+}$ in the Ni$_x$Fe$_{3-x}$O$_4$ system [24]. The Raman spectra of pure spinels are well known in the literature, but complete vibrational data is lacking for many of these mixed metal oxides. As will be seen from data presented in this chapter, the change in wavenumber of the Raman-active vibrations is not necessarily linear for these mixed spinels as cation content is varied.

$\text{Mg}_x\text{Ni}_1-x\text{Cr}_2\text{O}_4$

Both MgCr$_2$O$_4$ and NiCr$_2$O$_4$ are normal spinels. The Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ series provides a good opportunity to examine how the vibrational modes of a normal II-III
spinel are affected as only the divalent cation is exchanged from nickel to magnesium. The octahedral position is occupied by the trivalent chromium cation for all \(x \) in the series. Nickel has a significantly larger mass than magnesium. Therefore, from a simple mass on a spring model, substitution of the nickel atoms with the lighter magnesium atoms should lead to higher vibrational frequencies.

All samples of the Mg\(_x\)Ni\(_{1-x}\)Cr\(_2\)O\(_4\) series were synthesized twice to confirm consistency of the synthesis method. The lattice parameters from both sets of synthesized samples are consistent and increase as nickel is substituted by magnesium. This increase in the lattice parameter, shown in Figure 36, deviates from linear, given (in Ångstroms) by: \(y = 8.31882(9) + 0.02054(4)x - 0.00506(4)x^2 \), where \(x \) is the amount...
Figure 36. Lattice constants of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$. The dashed line represents a linear guide for the eye.

of magnesium in Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$. The numbers in the parentheses represent the error in the last digit.

The Raman spectra of the Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ series can be seen in Figure 37. All Raman-active modes are detected, though some modes are very weak and difficult to distinguish from background noise across the entire series. The highest-frequency $F_{2g}(3)$ mode is undetected in NiCr$_2$O$_4$ and only appears in the high chromium end of the series, emerging at a magnesium content of $x = 0.9$, and with a wavenumber of 611 cm$^{-1}$ in the pure MgCr$_2$O$_4$ sample. Wang et al. report this mode to be located at 580 cm$^{-1}$ for pure NiCr$_2$O$_4$ [47].

The wavenumbers of all Raman-active modes, and of the infrared-active ν_3 mode, of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ are plotted versus magnesium composition in Figure 38. All
Raman-active modes display an increase in wavenumber as the nickel cation is replaced with magnesium. The wavenumber of the \(F_{2g}(2) \) mode increases fairly linearly. However, the \(E_g \) and \(F_{2g}(1) \) modes exhibit nonlinear behavior. Only a small increase in wavenumber occurs until approximately \(x = 0.6 \). Above this iron content, the wavenumbers of the modes increase to the wavenumbers of the end member \(\text{MgCr}_2\text{O}_4 \), \(x = 1 \). The increase in wavenumber of the \(F_{2g}(1) \) mode is discontinuous at \(x = 0.6 \).

The largest overall change in Raman phonon frequencies is found from the lower-frequency modes, \(F_{2g}(1) \), \(E_g \), and \(F_{2g}(2) \), with respective percent changes of 8.4%, 4.0%, and 6.6%. In contrast, the \(A_{1g} \) mode only changed by 1.1%. This supports the claim put forth by Preudhomme et al. that the high-frequency phonons have a
Figure 38. Vibrational mode peak positions of Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$.

stronger dependence on the octahedral cations and the lower frequency vibrations depend more strongly upon the tetrahedral cations [88]. Exchanging the octahedral cation, as in the MgCr$_x$Al$_{2-x}$O$_4$ series studied by Malézieux et al., shows an 11% increase in the A$_{1g}$ mode [116].

The F$_{2g}$(2) mode, located in the 500-550 cm$^{-1}$ range, has a slight dependence on the tetrahedral cation. However, this mode is reported to be located at 492 cm$^{-1}$ for MgAl$_2$O$_4$ [87]. This is a 10% shift from the peak position in MgCr$_2$O$_4$, again showing a greater dependence on the octahedral cation.
The E_g mode of $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ changes by 4% upon magnesium substitution. Malézieux et al. show that MgAl_2O_4 exhibits a larger dependence on the octahedral cation with an increase of about 7% in the frequency of this mode [116]. Gupta et al. calculate an expression for the E_g mode that shows negligible dependence on the force constant of the oxygens bonded to the tetrahedral cation [135]. Laguna-Bercero et al. argue that the E_g mode is strongly correlated with the bond distance of the oxygen atoms bonded to the octahedral cations and that the decrease in the E_g position of NiAl_2O_4 is due to a longer B-O bond [41]. These two ideas suggest that substitution of the tetrahedral cation should have little influence upon the wavenumber of the E_g mode. The B-O bond distance can be calculated using the a and u parameters of the spinel lattice from Equation 2.2 [42]. This bond distance is shown in Figure 39 for the $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ series. In contrast to what Laguna-Bercero et al. argue for NiAl_2O_4, the B-O bond distance increases as the magnesium content increases, corresponding with an increase in the E_g mode. The B-O bond distance increase is relatively linear, unlike the increase in wavenumber of the E_g mode, which dramatically increases at $x = 0.7$.

As previously stated, most literature suggests that the $F_{2g}(1)$ mode is a translational motion of the entire tetrahedral AO_4 unit within the lattice [8, 79, 114]. Our data support the view that this vibration involves the tetrahedral cation, as this mode shows the largest percent change in wavenumber of all Raman-active modes. However, the change is not linear. There is only a small change in the wavenumber of this mode up until a magnesium content of $x = 0.6$.

Three of the four IR bands can be seen in the spectra of the $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ series, shown in Figure 40. Preudhomme et al. report IR bands for numerous normal II-III spinels [88]. The ν_3 position of MgCr_2O_4 and NiCr_2O_4 agrees well with their reported values, 430 and 374 cm$^{-1}$, respectively. Our data shows a MgCr_2O_4 peak
at 429 cm\(^{-1}\). Because the IR data is limited to a lowest frequency of 375 cm\(^{-1}\), this peak is not completely visible. However, because the high frequency side of the peak is visible, and in view of the general trend of the peak with increasing magnesium content, this data is consistent with other work at the pure NiCr\(_2\)O\(_4\) end. Using this assumption, the frequency of the \(\nu_3\) mode increases approximately 15\%. This supports the common assignment of this mode as a vibration involving the tetrahedral cation [89], though Preudhomme et al. argue that this mode also depends upon the octahedral cation [88].

The two high frequency infrared bands, \(\nu_1\) and \(\nu_2\), are relatively broad and are difficult to fit. These two bands are consistent with the values reported by Preudhomme et al. who report \(\nu_1\) and \(\nu_2\) frequencies of 625 (647) and 512 (525) for NiCr\(_2\)O\(_4\).
Figure 40. Infrared spectra of $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$. The vertical lines are drawn as a guide to the eye.

$(\text{MgCr}_2\text{O}_4)$, respectively [88]. There is a slight shift to higher wavenumber as the nickel is replaced with magnesium, similar to the Raman-active modes (Figure 40).

$$\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$$

The $\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$ system is interesting because NiCr_2O_4 is a normal spinel and NiFe_2O_4 is an inverse spinel [136]. Although the transition from NiCr_2O_4 to NiFe_2O_4 is complicated because of the cation inversion between the octahedral and tetrahedral sites, the inversion occurs during the initial substitution of iron, $0 \leq x \leq 1$ [136–138]. Within this range, the entering trivalent iron has a lower preference for the octahedral sites than the divalent nickel, and thus the nickel occupies the octahedral sites [50]. This forces the entering iron to occupy the tetrahedral site instead. Once an iron
content of $x = 1$ is reached, all tetrahedral sites are filled with the trivalent iron, and the substituting iron must occupy the remaining octahedral sites vacated by chromium.

This inversion during the initial iron substitution is supported by theoretical calculations and experimental data. Park et al. calculated the cation distribution of NiFe$_x$Cr$_{2-x}$O$_4$, and saw that at an iron content of $x = 1$, nearly all the nickel had been displaced from the tetrahedral sites [136]. Less than 2% of the nickel remained on the tetrahedral sites. The inversion follows linearly with the iron substitution from $0 \leq x \leq 1$. The same conclusion is reached by Allen et al. in their study of numerous nickel-chromium-iron spinels [137]. Rais et al. used XRD and Mössbauer spectroscopy to measure the cation inversion and show that the solid solution was completely inverse above $x = 1$ [138]. Unfortunately, the researchers did not examine the high chromium content of $x < 0.6$.

