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ABSTRACT 

Petrogenesis of Pleistocene basalts in the Norris-Mammoth Corridor, 
Yellowstone National Park 

by 

Kristeen Bennett 

Dr. Eugene Smith, Examination Committee Chair 
Professor of Geoscience 

University of Nevada, Las Vegas 

The basalts of the Norris-Mammoth corridor within the Yellowstone Plateau volcanic 

field have an outcrop erupted volume of -94 km3
• Basalt in the Yellowstone Plateau 

volcanic field is minor in volume compared to 3,700 km3 of felsic lavas, domes, and 

pyroclastic rocks. The tholeiitic eruptive products formed small Hawaiian-style shield 

volcanoes. A newly identified volcanic vent, called the Panther Creek vent, within the Swan 

Lake Flat basalt stratigraphic unit, was ptimarily Strombolian in its eruption style. This vent 

is the first recognized cinder cone in Yellowstone National Park. 

All basaltic units within the Norris-Mammoth corridor, and the Yellowstone Plateau 

volcanic .field, can be differentiated by isotopes and trace element geochemistry. This 

suggests that independent partial melting events of asthenospheric mantle were responsible 

for the petrogenesis of the basalts within the Norris-Mammoth corridor. The simplest model 

to explain the genesis of the youngest basalt unit (Swan Lake Flat basalt that erupted from 

the Panther Creek vent) in the Norris-Mammoth corridor is one of "source mixing." Partial 

melting produced EMORB-like basalt in the upper mantle. This basalt was contaminated 
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or mixed with older, fractionated basalt within the lithospheric mantle. 

More precise ages for post-Yellowstone caldera basalts, along with accurate Nd and Sr 

isotopes show a general decrease in 87 Sr/86Sr and increase in SNd with decreasing age of 

Norris-Mammoth corridor basalts. This suggests that the basalts in the Norris-Mammoth 

corridor may be recording a new influx asthenospheric partial melts into the overlying 

lithosphere. Pooling of multiple basaltic partial melts in the lithosphere may be melting 

surrounding crust, generating rhyolitic magma that may coalesce to form a batholith-sized 

magma chamber and produce a new caldera cycle. 
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CHAPTER 1 

INTRODUCTION 

Geologic Background 

Volcanism within the Yellowstone Plateau volcanic field has been intermittently active 

for the past 2.2 Ma (Doe et al., 1982; Obradovich, 1992; Christiansen, 2001). The most 

voluminous products of this volcanism are represented by rhyolitic ash-flow tuffs related to a 

"caldera cycle" (Christiansen, 2001). Each caldera cycle began with the extrusion of pre­

caldera rhyolite domes and flows, climaxed with the eruption of a caldera-forming ash-flow 

tuff, and ended with the extrusion of post-caldera rhyolite domes and/or flows. Eruptions of 

caldera-marginal basalts occurred throughout each cycle. The final stage of each caldera 

cycle is the infilling of each caldera with voluminous basalt flows, but this has yet to occur 

within Yellowstone National Park. Basalt fills older calderas in the smaller Henry's Fork 

caldera and the broad Snake River Plain basalt province, southeast of the Yellowstone 

National Park. Geophysical evidence suggests that there are numerous calderas buried 

beneath basalt flows of the Snake River Plain (Morgan eta!., 1984; Josten eta!., 1997). 

Two of these caldera cycles have been identified within Yellowstone National Park, the 

third is to the southwest in the Island Park area (See Figure 1 ). The first caldera cycle began 

during the late Pliocene (2.1 Ma) with eruption of the Hucklebmy Ridge Tuff (2,500 km3
) 

(Christiansen, 2001). The Junction Butte Basalt and the Basalt of the Narrows are associated 

with this tuff. Hepburn Mesa basalt, which crops out approximately ten kilometers north of 



the town of Gardiner, may also be a part of this caldera cycle (Smith et a!., 1997). The 

volume of rhyolite and basalt related to this cycle may have been more abundant but is not 

detectable because of yow1ger volcanic cover associated with later caldera cycles. 

The Henry's Fork Caldera (previously known as the Island Park Caldera) formed during 

the second caldera cycle at 1.2 Ma (Christiansen, 2001). The Henry's Fork Caldera eruption 

produced the Mesa Falls Tuff (280 km\ The eruptions of Undine Falls Basalt, Fall River 

Basalt, Basalt of Warm River, and Basalt of Shotgun Valley are thought to be related to this 

caldera cycle (Christiansen, 2001). GetTit Basalt occurs within the Henry's Fork Caldera and 

its eruption may indicate later stages of caldera development; the same progression that has 

been observed within the Snake River Plain (Christiansen, 2001). 

The Yellowstone Caldera formed during the third, most recent cycle. This cycle 

culminated with the eruption of the Lava Creek Tuff in a single, I ,000 km3 cooling unit 

during the middle Pleistocene (640 ka) (Christiansen, 2001). A nwnber of exposures of 

basalt related to the third cycle are exposed to the north of the caldera rim. These include 

Osprey Basalt, Madison River Basalt, Basalt of Geode Creek, and Swan Lake Flat Basalt. 

Falls River Basalt and the Basalt of Mariposa Lake are exposed south of the present caldera 

(See Figure 2). 

To the southwest, the Yellowstone Plateau merges with the Snake River Plain near the 

Henry's Fork Caldera. Hamilton (1960, 1963, 1964, and 1965) and Hamilton and Wilshire 

(1965) first suggested that there was a "volcanic association" linking the Snake River Plain 

and the Yellowstone Plateau. Basalts of the Snake River Plain overlap some of the older 

rocks of theY ellowstone Plateau field at its southwestern margin. 
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Basalts in the Norris-Mammoth corridor 

This study focuses on the extracaldera basalts in the Norri.s-Mammoth corridor. These 

basalts are olivine tholeiites with sparse phenocrysts of plagioclase and rare olivine. The 

groundmass is composed of olivine, clinopyroxene, labradorite, and some iron and titanium 

oxides (Christiansen, 2001). For this study, the following basalt fields within the Norris­

Mammoth corridor were studied: (1) Swan Lake Flat Basalt, (2) Madison River Basalt, and 

(3) Undine Falls Basalt. Swan Lake Flat and Madison River basalts are known to have 

erupted after the Lava Creek Tuff. Based upon volcanic stratigraphy and a Kl Ar date of 580 

ka, Undine Falls basalt erupted after the Lava Creek Tuff (Obradovich, 1992). These basalts 

will be used to determine if: 

l. any of the basalts sampled can be geochemically derived from one another; 

2. the mantle source of basalts in the Yellowstone Plateau volcanic field can be 

determined; 

3. the basalts of the Norris-Mammoth corridor signify a new influx asthenosphere­

derived partial melts into he overlying lithosphere or the waning stages of the 

Yellowstone caldera cycle. 

Previous Work 

The volcanic origin of Yellowstone was first recognized by F. V. Hayden and others 

(Hayden, 1872; 1873; Bradley, 1873; Peale, 1873) during the Geological and Geographical 

Survey of the Territories. Since its recognition as a volcanic field, Yellowstone's 

topographic and hydrothennal features have been attributed to large-scale, caldera-creating 

volcanism. 
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The distinction between the Tertiary Absaroka rhyolites and the Cenozoic ash-flow tuffs 

related to the present Pliocene and Pleistocene calderas was first made during an U.S. 

Geological Survey (USGS) study under the direction of Hague between 1883 and 1889 

(Hague, 1912). In the early stages of this survey, Iddings (1888; 1889a,b) illustrated the 

apparent association of Yellowstone basalt and rhyolite. Later work focused on specialized 

problems such as the origin of the mixed basalt-rhyolite lavas of the Gardner River. Fenner 

(1938, 1944), Wilcox (1944), and Hawkes (1945) focused on the possible mechanisms 

producing the mixed lavas. 

The most comprehensive mapping of the Yellowstone area was undertaken by the U.S. 

Geological Survey, more specifically by Christiansen (1974) and Christiansen and Blank 

(1974a, 1974b, 1975a, 1975b). Subsequently Christiansen and Blank (1972), Christiansen 

(1979, 2001) and Smith and Christiansen (1980) described the stratigraphic relationships and 

general geology. During this period of extensive mapping, Christiansen and others identified 

the emptive products of at least three calderas within the Yellowstone Plateau volcanic field. 