Because the cation inversion occurs entirely within $0 \leq x \leq 1$, there are two distinct ranges of cation exchange to examine. For $x \leq 1$, the effect of inversion of the trivalent and divalent cations between the tetrahedral and octahedral sites can be studied. For $x \geq 1$, only the octahedral trivalent chromium is exchanged for the trivalent iron.

The two ranges can be observed from the behavior of the lattice parameter of the series. The lattice parameter of NiFe$_x$Cr$_{2-x}$O$_4$ can be seen in Figure 41. This data agrees well with previous work, with the exception of an iron content of $x = 1$ [127]. The lattice parameter decreases until an iron content of $x = 1$ is reached, at which point it begins to increase linearly.

A temperature dependence study on cation inversion of MgFe$_2$O$_4$ shows that the lattice parameter decreased as the inversion parameter increased [105]. For the NiFe$_x$Cr$_{2-x}$O$_4$ series, the inversion parameter increases from 0 to 1 as the iron con-
Figure 41. Lattice parameters of NiFe$_x$Cr$_{2-x}$O$_4$. The circles represent the data from the present work. Error bars are approximately the size of the points. Squares represent the data from Ziemniak et al. [127].

tent x increases from 0 to 1. Figure 41 also shows a decrease in the lattice parameter during the inversion of the NiFe$_x$Cr$_{2-x}$O$_4$ spinel in the initial $0 \leq x \leq 1$ iron content range. This could be a result of tetrahedrally coordinated Fe$^{3+}$ having a smaller ionic radius (63 pm) than either Ni$^{2+}$ (69 pm) or Mg$^{2+}$ (71 pm) [111]. However, this does not explain why the lattice parameter increases above an iron content of $x = 1$, as the ionic radius of the substituting octahedrally coordinated Fe$^{3+}$ is 69 pm while Cr$^{3+}$ has an ionic radius of 76 pm [111].

The Raman spectra of the NiFe$_x$Cr$_{2-x}$O$_4$ series can be seen in Figure 42. All five Raman-active modes are detected, although the $F_{2g}(3)$ only becomes observable from the background above an iron content of $x = 1$. As iron is substituted into the system, the A_{1g}, $F_{2g}(2)$, and $F_{2g}(3)$ modes develop large shoulders. The $F_{2g}(1)$ mode
also develops a shoulder on the high frequency side of the mode, which becomes the more dominant feature in the spectrum as the iron content of the solid solution is increased.

The phonon frequencies of all modes and shoulders over the entire series are plotted in Figure 43. The A_{1g} is the only Raman-active mode that increases in wavenumber with increasing iron content. The wavenumbers of the $F_{2g}(2)$ and E_g modes decrease. The $F_{2g}(3)$ mode also decreases in wavenumber over the region of iron content that the mode is detected. The A_{1g} mode has the most dramatic change during the inversion range of $0 \leq x \leq 1$. Above $x = 1$, the position of this mode remains relatively constant. This suggests that the valency of the cation has a larger impact on the wavenumber of this mode than the small mass difference between iron and
chromium. Above an iron content of $x = 1$, the Fe^{3+} is only replacing Cr^{3+} in the octahedral sites. However, there is very little change in the wavenumber of the mode during this range. This seems to contradict the view that the A_{1g} mode depends on the octahedral cation. Preudhomme et al. argue that the valency of similar cations is the most important factor for determining the vibrational frequencies [139]. This may be the main reason that the initial iron substitution exhibits a larger change in the wavenumber of this mode.

The A_{1g} mode develops a shoulder with the introduction of iron into the lattice.
Interestingly, the intensity of the shoulder does not seem dependent upon the amount of iron in the lattice. Figure 44 shows that the shoulder appears with a significant intensity at only 5% iron substituted. As shown in Chapter 4, the lower frequency A_{1g} mode for the inverse MgFe$_2$O$_4$ was consistent with it being due to a local mode of FeO$_6$. For the NiFe$_x$Cr$_{2-x}$O$_4$ series, the shoulder is detected with only a modicum of iron substituted into the system, and the wavenumber of the shoulder remains relatively constant over the entire range of iron composition. This series shows that the shoulder cannot be assigned to the FeO$_6$ unit, as no FeO$_6$ exist in the $0 \leq x \leq 1$ region of iron content, as iron occupies the tetrahedral site of the lattice in this region.

The $F_{2g}(3)$ mode cannot be identified from the background at the low iron end of the series and is only detected above $x = 0.9$. Wang et al. report the mode at 580 cm$^{-1}$ for pure NiCr$_2$O$_4$ [47]. This mode is very broad when it becomes identifiable.
and at the NiFe$_2$O$_4$ end has been fitted with two peaks in the literature [64]. The wavenumbers of these modes decreases by 2 and 4% for the two different peaks as iron increases, as shown in Figure 43. Assuming 580 cm$^{-1}$ is the phonon frequency at $x = 0$ for NiFe$_x$Cr$_{2-x}$O$_4$, there is the greatest change in the frequency of this mode from $0 \leq x \leq 1$, where it increases to 600 cm$^{-1}$. Above $x = 1$, the mode decreases back down to 590 cm$^{-1}$. This is an inverse relationship to the lattice parameter of the series, though unlike the change in lattice parameter, the greater change occurs in the $0 \leq x \leq 1$ region.

The $F_{2g}(2)$ mode is the only mode that has a uniform change over the entire iron content range. The wavenumber decreases linearly by approximately 4.4%. Above an iron content of $x = 0.7$, a lower frequency shoulder is detected. This $F_{2g}(2)$ shoulder decreases in wavenumber by nearly 8%.

The behavior of the E_g mode shows strong evidence of two-mode behavior. The two distinct E_g modes have a large difference in the wavenumber of the vibration. This two-mode behavior occurs during the inversion of the lattice, indicating that this mode has a large dependence upon the valency of the cations occupying the tetrahedral site. From $0 \leq x \leq 1$, the wavenumber of the E_g mode of NiCr$_2$O$_4$ varies little as chromium is substituted for iron. However, the intensity decreases, and at an iron content of $x = 0.5$, a lower-wavenumber mode at approximately 362 cm$^{-1}$ appears, which decreases slightly for $x > 0.5$ until the wavenumber matches the E_g mode of NiFe$_2$O$_4$, 333 cm$^{-1}$. This lower-frequency E_g mode also increase in intensity as x increases. This strong dependence on the tetrahedral cation contradicts the calculations by Gupta et al., which showed a negligible dependence on the A-O force constant for the E_g mode [135].

In the iron content range of $1 \leq x \leq 2$, the E_g mode can be characterized by one-mode behavior and decreases in wavenumber by approximately 6%. This region
Figure 45. The B-O bond distance of NiFe$_x$Cr$_{2-x}$O$_4$.

only substitutes the octahedral cation, and has a slightly larger effect than the 4% change seen in this mode in the Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ series, where only the tetrahedral cation was exchanged. This decrease in wavenumber is consistent with the change in mass of the octahedral unit, chromium is replaced by a slightly heavier iron cation.

As previously noted, Laguna-Bercero et al. argued that the wavenumber of the E$_g$ mode was inversely proportional to the B-O bond distance [41]. This bond distance is shown in Figure 45 for the NiFe$_x$Cr$_{2-x}$O$_4$ series. While the E$_g$ mode decreases over the entire range of iron content as the B-O bond distance increases, the trends of each behave very differently. The large discontinuity at $x = 0.4$ is not seen in the B-O bond distance. There is also an obvious discontinuity in the slope of the B-O bond distance at $x = 1$, which is not seen in the position of the E$_g$ mode at the same iron
The $F_{2g}(1)$ mode develops a shoulder on the high-wavenumber side of this mode. The intensity of this shoulder increases to become the stronger of these two features. The wavenumbers of both of these modes does not vary significantly as the iron substitutes chromium. Similar to the A_{1g} mode, the inversion of the lattice seems to create the largest change in the Raman spectrum, with the development of the two distinct peaks, due to the presence of Fe$^{3+}$ and Ni$^{2+}$ occupying the octahedral sites of the lattice.

$$\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$$

The Fe$_x$Cr$_{3-x}$O$_4$ system of spinels is the most relevant for application to corrosion of stainless steels, and it is surprising there exists little Raman work on the system in the literature [45]. The reduction process was not ideal for the synthesis of this series. The synthesis of samples having an iron composition below $x = 1$ and above $x = 2$ contained either corundum phase or metallic iron impurities. The XRD spectrum of the $x = 2.4$ sample showed evidence of approximately 9% metallic iron along with the spinel phase. This has a small impact on the overall stoichiometry of the sample. Removing 10% of the iron from the stoichiometry of the spinel gives an iron to chromium ratio of

$$\frac{\text{Fe}}{\text{Cr}} = \frac{3 - z}{z} = \frac{2.2}{0.6}. \quad (8.1)$$

This leads to an iron content of only $x = 3 - z = 2.36$ instead of the intended $x = 2.40$.

Most samples in the $0.8 \leq x \leq 3$ iron composition range exhibited less than 3% corundum phase. Fe$_x$Cr$_{3-x}$O$_4$ samples were reduced multiple times if high amounts of corundum or metallic iron were present in the sample. The lattice parameters of samples with and without impurities were fairly consistent, though outside the uncertainties of the measurements. Full Rietveld refinement results, including the amount
of secondary phase present in each Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4} sample, are shown in Appendix A. The largest difference in lattice parameter of samples containing impurities is the $x = 1.0$ sample. However, the difference is still very small, with only 0.03% difference. These samples were reduced from the same as-synthesized batch, however. Some samples were synthesized twice however, and after reduction, even with negligible amounts of impurities, have a larger varying lattice parameter than samples with impurities reduced from the same as-synthesized batch. Two different samples of $x = 1.6$ were reduced from two different as-combusted samples. The lattice parameter of these two samples is 8.3907(2) and 8.3985(1), a difference of 0.09%.

Due to the ratio of the synthesis reagents, the corundum phase likely has an iron to chromium ratio similar to the spinel phase. However, the most extreme scenario would be a corundum phase composed entirely of α-Fe\textsubscript{2}O\textsubscript{3}. Similarly to Equation 8.1, this leads to an actual iron composition of $x = 2.54$ instead of the intended $x = 2.60$.

Di Cerbo et al. report lattice parameters for the α-Fe\textsubscript{2}O\textsubscript{3}-Cr\textsubscript{2}O\textsubscript{3} solid solution series, with a decreasing from 5.0343 Å for α-Fe\textsubscript{2}O\textsubscript{3} to 4.9591 Å for Cr\textsubscript{2}O\textsubscript{3} [46]. The lattice parameters from the corundum phase component of the synthesized spinel powders fall within the range of lattice parameters of the α-Fe\textsubscript{2}O\textsubscript{3}-Cr\textsubscript{2}O\textsubscript{3} series. Towards the iron end of the Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4} series, the corundum phase lattice parameters approach the α-Fe\textsubscript{2}O\textsubscript{3} values, while those closer to FeCr\textsubscript{2}O\textsubscript{4} exhibit lattice parameters closer to Cr\textsubscript{2}O\textsubscript{3}. The $x = 2.6$ sample contained 8% corundum phase with an a lattice parameter equal to 5.0302 Å, which would place it on the iron end of the α-Fe\textsubscript{2}O\textsubscript{3}-Cr\textsubscript{2}O\textsubscript{3} series. The corundum phase of the $x = 0.8$ sample, making up 23% of the sample, had an a lattice parameter of 4.9656 Å, signifying the corundum phase contains mostly chromium.

There are numerous experimental data on the lattice parameter and cation distribution of Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4} [23, 122, 123]. The literature examines the solid solution series
Fe$^{2+}$Fe$^{3+}_y$Cr$_{2-y}$O$_4$, with $0 \leq y \leq 2$. Only the trivalent chromium is substituted for trivalent iron. The series transitions from the normal FeCr$_2$O$_4$ spinel to the completely inverse Fe$_3$O$_4$. The site occupation of substituted iron in Fe$_x$Cr$_{3-x}$O$_4$ is not as straightforward as the NiFe$_x$Cr$_{2-x}$O$_4$ series. Robbins et al. define three regions for Fe$_x$Cr$_{3-x}$O$_4$ in the iron content range of $1 \leq x \leq 3$ [23]. In region 1, $1 \leq x \leq 1.68$, the substituted Fe$^{3+}$ enters the octahedral sites of the lattice, replacing Cr$^{3+}$. The lattice parameter increases linearly during this region. This increase occurs despite octahedrally coordinated Fe$^{3+}$ having a smaller ionic radius, 0.69 Å, than Cr$^{3+}$, 0.76 Å [111]. This increase is similar to the cation substitution in the NiFe$_x$Cr$_{2-x}$O$_4$ series when Fe$^{3+}$ replaces Cr$^{3+}$ at the octahedral site. In region 2, $1.68 \leq x \leq 2.38$, the Fe$^{3+}$ instead begins to occupy the tetrahedral sites, thus displacing the Fe$^{2+}$ to octahedral sites. The lattice parameter decreases in this region. Above $x = 2.38$, region 3, the octahedral sites contain similar amounts of Fe$^{2+}$ and Fe$^{3+}$, and the remaining Fe$^{2+}$ cations are displaced from the tetrahedral site at $x = 3$. The lattice parameter again increases in this region.

Earlier work on the lattice parameter of the series by Yearian et al. and Francombe also show a similar behavior of the lattice parameter [122, 123]. Unlike the three zones described by Robbins et al., these researchers divided the final region of Robbins et al. into two regions where the lattice parameter stays relatively constant from $x = 2.2$ to $x = 2.6$, and then increases above $x = 2.6$ [23].

The lattice parameter of the Fe$_x$Cr$_{3-x}$O$_4$ series synthesized in the present work, for an iron content of $0.8 \leq x \leq 3.0$, can be seen in Figure 46. This data suggests inconsistency of samples with the same iron content, x. The lattice parameter varied from sample to sample, greater than the uncertainty of each individual sample. The agreement with the literature values of the lattice parameters is fair [122, 123]. The three regions of behavior are also seen in the change in lattice parameter from the
Figure 46. Lattice constant of Fe$_x$Cr$_{3-x}$O$_4$. The circles are data from the present work with uncertainties on the order of the size of the circles. A dotted line is drawn as a guide for the eye. The single triangle at $x = 3.0$ represents the lattice parameter of the Fe$_3$O$_4$ standard purchased from Alfa Aesar. The solid line represents data from Robbins et al. [23] and the squares are data from McCarty et al. [45].

synthesized Fe$_x$Cr$_{3-x}$O$_4$ spinels. An increase in the lattice parameter is seen in the iron content range of $0.8 \leq x \leq 2.0$. A decrease then occurs from $x = 2.0$ to $x = 2.4$, where the lattice parameter increases again until the end of the series at Fe$_3$O$_4$. In the work by Robbins et al. and Yearian et al., the lattice parameter reaches a value of approximately 8.410 Å at an iron composition of $x = 1.7$ [23, 122]. The $x = 1.8$ sample from this work has a lattice parameter of 8.395 Å. Yearian et al. reported lower lattice parameters for Fe$_x$Cr$_{3-x}$O$_4$ samples with cation vacancies.

There are no reported studies on the Fe$_x$Cr$_{3-x}$O$_4$ series for $x < 1$. This range of iron content would indicate that chromium cations occupy the tetrahedral sites. All synthesized samples with an iron content of $x = 0.8$ contained 20 to 50% of
the corundum phase in addition to the spinel phase. Stubican et al. report divalent chromium occupying the tetrahedral sites of the magnesium chromium spinel [140]. However, the synthesis occurred in a reducing environment with a temperature of 1800-2000°C. Pinch et al. reported divalent chromium on the octahedral sides of some indium substituted chalcogenide spinels [141]. From this data, it is difficult to discern whether or not Fe$_{0.8}$Cr$_{2.2}$O$_4$ is created, with some form of chromium on the tetrahedral sites, or instead a mixture of FeCr$_2$O$_4$ and Cr$_2$O$_3$ is formed. In the present work, samples synthesized with iron contents less than $x = 1$ were green after synthesis, suggesting the presence of Cr$_2$O$_3$, as powdered Cr$_2$O$_3$ is green in color.

McCarty et al. studied the Fe$_x$Cr$_{3-x}$O$_4$ series from FeCr$_2$O$_4$ to Fe$_3$O$_4$ with iron contents of $x = 1, 1.4, 1.8, 2.2, 2.6, 3$ [45]. They claim that the A$_{1g}$ mode is inversely proportional to the lattice parameter.