Doe et a!. (1982) performed preliminary geochemical and isotope geochemistry of the 

basalts and rhyolites associated with the third caldera cycle. Specifically, they focused on 

Pb, Sr and Th!U isotopic systems. They noted that within the northern Rocky Mountains and 

the Snake River Plain, volcanic rocks characteristically have higher 87Srl6Sr and lower 

206PbP04Pb than Oceanic Island Basalt (OIB). According to Doe et a!. (1982) the 

relationships between 207Pb/204Pb and 206PbF04Pb indicate the involvement of 1.5-3.0 Ga 

rocks in the source material (upper mantle keel?) and not contamination by cmstal material. 

Hildreth et a!. (1991) also suggested contributions of old lithospheric mantle to the melt 

source. Their evidence is substantiated by elevated baseline Nd and Sr isotope ratios. 
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However, Hildreth et a!. (1991) suggested that the basaltic melt is also contaminated by 

crustal components, more specifically hydrothem1al brines. In addition, Hildreth et a!. 

(1991) provided evidence for crustal contamination including quartz xenocrysts and the 

enriched values of LIL (Large Ion Lithophile) elements relative to Mid-ocean Ridge Basalt 

(MORB). Christiansen (2001) organized his initial field observations, preliminary major and 

trace element data, petrographic descriptions, and stratigraphic relationships into a U.S. 

Geological Survey Professional Paper. 
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Figure 1: Depiction of the three caldera cycles within the Yellowstone Plateau 
volcanic field. The overlap of the basalts of the Eastern Snake River Plain is also 
shown west of the "First" and Henry's Fork Calderas. The boundary of 
Yellowstone National Park is shown with a dashed line. 
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Figure 2: Exposures of basalts and their relationship to caldera cycles according to a 
figure modified from Hildreth et al. (1991). Basalts: jb=Junction Butte; tr=Teton 
River; sv=Shotgun Valley; wr=Warrn River; fr=Falls River; uf=Undine Falls; 
rnr=Madison River; slf=Swan Lake Flat; os;Qsprey; gc=Geode Creek; ml=Mariposa 
Lake; and glm=Grizzly Lake mixed lavas. I, II, and III represent the calderas formed 
during 11ach of the three caldera cycles. 
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CHAPTER2 

PHYSICAL VOLCANOLOGY 

The infonnation presented in this chapter is a compilation of stratigraphy, 

geochronology, and physical volcanology of lava flows and vent areas within the Norris­

Mammoth corridor, the Madison Plateau, and north of the town of Gardiner, Montaoa. All 

basalts are considered as units within in the Yellowstone Plateau volcanic field. 

The eruptive sequence of lava flows, shields, and cinder cone( s) is difficult to detennine, 

because there is extensive cover of glacial till associated with pre-Pleistocene and Pleistocene 

glaciation events and/or alluviun1. Regional volcanic stratigraphy, however, was established 

by Pierce (1979). Geologic mapping by Christiansen (1974) and Christiaosen and Blank 

(1974a, 1974b, 1975a, 1975b) detennined the regional stratigraphic relationships, but not the 

stratigraphy within each volcanic center. The ages of the basalts were determined by (I) 

previously published Kl Ar dates by Obradovich (1992), (2) their stratigraphic relationship to 

other volcanic units of known age, and (3) by new 40Ar/39 Ar ages as part of this thesis. Units 

were named by Christiaosen (1974) and Christiansen and Blank (1974a, 1974b, 1975a, 

1975b) during the mapping of the volcanic field. Names of vent areas vent areas were based 

upon the closest known geographic reference point. 
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Basalt flow thickness ranges from 3 to 14 meters. Any estimate of flow thickness within 

the Yellowstone Plateau volcanic field is a minimum estimate; it is impossible to determine 

the thickness of flow removed by glaciation. Additionally, most of the flows are covered by 

glacial drift and/or alluvium and cross-sectional views perpendicular to flow direction are 

extremely rare. 

Units are described below from oldest to youngest and summarized on a stratigraphic 

section (See Figure 3). The petrography of each unit is discussed in Chapter 3. 