The Raman shifts of the A$_{1g}$ and F$_{2g}(3)$ modes for the Fe$_x$Cr$_{3-x}$O$_4$ series are plotted as a function of iron content in Figure 47. Data acquired from the Alfa Aesar Fe$_3$O$_4$ standard, as well as values reported by McCarty et al. are also included in the figure. The extrema of the A$_{1g}$ mode do not completely correspond to the extrema of the lattice parameter for the same iron content. The lattice parameter has local extrema at iron contents of $x = 1.8$ (maximum) and $x = 2.4$ (minimum), whereas the A$_{1g}$ mode has local extrema at iron contents of $x = 1.6$ and $x = 2.6$.

Fe$_3$O$_4$ is an inverse spinel, and the inversion occurs in the iron content range 1.7 $\leq x \leq 2.4$. The A$_{1g}$ mode of the NiFe$_x$Cr$_{2-x}$O$_4$ series develops a shoulder on the low wavenumber side after substituting just a small amount of iron for nickel. This shoulder remains over the entire compositional range of the series. A shoulder on the high wavenumber side of the A$_{1g}$ mode was occasionally detected in the Fe$_x$Cr$_{3-x}$O$_4$ series, but this shoulder was not consistent in all spectra acquired throughout the sample. Several spectra were acquired for all samples, with multiple spectra being
acquired at the same spot as a function of laser power. This allowed for potential heating damage to be examined, similar to what was seen in Chapter 6, with the conversion of Fe$_3$O$_4$ to γ-Fe$_2$O$_3$ and α-Fe$_2$O$_3$. As laser power was increased on the sample, this shoulder would appear, if non-existent in the low power acquisition, or increase in intensity, if already detected in the low power spectrum. The shoulder remained present as the power was decreased to the original low power of 0.1 mW. This suggests that the peak is due to irreversible local heating damage of the sample.

The wavenumber of the A$_{1g}$ mode has the largest change, though only a 1.1% decrease, in the iron content range $1 \leq x \leq 1.6$, which Robbins et al. report to be the range in which the substituting Fe$^{3+}$ replaces Cr$^{3+}$ at the octahedral site [23]. This supports the idea of the octahedral site being a significant factor in the determination of the A$_{1g}$ phonon energy. However, this is very different from the NiFe$_x$Cr$_{2-x}$O$_4$ series, for which the A$_{1g}$ mode remained relatively constant above an iron content of $x = 1$, where Fe$^{3+}$ also replaces Cr$^{3+}$ at the octahedral site.

Beyond an iron content of $x = 1.8$, inversion begins to occur, with the trivalent iron occupying the tetrahedral sites and pushing the divalent iron to the octahedral sites. A very small shift in wavenumber occurs for the A$_{1g}$ mode during the inversion of the lattice. Again, this is a departure from the behavior of the A$_{1g}$ mode of the NiFe$_x$Cr$_{2-x}$O$_4$ series, where the inversion of the lattice had a larger effect on the phonon energy.

The F$_{2g}(3)$ mode was not consistently detected in all samples above an iron content of $x = 1.8$, and several of the plotted points for this mode represent only one or two detected peaks from the numerous acquired spectra. No obvious trend is observed from the behavior of this mode upon iron substitution.

The A$_{1g}$ mode exhibits a drastic change from an iron content of $x = 2.8$ to $x = 3$, decreasing from 672 cm$^{-1}$ to 665 cm$^{-1}$, whereas the position of this mode from the
Figure 47. Raman shifts of the A_{1g} and $F_{2g}(3)$ modes of Fe\textsubscript{x}Cr$_{3-x}$O$_4$. Data from this work is shown in solid circles, whereas data from McCarty et al. [45] is shown in solid squares. Data acquired on the Alfa Aesar Fe$_3$O$_4$ standard is shown as a solid triangle at $x = 3.0$.

Alfa Aesar Fe$_3$O$_4$ standard was 667 cm$^{-1}$. The synthesized Fe$_3$O$_4$ sample showed significant amounts of wüstite, FeO. The Raman spectrum of FeO is similar to Fe$_3$O$_4$, as shown by de Faria et al., but shifted towards a lower frequency of 650 cm$^{-1}$ [1]. FeO impurities from the reduction process could explain the slightly lower wavenumber of the A_{1g} mode determined in the present work.
Discussion on solid solutions

Examining the vibrations of the three spinel solid solutions studied here gives information regarding the cation dependency of the phonons. The data can also be used to check conclusions made by other researchers regarding the spinel phonons.

The increase in wavenumber of all the \(F_{2g}(2)\) and \(\nu_3\) vibrational modes of the \(\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4\) series as the lighter magnesium replaces nickel can be described sufficiently well by a simple mass on a spring inverse relationship of the vibrational frequencies on the mass of the cation. The \(A_{1g}\) mode is relatively unaffected by the large mass difference. The low-wavenumber \(E_g\) and \(F_{2g}(1)\) modes have a nonlinear response to the mass increase. This is difficult to test with the \(\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4\) and \(\text{Fe}_x\text{Cr}_{3-x}\text{O}_4\) series as these two series substitute cations of similar mass. Inversion of the lattice also occurs for both series, which has a much larger effect on the vibrational modes.

As examined earlier in this work, high-pressure data on spinels shows that the energy of the spinel vibrational modes is inversely proportional to the lattice parameter. McCarty et al. observe this effect for the \(A_{1g}\) mode from the \(\text{Fe}_x\text{Cr}_{3-x}\text{O}_4\) series [45] and the data from this work on \(\text{Fe}_x\text{Cr}_{3-x}\text{O}_4\) supports that observation. From this work, the lattice parameter has extrema at an iron content of \(x = 1.8\) and \(x = 2.4\), with the wavenumber of the \(A_{1g}\) mode having extrema at nearly the same iron content. However, data from the \(\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4\) and \(\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4\) series show that this relationship is not generally obeyed for all mixed spinel systems, or that there are other variables with larger effects on the vibrational energies. For the \(\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4\) series, the wavenumber of the \(A_{1g}\) mode increases slightly as the lattice parameter also increases. The increase in lattice parameter of this series is only 0.2% and the relatively large difference in mass of the Mg and Ni has the larger effect on the vibrational modes. The \(0 \leq x \leq 1\) region of the \(\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4\) series shows an
increase in the wavenumber of this mode as the lattice parameter decreases, but the mode remains constant above $x = 1$, when the lattice parameter increases linearly. The change above $x = 1$ is larger than the decrease below $x = 1$.

The high-pressure data on various chromites indicate an inverse relationship of approximately 0.32 to 0.64 cm$^{-1}$ increase in wavenumber of the Raman-active modes per 0.1% decrease in unit cell volume of the chromite. Using the lattice parameters from the various series, the significance of this effect can be considered. The volume of the unit cell in the Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ series changes by 0.5% as magnesium replaces nickel at the tetrahedral sites. From this contraction of the lattice, it should be expected that the Raman-active modes will increase by 1 to 4 cm$^{-1}$, significantly less than any of the wavenumber changes in this series.

The NiFe$_x$Cr$_{2-x}$O$_4$ series exhibits a similar change in unit cell volume in the $0 \leq x \leq 1$ region. The volume in $1 \leq x \leq 2$ region increases by a larger 1.3%, which corresponds to decreases in the Raman-active modes up to 8 cm$^{-1}$. The E_g, $F_{2g}(2)$, and $F_{2g}(3)$ modes decreased in wavenumber in this range. The A_{1g} and $F_{2g}(1)$ modes remained constant during this region.

The small changes in volumes of the solid solution series presented in this work suggest that the change in Raman-active modes due to the change in unit cell volume alone is small, and other factors are the main contributors to the large changes in Raman-active modes seen in these series.

Nakagomi et al. argued that the large mass difference between Fe and Mg and the coexistence of FeO$_4$ and MgO$_4$ tetrahedra leads to two distinct A_{1g} phonons of Mg$_x$Fe$_{3-x}$O$_4$, explaining the existence of the extra mode detected in the Raman spectrum [106]. The Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ series substitutes Ni, slightly heavier than Fe, with the lighter Mg into the tetrahedral sites. All Raman-active modes of this series exhibit one-mode behavior and no extra modes are consistently found throughout the
entire range of composition. The large mass difference of Ni and Mg does not recreate the additional A_{1g} mode, as seen in the $\text{Mg}_x\text{Fe}_{3-x}\text{O}_4$ series. Only the inverse ferrites, with two different cations occupying the octahedral sites, exhibit shoulders on the A_{1g} mode. Ni and Fe are similar in mass, but Raman spectra of NiFe_2O_4 exhibit an A_{1g} splitting similar to MgFe_2O_4, suggesting that the splitting is a result of two different valences occupying the octahedral site of the spinel lattice. All Raman-active modes of $\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$ exhibited shoulders.