Hepburn Mesa basalt 

Hepburn Mesa basalt crops out approximately 10 km northwest of the town of Gardiner 

within the northern most portion of the Yellowstone Plateau volcanic field. First described 

by Bush (1967), the flows cover an area of 35.5 km2 with no identified vent area, although 

numerous small basaltic dikes of unknown age crop out to the west of the main flow(s). The 

Hepburn Mesa basalt flow sampled for this project contains plagioclase and olivine 

phenocrysts. The flow is massive and the sparse vesicles (<1 %) are partially filled with 

calcite. It overlies bedded Tertiary sedimentary rocks deposited within the Yellowstone 

River valley. Bush (1967) produced a Kl Ar date of 8.4 Ma, but an 40 Ar/39 Ar date of 2.2 Ma 

is reported by Smith et a!. (1997). 

Basalt of Warm River and Shotgun Valley 

The basalts of Warm River and Shotgun Valley crop out southeast of the Henry's Fork 

Caldera within the Warm River canyon and northeast of the Island Park reservoir. These 

outcrops collectively cover an area of 86 km2
. Flows erupted prior to the eruption of 

Member B of the Lava Creek tuff (0.640 Ma) and after the eruption of the Mesa Falls tuff 

(1.3 Ma). 
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Four vents for the Basalt ofWann River and Shotgun Valley were mapped by Hamilton 

(1965) and by Christiansen (2001). These include two fissure eruptions and two small 

Hawaiian-type shield volcanoes. These vents are to the northeast of the Island Park reservoir, 

a depression in the northern part of the Henry's Fork Caldera. 

A Kl Ar date of 0. 759±0.052 Ma for the Wann River flows was produced by Obradovich 

(1992). The basalt of Shotgun Valley is presumed older by Christiansen (2001) with a 

probable age between 1.3 Ma and 0.78 Ma. Christiansen (2001) constrained these ages by 

the Mesa Falls tuff (1.3 Ma) and by the fact that the basalt of Warm River overlies the basalt 

of Shotgun Valley near the Island Park reservoir. 

Undine Falls basalt 

Undine Falls basalt crops out north and northeast of the Yellowstone Caldera within (1) 

the Yellowstone River canyon; (2) on the steep banks of Lava Creek; (3) north of Blacktail 

Deer plateau; and (4) in faulted remnants in the Mirror Plateau fault zone (See Plate 1). 

Christiansen and Blank (1974a; 1974b; 1975a; 1975b) also mapped the basalt flows above 

Gardner, Montana as Undine Falls basalt. The only vent location identified by Christiansen 

and Blank (1974a; 1974b; 1975a; 1975b) occurs within the normal-faulted Mirror Plateau 

outcrop. 

Undine Falls basalt flows are light to dark gray and weather to olive gray. They are 

massive, vesicular, and holocrystalline. Large 1.5 to 3.0 mm vesicles are present in bands. 

Some vesicles exhibit diktytaxitic texture and may be partially filled with calcite, zeolites 

such as stilbite, or botryoidal hematite. Smaller vesicles occur in flows that exhibit a 

"frothy" texture. This frothy texture can be described as a I to I ratio of< 0.1 mm vesicles 
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to matrix. This flow has a K/Ar date of 0.588±0.032 Ma and covers an area of 8 km2 

(Obradovich, 1992). 

Madison River basalt 

There are at least twelve outcrops of basalt on the Madison Plateau northwest of the 

Yellowstone Caldera. These outcrops have a total area of 23 km2 The Madison River basalt 

flows are light to medium gray, massive, and holocrystalline. Large, 1.5 to 3.0 em vesicles 

are present within vesicle bands. Smaller vesicles occur in flows that exhibit a "frothy" 

texture. 

Samples were collected from a small 0.5-km diameter shield volcano 1.3 km north of the 

Madison River and from a flow with no known vent area 1-km east of the western 

Yellowstone National Park boundary. The flows of the shield are medium to dark gray and 

contain only a few vesicles. Shield formation culminated with a Strombolian phase that 

produced lapilli to block-sized (2-8 em) reddish-brown to black lapilli and scoria (See Figure 

4). 