It should also be noted that MgFe_2O_4 has an inversion parameter of $\xi = 0.90$ [105, 106], and significant amounts of Mg^{2+} would not enter the tetrahedral site in the $\text{Mg}_x\text{Fe}_{3-x}\text{O}_4$ series until $x > 1$. Above $x = 1$, the lattice would require oxygen vacancies to compensate to keep the stoichiometry correct, as Nakagomi et al. show in their study [106].

Nakagomi et al. also conclude that the larger ionic radius of tetrahedrally coordinated Mg^{2+} compared to Fe^{3+} leads to a decrease in frequency of the vibrational modes for the $\text{Mg}_x\text{Fe}_{3-x}\text{O}_4$ series [106]. Figure 9, a compilation of the Raman-active modes presented in the literature for various chromites, shows that the modes do not depend strongly upon the ionic radius of the tetrahedral cation. The $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ series presented here shows an opposite response of all vibrational modes, as the ionic radii of Ni^{2+} and Mg^{2+} are 0.69 and 0.71 Å, respectively [111]. All phonon frequencies increase as nickel is replaced by magnesium. For the $\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$ series in the $1 \leq x \leq 1$ range, the Raman shifts of the E_g, $F_{2g}(2)$, and $F_{2g}(3)$ modes decrease, showing that no inverse relationship exists for the octahedral cation. The ionic radii of Cr^{3+} and Fe^{3+} is 0.76 and 0.69 Å, respectively.

From the results of the $\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$ series, changing the valency of the tetrahedral and octahedral sites has a greater effect on the A_{1g}, E_g, and $F_{2g}(1)$ modes. This is not surprising as phonon energies are dependent upon the force constants between
the cation and oxygens in the lattice. This force is most dramatically changed by changing the valency of the cation occupying a specific site. The wavenumber of the \(F_{2g}(2) \) mode decreases nearly linearly over the entire range of composition. The \(F_{2g}(3) \) mode was not detected from the background noise for the range of inversion. Iron is only slightly heavier than chromium, so the direct substitution should not strongly affect the frequencies for \(x > 1 \). The wavenumbers of the \(F_{2g}(1) \) and \(A_{1g} \) modes remain constant for \(x > 1 \). However, the wavenumbers of the \(E_g \), \(F_{2g}(2) \), and \(F_{2g}(3) \) modes decrease in this same region. This may be a result of the increase in the lattice parameter in this region.

The \(E_g \) mode behaves differently for the \(Mg_xNi_{1-x}Cr_2O_4 \) and \(NiFe_xCr_{2-x}O_4 \) series. This mode, in the \(Mg_xNi_{1-x}Cr_2O_4 \) series, follows one-mode behavior as it smoothly transitions from the wavenumber of \(NiCr_2O_4 \) to the wavenumber of \(MgCr_2O_4 \). For \(NiFe_2O_4 \), the mode exhibits two-mode behavior, as there is a discontinuity located at an iron content of \(x = 0.5 \), and both modes coexist at this iron content. This mode shows a strong dependence on the nature of the tetrahedral cation, as the wavenumber was affected by both a change in mass of cation, and the valency of the tetrahedral cation. From the results on \(Mg_xNi_{1-x}Cr_2O_4 \) and \(NiFe_xCr_{2-x}O_4 \), the \(E_g \) mode does not seem related to the B-O bond distance as argued by Laguna-Bercero et al. [41].

The question of whether the two-mode behavior of the \(E_g \) mode occurs due to the presence of distinct octahedral and tetrahedral units within the spinel lattice, or because very small crystals of one pure end-member coexisting with crystals of the other end-member is not conclusively resolved from the \(NiFe_xCr_{2-x}O_4 \) data.

The additional shoulders appearing in the spectra of the \(NiFe_xCr_{2-x}O_4 \) series could be due to local symmetry breaking of the system, which would not appear in x-ray diffraction patterns. The lowering of the symmetry could split the degeneracy of the \(E_g \) and \(F_{2g} \) modes, which would explain the shoulders observed on all the modes.
The A_{1g} mode is not degenerate, however polarization studies were not performed on a single crystal, and the shoulder appearing on the low-wavenumber side of the A_{1g} mode is not conclusively of the A_{1g} species.
CHAPTER 9

LBE-CORRODED STAINLESS STEELS

Three types of stainless steel, exposed to lead-bismuth eutectic (LBE) in a high-temperature, oxygen-controlled environment, develop corrosion layers as previously stated in Chapter 1 [58–60, 142]. Characterization of the corrosion layers developed on the stainless steel is needed, and micro-Raman is a potential tool for that purpose.

Raman spectra of the corrosion layer on 316L, D9, and HT9 stainless steel samples exposed to LBE at high temperature for 3000 hours show strong evidence for the presence of spinel oxide layers. SEM images show that a multiple layer oxide is formed [57, 60, 142]. One layer grows outwards from the original steel surface while the other grows inwards into the bulk of the steel. Raman spectra from these two layers of HT9 stainless steel, exposed to LBE for 2000 hrs at 550°C, are shown in Figure 48, and are characteristic of the Raman spectra from all LBE-exposed stainless steel samples. The largest peak of these spectra, located around 670 cm$^{-1}$, is strong evidence of Fe$_3$O$_4$ or a solid solution close to the composition of Fe$_3$O$_4$.

Work by Hosemann et al. on HT9 stainless steel shows an outer magnetite layer and an inner chromium enriched layer, which they suggest may be Cr$_2$O$_3$ or FeCr$_2$O$_4$ [57]. Raman spectroscopy can easily differentiate between Cr$_2$O$_3$ and FeCr$_2$O$_4$. Raman spectra from this inner layer, shown in Figure 48(a), signifies that the layer is a chromium-rich spinel. The amount of chromium depends upon the exact positions of the Raman-active modes. These positions can be compared to results from the Fe$_x$Cr$_{3-x}$O$_4$ series, and the wavenumber position of the A$_{1g}$ mode can be used for a
Figure 48. Raman spectra of the (a) inner and (b) outer corrosion layers of HT9 stainless steels exposed to LBE for 2000 hrs at 550°C, show characteristic peaks of the iron-chromium spinels.

identification of the oxidation layer.

Raman spectra were also collected with the 514.5 nm argon laser source to test for the presence of Cr$_2$O$_3$, as Cr$_2$O$_3$ gives a much more intense signal with the 514.5 nm excitation than the 647.1 nm wavelength of the krypton laser. All acquired spectra from the corroded stainless steels show no evidence of Cr$_2$O$_3$ Raman-active modes, indicating that no significant amounts of Cr$_2$O$_3$ exist within the corrosion layers.

The Raman spectra of the outer corrosion layer from all three stainless steel samples are shown in Figure 49. Previous work showed that the outer corrosion layer contained only iron and oxygen [59], suggesting the presence of Fe$_3$O$_4$. The A$_{1g}$ mode, located at approximately 668 cm$^{-1}$ for all LBE-exposed steels, agrees very
Figure 49. The outer corrosion layer of the 316L, D9, and HT9 stainless steels exposed to LBE for 3000 hrs at 550 °C share similar Raman spectra that are very representative of Fe$_3$O$_4$, indicated by the blue lines. Red lines indicate positions of the Raman-active modes of α-Fe$_2$O$_3$.

well with the A$_{1g}$ mode of Fe$_3$O$_4$. A mode located at 306 cm$^{-1}$ exists for all samples, which is also in good agreement with the E$_g$ mode in Fe$_3$O$_4$. The F$_{2g}$(3) modes of the three corroded steels has a small amount of variance, with wavenumbers of 532 cm$^{-1}$ for 316L, 530 cm$^{-1}$ for HT9, and 537 cm$^{-1}$ for D9. These are all in good agreement with the same mode in magnetite located at 533 in Fe$_3$O$_4$.