A flow without a known vent, located 0.5 km southwest of the Madison River, is dense, 

medium gray basalt. In the bands of vesicles, bubbles are imbricated and suggest a flow 

direction of II 0°. This flow is geochemically similar to Falls River and Warm River basalts 

and has an 40 Ar/39 Ar isochron age of 0.358±0.019 Ma. Based on geochemical data (Chapter 

4), it is more likely that this flow is Falls River basalt and is not Madison River basalt. 

Christiansen (2001) suggested that the Madison River basalt flows are <0.40 Ma but 

>0.13 Ma. The upper age of this basalt unit is constrained by the intruding Cougar Creek 

rhyolite dome (0.399±0.003 Ma) (Obradovich, 1992). During field reconnaissance, no 

contact was located between the Madison River basalt shield and the Cougar Creek rhyolite 
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dome. A dike of Madison River basalt cuts an outcrop of the Riverside rhyolite flow, thus 

the Madison River basalt must be younger than the Riverside flow. The relationship of the 

Riverside flow to the Cougar Creek dome is unknown. The age of the Riverside Flow has 

not been determined, therefore it can not be used as a stratigraphic check. 

Swan Lake Flat basalt 

Swan Lake Flat basalt is the least eroded and most voluminous of the basalt units in 

Yellowstone National Park and covers an area of 58 km2 Multiple vents were identified by 

Christiansen (1974), Christiansen and Blank (1974a; 1974b; 1975a; 1975b), and Christiansen 

(2001) and all occur north of the Yellowstone Caldera in the Norris-Mammoth corridor. The 

ages of these flows are constrained by the Lava Creek tuff, which lies beneath the basalt 

(0.640+0.002 Ma), and by the Obsidian Cliff rhyolite flow (0.116±0.008 Ma) that intrudes 

the basalt. There are four source areas for the Swan Lake Flat basalt. These are the Panther 

Creek cinder cone, the Tower Road shield, and two Horseshoe Hill vents. 

Horseshoe Hill vents 

Flows from the Horseshoe Hill vents cover an area of 36 krn2
• They prodnced the most 

voluminous flows of Swan Lake Flat basalt. The flows are light to medium gray and 

massive. Additionally, they are holocrystalline and slightly vesicular. The rounded vesicles 

range in size from 0.25 to 3.0 em. The vesicles make up 2 to 3% of the rock by volume. Due 

to the inaccessibility of these vents (due to 1989 fire damage), only two samples were 

collected and the vent areas were not studied. 

Tower Road shield 

The silhouette of this broad shield volcano is visible from a hill near Swan Lake (See 

Figure 5). A gentle, Hawaiian-style eruption produced the 120-meter high, 16-krn2 shield. 
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Its eruption culminated with a Strombolian phase (see Madison River basalt for description 

of this type of shield eruption). The evidence for the Strombolian eruption is the presence of 

reddish gray to dark gray, lapilli to block-sized scoria at the summit of the shield. 

The basalt flows are massive and medium to dark gray, but may weather to a dusky red 

purple along fractures. Additionally, they are holocrystalline and contain a small volume (-

5%) of vesicles that vary in size from 0.5 to 2.0 em. This shield is underlain by Lava Creek 

tuff. 

Panther Creek vent 

The Panther Creek vent was discovered during field mapping as part of this study. Its 

emption style was primarily Strombolian and produced a cinder cone. Its geochemistry is 

also distinctly different from the other known Swan Lake Flat basalt vents. The Panther 

Creek vent is described in detail in Chapter 3. 

Osprey basalt 

Outcrops of Osprey basalt occur within the Yellowstone River Canyon south of Mt. 

Everts and 18 kilometers northeast of the Yellowstone Caldera within the Lamar River 

Canyon in YNP. Christiansen (1974), Christiansen and Blank (1974a, 1974b, 1975a, 1975b) 

identified the only known vent for this basalt within the Lamar River canyon. The vent for 

the flow within the Yellowstone River canyon has not been identified. The outcrop area of 

this unit is 5.25 km2 

The basalt flows are massive and dark gray to black. They are holocrystalline and 

slightly vesicular. The vesicles may be partially filled with calcite. The flow in the 

Yellowstone River Canyon overlies the Undine Falls basalt in some locations and overlies 
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Lava Creek tuff in other locations within the canyon. A K/Ar date of 0.220±0.041 Ma 

suggests that this basalt flow is the youngest in the Yellowstone Plateau (Obradovich, 1992). 