The inner oxide layer presents a more complicated scenario. The inner layer has a weaker Raman signal than the outer corrosion layer, and thus the lower-wavenumber Raman-active modes are not distinguishable from the background. Spectra are similar to the outer layer, but a slight shift in the wavenumber of the main A$_{1g}$ Raman peak, shown in Figure 50, suggests a difference from pure Fe$_3$O$_4$ in the oxide layer.
It is known that iron and oxygen are present in this inner oxide layer. However, other elements are also present within the inner corrosion layer. XPS and EDS show that oxidized chromium exists within the inner layer, as shown in Figure 5 [60]. A spinel belonging to the $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ series is thus a likely candidate. As the results on $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ have shown, substituting chromium into Fe_3O_4 slightly increases the frequency of the intense A_{1g} mode.

The Raman spectrum of a spot focused on the inner corrosion layer of the the steel samples exposed to LBE at 550°C for 3000 hrs is shown in Figure 51. The A_{1g} mode is located at 676 cm$^{-1}$. This peak has a shoulder located at 631 cm$^{-1}$. This same peak is located at 672 and 671 cm$^{-1}$ for the D9 and HT9 stainless steels exposed to LBE at 550°C for 3000 hrs. Referring to Figure 47, the position of this A_{1g} mode...
for 316L indicates a Fe$_2$Cr$_{3-x}$O$_4$ spinel with $2.0 \leq x \leq 2.4$. The $x = 1.4$ is also a good fit for the position of the A$_{1g}$ mode. Data from Koury shows that there is only a slight enhancement of chromium in the inner oxide layer of the D9 sample [60].

The A$_{1g}$ mode of the D9 and HT9 samples exposed for 3000 hrs at 550°C have a smaller wavenumber of 672 and 671 cm$^{-1}$. Weight percents of the inner corrosion layer measured by Koury suggests that the iron to chromium ratio is consistent with this layer being Fe$_{2.2}$Cr$_{0.8}$O$_4$ in the D9 sample [60]. This assumes that the layer is composed entirely of the Fe-Cr spinel, and assumes the absence of Cr$_2$O$_3$, which is not detected in any Raman spectra of the samples. Hosemann et al. also studied D9 samples exposed for 1000 and 2000 hrs, and found slightly higher chromium contents that would correspond to an iron content of approximately $x = 2$ [142]. They also report a chromium enriched inner oxide layer for HT9 samples cut from the same tube studied in the present work [57].

Even though nickel is enhanced in the inner corrosion layer, there is no evidence of NiCr$_2$O$_4$ or NiFe$_2$O$_4$ modes in any of the Raman spectra from this layer of any of the steel samples. The most intense peak of NiFe$_2$O$_4$ is located at 706 cm$^{-1}$, above the position of the A$_{1g}$ mode in all the corrosion layers. The intense peaks of NiCr$_2$O$_4$ at 190 and 508 cm$^{-1}$ are also not present in any of the corrosion layers. This supports earlier conclusions from XPS studies that found only metallic nickel in the inner corrosion layer [60]. Raman spectra of the corroded D9 and HT9 steels are very similar despite the large difference in nickel compositions, 13.6% and 0.5%, respectively, indicating that no solid solution of nickel is formed.
Figure 51. The Raman spectrum of the inner corrosion layer of the 316L, D9, and HT9 stainless steels exposed to LBE. The spectra are much less consistent than the outer corrosion layer. The wavenumber of the A_{1g} mode is indicative of an iron-chromium spinel from the $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ series.
CONCLUSIONS

The solid solution spinel oxides $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$, $\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$, and $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ were synthesized, and then characterized using Raman and x-ray diffraction. Vibrational data from the end members of these series agree well with the literature. Raman data of the $\text{Mg}_x\text{Ni}_{1-x}\text{Cr}_2\text{O}_4$ and $\text{NiFe}_x\text{Cr}_{2-x}\text{O}_4$ spinels are reported for the first time. Raman data on $\text{Fe}_x\text{Cr}_{3-x}\text{O}_4$ agree with the literature and completes gaps in the compositional range discussed in the literature.

The vibrational modes do not necessarily change linearly as one cation is exchanged with another. Cunha et al. made this assumption for their identification of a $\text{Ni}_x\text{Fe}_{3-x}\text{O}_4$ oxide [24]. This signifies the importance of having solid solution data before attempting to make identifications of solid solutions from vibrational data such as Raman and infrared.

A review of the literature on spinels has demonstrated that the vibrational spectra of this structure is not completely understood. The literature is inconsistent in assigning the vibrational modes to the octahedral or tetrahedral units within the lattice. Phonon dependence on the octahedral and tetrahedral bonds is complicated. However, some of the Raman-active modes of spinel display greater influence from either the tetrahedral or octahedral lattice sites.

The A_{1g} mode is mostly independent of the divalent metal occupying the tetrahedral site. All of the chromites have a similar A_{1g} wavenumber. The aluminates with the normal spinel structure, MgAl_2O_4, NiAl_2O_4, and CoAl_2O_4 also have similar A_{1g}
features, located in the 755 to 772 cm\(^{-1}\) range. Exchanging the octahedral cation has a much greater effect upon the wavenumber of this mode than exchanging the tetrahedral cation.

In addition, inversion of the spinel lattice, with a trivalent cation occupying the tetrahedral site, has a large impact upon the position of this mode. The two different valences of the cations occupying the octahedral site of the inverse lattice create two distinct \(A_{1g}\) modes.

The \(E_g\) mode depends upon both the octahedral and tetrahedral cations. This disagrees with the expression given by Gupta et al. that shows a negligible dependence upon the A-O force constant \([135]\). The mode is also seemingly independent of the B-O bond distance, as argued by Laguna-Bercero et al. \([41]\), as the wavenumbers of this mode in the \(Mg_xNi_{1-x}Cr_2O_4\) and \(NiFe_xCr_{2-x}O_4\) systems increase when the B-O distances increase.

In agreement with much of the literature on spinels, the data in the present work supports the argument that the \(F_{2g}(1)\) mode is strongly dependent upon the tetrahedral cation, as both the \(Mg_xNi_{1-x}Cr_2O_4\) and \(NiFe_xCr_{2-x}O_4\) series show a large change in this mode upon tetrahedral cation exchange. This mode showed relatively little change in the \(NiFe_xCr_{2-x}O_4\) series for \(x > 1\), where only the octahedral cation was exchanged from chromium to iron.

Analysis of 316L, D9, and HT9 stainless steels corroded in a high temperature, oxygen controlled LBE environment was performed by comparing the Raman spectra from the different corrosion layers of the steel samples to the Raman spectra of the solid solution spinel series \(Fe_xCr_{3-x}O_4\). The frequency of the strong \(A_{1g}\) mode of the Raman spectra can be used to estimate the amount of chromium within the iron-chromium spinel. This identifies an outer corrosion layer of \(Fe_3O_4\) and an inner corrosion layer comprised of an iron chromium spinel, \(Fe_xCr_{3-x}O_4\), having an iron
content of approximately $x = 2.2$. This indicates an enhancement of the chromium over the amount of chromium within the bulk steel, which is in agreement with results from other methods by other researchers [57, 60, 142].

The application of micro-Raman spectroscopy to corrosion research is very useful. The 3.5 μm spot size gives capability of obtaining spatial resolution to differentiate compositions of complex oxide layers. Subtle differences between Raman spectra can be exploited to gain information regarding the composition of complex corrosion layers. The most common assignment of corrosion products has been pure, one- or two-element oxides, such as α-Fe$_2$O$_3$, Fe$_3$O$_4$, or FeCr$_2$O$_4$. However, the complicated composition of different stainless steels suggests that mixed spinels could be formed. The techniques presented in the present work will lead to better identifications of such mixed oxide systems. Knowing the specific composition and structure of the corrosion layers can lead to the development of steels with more resistance to corroding conditions.

The methods and analysis detailed within this study are applicable to the numerous spinels existing with varying cations and anions occupying the tetrahedral and octahedral sites. ZnFe$_x$Cr$_{2-x}$O$_4$ would be a good candidate to study the effect of substitution of just the octahedral cation of the spinel lattice, as both ZnCr$_2$O$_4$ and ZnFe$_2$O$_4$ are normal spinels. Zn$_x$Ni$_{1-x}$Cr$_2$O$_4$ and MgFe$_x$Cr$_{2-x}$O$_4$ are similar spinel series as Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$ and NiFe$_x$Cr$_{2-x}$O$_4$, respectively, and may provide similar results for the behaviors of the Raman-active vibrational modes.

Theoretical models of the spinel vibrations must be checked against experimental data. The data contained in the present study may encourage further theoretical and experimental exploration on the interesting spinel crystal system.
APPENDIX A

RIETVELD REFINEMENT RESULTS

The results from the Rietveld refinements are presented in the following tables for every spinel sample synthesized in the present work. The R_{wp} and χ^2 for each sample are listed. Most samples contained small amounts of a secondary phase, which are also listed in the following tables. Corundum, space group $R\bar{3}c$, and metallic iron, space group $I\bar{m}\bar{3}m$, were the most common secondary phases present with the spinel powders. The Fe_3O_4 sample also contained significant amounts of FeO as an additional phase.

The tables list the lattice parameter a and oxygen parameter u for all of the synthesized samples. Table 17 also lists the lattice parameters of the tetragonal phase present in the NiCr$_2$O$_4$ samples. The oxygen parameter u for the spinel phase was not refined, and instead set at $u = 0.386$ for all NiCr$_2$O$_4$ samples. Many samples of identical x were synthesized for some of the series, and are all listed in the following tables.
<table>
<thead>
<tr>
<th>NiCr₂O₄ preparation</th>
<th>secondary phase</th>
<th>Lattice parameters (Å)</th>
<th></th>
<th>Rwp</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-synthesized</td>
<td>1.4% R3c</td>
<td>a = 8.3185(3)</td>
<td>a = 5.8415(8)</td>
<td>3.42</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4265(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as-synthesized</td>
<td>4.3% R3c</td>
<td>a = 8.3178(3)</td>
<td>a = 5.8412(2)</td>
<td>3.43</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4275(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as-synthesized</td>
<td>3.7% R3c</td>
<td>a = 8.3181(2)</td>
<td>a = 5.8443(6)</td>
<td>3.27</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4185(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as-synthesized</td>
<td>2.2% R3c</td>
<td>a = 8.3187(3)</td>
<td>a = 5.8467(5)</td>
<td>3.19</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4119(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as-synthesized</td>
<td>< 0.1% R3c</td>
<td>a = 8.3183(3)</td>
<td>a = 5.8388(2)</td>
<td>3.38</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4365(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as-synthesized</td>
<td>< 0.1% R3c</td>
<td>a = 8.3191(2)</td>
<td>a = 5.8406(3)</td>
<td>3.37</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4329(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10°C in air</td>
<td>< 0.1% R3c</td>
<td>a = 8.3185(3)</td>
<td>a = 5.8405(2)</td>
<td>3.54</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4329(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400°C in air</td>
<td>1.2% R3c</td>
<td>a = 8.3188(3)</td>
<td>a = 5.8395(3)</td>
<td>3.43</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4337(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700°C in air</td>
<td>1.1% R3c</td>
<td>a = 8.3184(3)</td>
<td>a = 5.8379(2)</td>
<td>3.87</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4405(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400°C in 2%H/Ar</td>
<td>< 0.1% R3c</td>
<td>a = 8.3189(3)</td>
<td>a = 5.8414(3)</td>
<td>3.66</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 8.4290(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 17. Rietveld refinements for as-synthesized NiCr₂O₄ samples and NiCr₂O₄ samples that received additional treatment after the combustion synthesis. The fits contain both spinel and tetragonal phases.
<table>
<thead>
<tr>
<th>Magnesium content x</th>
<th>secondary phase</th>
<th>Lattice parameter $a(\text{Å})$</th>
<th>oxygen parameter $u(\text{Å})$</th>
<th>R_{wp}</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>See Table 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.8% $R\bar{3}c$</td>
<td>8.3209(1)</td>
<td>0.3818(3)</td>
<td>3.34</td>
<td>1.20</td>
</tr>
<tr>
<td>0.2</td>
<td>3.4% $R\bar{3}c$</td>
<td>8.3224(2)</td>
<td>0.3813(3)</td>
<td>3.16</td>
<td>1.14</td>
</tr>
<tr>
<td>0.3</td>
<td>1.8% $R\bar{3}c$</td>
<td>8.3229(1)</td>
<td>0.3817(2)</td>
<td>3.21</td>
<td>1.12</td>
</tr>
<tr>
<td>0.4</td>
<td>1.7% $R\bar{3}c$</td>
<td>8.3262(1)</td>
<td>0.3798(2)</td>
<td>3.08</td>
<td>1.10</td>
</tr>
<tr>
<td>0.5</td>
<td>5.4% $R\bar{3}c$</td>
<td>8.3282(1)</td>
<td>0.3799(2)</td>
<td>3.05</td>
<td>1.11</td>
</tr>
<tr>
<td>0.6</td>
<td>2.3% $R\bar{3}c$</td>
<td>8.3276(2)</td>
<td>0.3802(2)</td>
<td>3.02</td>
<td>1.10</td>
</tr>
<tr>
<td>0.7</td>
<td>3.1% $R\bar{3}c$</td>
<td>8.3293(2)</td>
<td>0.3776(2)</td>
<td>3.11</td>
<td>1.15</td>
</tr>
<tr>
<td>0.8</td>
<td>3.0% $R\bar{3}c$</td>
<td>8.3292(1)</td>
<td>0.3794(2)</td>
<td>3.00</td>
<td>1.08</td>
</tr>
<tr>
<td>0.9</td>
<td>3.7% $R\bar{3}c$</td>
<td>8.3308(4)</td>
<td>0.3784(2)</td>
<td>2.94</td>
<td>1.14</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8% $R\bar{3}c$</td>
<td>8.3306(2)</td>
<td>0.3816(3)</td>
<td>3.23</td>
<td>1.11</td>
</tr>
<tr>
<td>1.0</td>
<td>2.5% $R\bar{3}c$</td>
<td>8.3319(2)</td>
<td>0.3783(3)</td>
<td>2.96</td>
<td>1.14</td>
</tr>
<tr>
<td>0.8</td>
<td>2.3% $R\bar{3}c$</td>
<td>8.3319(1)</td>
<td>0.3804(2)</td>
<td>2.55</td>
<td>1.10</td>
</tr>
<tr>
<td>0.9</td>
<td>2.2% $R\bar{3}c$</td>
<td>8.3333(2)</td>
<td>0.3799(2)</td>
<td>2.71</td>
<td>1.08</td>
</tr>
<tr>
<td>1.0</td>
<td>2.4% $R\bar{3}c$</td>
<td>8.3341(3)</td>
<td>0.3781(3)</td>
<td>2.83</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Table 18. Rietveld refinements for Mg$_x$Ni$_{1-x}$Cr$_2$O$_4$.

129
Table 19. Rietveld refinements for NiFe$_x$Cr$_{2-x}$O$_4$.

<table>
<thead>
<tr>
<th>Magnesium content x</th>
<th>Secondary phase</th>
<th>Lattice parameter a(Å)</th>
<th>Oxygen parameter u(Å)</th>
<th>R_{wp}</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td>8.3188(1)</td>
<td>0.3839(2)</td>
<td>2.70</td>
<td>1.17</td>
</tr>
<tr>
<td>0.05</td>
<td>2.2% $R\overline{3}c$</td>
<td>8.3188(1)</td>
<td>0.3830(2)</td>
<td>3.29</td>
<td>1.16</td>
</tr>
<tr>
<td>0.1</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3182(1)</td>
<td>0.3830(2)</td>
<td>3.00</td>
<td>1.17</td>
</tr>
<tr>
<td>0.2</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3171(1)</td>
<td>0.3821(2)</td>
<td>3.05</td>
<td>1.17</td>
</tr>
<tr>
<td>0.3</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3154(1)</td>
<td>0.3829(2)</td>
<td>2.81</td>
<td>1.16</td>
</tr>
<tr>
<td>0.4</td>
<td>1.3% $R\overline{3}c$</td>
<td>8.3126(1)</td>
<td>0.3811(2)</td>
<td>3.02</td>
<td>1.18</td>
</tr>
<tr>
<td>0.5</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3106(1)</td>
<td>0.3831(2)</td>
<td>2.77</td>
<td>1.19</td>
</tr>
<tr>
<td>0.6</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3074(1)</td>
<td>0.3805(2)</td>
<td>2.81</td>
<td>1.17</td>
</tr>
<tr>
<td>0.7</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3055(2)</td>
<td>0.3800(2)</td>
<td>2.72</td>
<td>1.17</td>
</tr>
<tr>
<td>0.8</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3042(2)</td>
<td>0.3791(2)</td>
<td>2.66</td>
<td>1.15</td>
</tr>
<tr>
<td>0.9</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3028(2)</td>
<td>0.3774(2)</td>
<td>2.73</td>
<td>1.14</td>
</tr>
<tr>
<td>1.0</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3036(1)</td>
<td>0.3773(2)</td>
<td>2.50</td>
<td>1.11</td>
</tr>
<tr>
<td>1.1</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3055(1)</td>
<td>0.3777(2)</td>
<td>2.32</td>
<td>1.12</td>
</tr>
<tr>
<td>1.2</td>
<td>< 0.1% $R\overline{3}c$</td>
<td>8.3101(1)</td>
<td>0.3776(2)</td>
<td>2.58</td>
<td>1.13</td>
</tr>
<tr>
<td>1.3</td>
<td>14.9% $R\overline{3}c$</td>
<td>8.3142(2)</td>
<td>0.3781(2)</td>
<td>2.36</td>
<td>1.13</td>
</tr>
<tr>
<td>1.4</td>
<td>2.0% $R\overline{3}c$</td>
<td>8.3175(2)</td>
<td>0.3781(2)</td>
<td>2.25</td>
<td>1.11</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5% $R\overline{3}c$</td>
<td>8.3218(2)</td>
<td>0.3778(2)</td>
<td>2.22</td>
<td>1.15</td>
</tr>
<tr>
<td>1.6</td>
<td>1.7% $R\overline{3}c$</td>
<td>8.3256(1)</td>
<td>0.3767(2)</td>
<td>2.15</td>
<td>1.10</td>
</tr>
<tr>
<td>1.7</td>
<td>6.2% $R\overline{3}c$</td>
<td>8.3299(1)</td>
<td>0.3779(2)</td>
<td>2.09</td>
<td>1.11</td>
</tr>
<tr>
<td>1.8</td>
<td>3.1% $R\overline{3}c$</td>
<td>8.3343(1)</td>
<td>0.3773(3)</td>
<td>2.02</td>
<td>1.12</td>
</tr>
<tr>
<td>1.9</td>
<td>2.7% $R\overline{3}c$</td>
<td>8.3390(3)</td>
<td>0.3757(7)</td>
<td>2.09</td>
<td>1.11</td>
</tr>
<tr>
<td>2.0</td>
<td>8.4% $R\overline{3}c$</td>
<td>8.3390(3)</td>
<td>0.3757(7)</td>
<td>2.09</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Table 20. Rietveld refinements for NiFe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4}.

<table>
<thead>
<tr>
<th>Magnesium content (x)</th>
<th>secondary phase</th>
<th>Lattice parameter (a(\text{Å}))</th>
<th>oxygen parameter (u(\text{Å}))</th>
<th>(R_{\text{wp}})</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>62.6% (R\overline{3}c)</td>
<td>8.3729(4)</td>
<td>0.386,(\text{fixed})</td>
<td>3.11</td>
<td>1.23</td>
</tr>
<tr>
<td>0.8</td>
<td>22.6% (R\overline{3}c)</td>
<td>8.3742(4)</td>
<td>0.3864(4)</td>
<td>2.43</td>
<td>1.23</td>
</tr>
<tr>
<td>0.8</td>
<td>51.3% (R\overline{3}c)</td>
<td>8.3800(2)</td>
<td>0.3865(4)</td>
<td>1.62</td>
<td>1.19</td>
</tr>
<tr>
<td>0.8</td>
<td>47.9% (R\overline{3}c)</td>
<td>8.3789(1)</td>
<td>0.3849(3)</td>
<td>1.68</td>
<td>1.19</td>
</tr>
<tr>
<td>1.0</td>
<td>33.1% (R\overline{3}c)</td>
<td>8.3784(3)</td>
<td>0.3849(5)</td>
<td>2.35</td>
<td>1.13</td>
</tr>
<tr>
<td>1.0</td>
<td>33.8% (R\overline{3}c)</td>
<td>8.3832(5)</td>
<td>0.3832(5)</td>
<td>2.44</td>
<td>1.10</td>
</tr>
<tr>
<td>1.0</td>
<td>36.2% (R\overline{3}c)</td>
<td>8.3798(3)</td>
<td>0.3862(2)</td>
<td>1.54</td>
<td>1.16</td>
</tr>
<tr>
<td>1.0</td>
<td>15.0% (R\overline{3}c)</td>
<td>8.3772(2)</td>
<td>0.3844(2)</td>
<td>1.47</td>
<td>1.11</td>
</tr>
<tr>
<td>1.2</td>
<td>< 0.1% (R\overline{3}c)</td>
<td>8.3818(2)</td>
<td>0.3851(3)</td>
<td>2.30</td>
<td>1.08</td>
</tr>
<tr>
<td>1.4</td>
<td>1.3% (\overline{3}m)</td>
<td>8.3904(1)</td>
<td>0.3839(2)</td>
<td>1.36</td>
<td>1.11</td>
</tr>
<tr>
<td>1.6</td>
<td>1.3% (\overline{3}m)</td>
<td>8.3907(2)</td>
<td>0.3831(2)</td>
<td>1.56</td>
<td>1.27</td>
</tr>
<tr>
<td>1.6</td>
<td>2.3% (\overline{3}m)</td>
<td>8.3985(1)</td>
<td>0.3801(2)</td>
<td>1.39</td>
<td>1.15</td>
</tr>
<tr>
<td>1.8</td>
<td>3.7% (\overline{3}m)</td>
<td>8.3946(2)</td>
<td>0.3836(3)</td>
<td>2.50</td>
<td>1.69</td>
</tr>
<tr>
<td>1.8</td>
<td>5.0% (\overline{3}m)</td>
<td>8.3979(1)</td>
<td>0.3806(2)</td>
<td>1.48</td>
<td>1.17</td>
</tr>
<tr>
<td>2.0</td>
<td>3.9% (\overline{3}m)</td>
<td>8.3977(6)</td>
<td>0.3799(1)</td>
<td>1.32</td>
<td>1.17</td>
</tr>
<tr>
<td>2.0</td>
<td>5.9% (\overline{3}m)</td>
<td>8.3911(1)</td>
<td>0.3792(2)</td>
<td>1.39</td>
<td>1.10</td>
</tr>
<tr>
<td>2.2</td>
<td>< 0.1% (R\overline{3}c)</td>
<td>8.3919(1)</td>
<td>0.3791(3)</td>
<td>1.64</td>
<td>1.06</td>
</tr>
<tr>
<td>2.4</td>
<td>11.0% (\overline{3}m)</td>
<td>8.3864(1)</td>
<td>0.3787(2)</td>
<td>1.29</td>
<td>1.19</td>
</tr>
<tr>
<td>2.4</td>
<td>23.9% (\overline{3}m)</td>
<td>8.3860(2)</td>
<td>0.3795(4)</td>
<td>1.89</td>
<td>1.08</td>
</tr>
<tr>
<td>2.6</td>
<td>8.0% (\overline{3}m)</td>
<td>8.3880(1)</td>
<td>0.3801(4)</td>
<td>1.68</td>
<td>1.54</td>
</tr>
<tr>
<td>2.8</td>
<td>26.8% (\overline{3}m)</td>
<td>8.3888(1)</td>
<td>0.3780(3)</td>
<td>1.47</td>
<td>1.35</td>
</tr>
<tr>
<td>2.8</td>
<td>33.1% (\overline{3}m)</td>
<td>8.3881(1)</td>
<td>0.3783(4)</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>2.8</td>
<td>12.6% (\overline{3}m)</td>
<td>8.3885(7)</td>
<td>0.3774(3)</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>3.0</td>
<td>22.7% (\overline{3}m)</td>
<td>8.3908(4)</td>
<td>0.3792(2)</td>
<td>2.11</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Fe\textsubscript{x}Cr\textsubscript{3-x}O\textsubscript{4}
REFERENCES

135

VITA

Graduate College
University of Nevada, Las Vegas

Brian D. Hosterman

Local Address:
4050 Pacific Harbors Dr. Unit 141
Las Vegas, NV 89121

Degree:
Masters of Science, Physics, 2006
University of Nevada - Las Vegas, Las Vegas, NV

Bachelor of Science, Physics, 2001
Denison University, Granville, OH

Dissertation Title: Raman Spectroscopic Study of Solid Solution Spinel Oxides

Thesis Committee:
Chairperson, Dr. John Farley
Committee Member, Dr. Allen Johnson
Committee Member, Dr. Michael Pravica
Committee Member, Dr. Oliver Tschauner
Graduate Faculty Representative, Dr. rer. nat. Clemens Heske