Falls River basalt 

Falls River basalt crops out within the Henry's Fork Caldera and covers a total area of 

316 km2
. One part of the unit crops out south of the Henry's Fork Caldera, near Ashton, 

Idaho and covers an area of 96 km2 The larger outcrop area (220 km2
) occurs southeast of 

the Henry's Fork Caldera and infringes upon the southwestern corner of Yellowstone 

National Park. Christiansen (2001) mapped one vent for Falls River basalt; the nature of this 

vent is unknown. This unit overlies the Mesa Falls and Lava Creek tuffs (0.640 Ma). It is 

also partially covered by Pleistocene glacial drift and by the Pitchstone member of the 

Yellowstone Central Plateau rhyolite that has a K/Ar age ofO.llO±O.OOl Ma. Based on this 

information, Christiansen (2001) determined a probable age for Fall River basalt of>0.11 but 

<0.64Ma. 

Gerrit basalt 

Gerrit basalt crops out within the structural depression of the Henry's Fork Caldera in the 

southwestern portion of the Yellowstone Plateau volcanic field. Hamilton (1969) 

petrographically described the pahoehoe flows as "gabboric" due to their porphyritic 

appearance and identified at least tlu·ee vent areas. Porphyritic flows cover most the caldera 

floor and their total outcrop area is 528 km2
• All of the Gerrit basalt sampled in this study is 

dark gray to black and massive to slightly vesicular. 

Later mapping by Christiansen (1974) and Christiansen and Blank (1974a; 1974b; 1975a; 

1975b ), located at least 13 vent areas for the Gerrit basalt, although the nature of these vents 

(i.e. whether they are shields of cinder cones) was not dete1mined. Gerrit basalt locally 
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overlies the B Member of the Lava Creek tuff, which erupted from the Yellowstone Caldera 

at 0.640±0.002 Ma (Obradovich, 1992) (See Figure 3). 

In the northwest portion of the Henry's Fork Caldera, Gerrit basalt overlies the Mesa 

Falls tuff produced by the eruption of the Henry's Fork Caldera. On the southwestern rim of 

the caldera, Snake River Plain basalts overlap the Henry's Fork Caldera and the Gerrit basalt. 

The Gerrit basalts also flowed around numerous rhyolitic flows and domes (i.e. Bishop 

Mountain flow, Osbourne Butte dome, Elk Butte dome, Silver Lake dome) of the Snake 

River Group. Obradovich (1992) produced a K/Ar date for one dome within the Snake River 

Group at 0.198±0.008 Ma and a date of 0.199±0.009 Ma for the Hatchery Butte flow of the 

Gerrit Basalt. Because the Gerrit basalt flowed around a dome within this group, its probable 

age is <0.198 Ma. 

Discussion 

Two types of basalt volcanoes (shields and cinder cones) were documented. The 

Madison River and Tower Road shields are smaller in volume than typical Hawaiian-type 

shields like Mauna Loa and have steeper slope angles than Hawaiian shields (Williams, 

1932). Small volume, monogenetic shields, like those described in Yellowstone National 

Park, have been documented within the Snake River Plain and within Lassen Volcanic 

National Park (Hughes et al., 2004; Sakimoto et a!., 2003; Williams, 1932). These small 

shields, like the shield on the Madison Plateau and south of the Tower Road, are composed 

almost entirely of massive basaltic flows, except for the scoria and lapilli found within their 

summit craters. 

The shield volcanoes in Lassen Volcanic National Park are similar to those in 

Yellowstone National Park. They are approximately 4 to 5-kln in diameter at their base and 

15 



have well formed cinder cones at their summits. Williams (1932) suggested that these cinder 

cones represented the gas-charged, upper portions of the volcanic conduit. Hughes et a!. 

(2004) noted that many of the shield volcanoes on the Snake River Plain have shallow angle 

slopes at their base with steeper angle, dome-like summits. The lavas at the base have fewer 

vesicles and fewer phenocrysts that the lavas erupted near the summit crater. The lavas near 

the summit "dome" have diktytaxitic networks of larger phenocrysts (25 vol %). Hughes et 

a!. (2004) suggest that the lavas found near the steep-summit region are more fractionated 

than those found at the base. The increased phenocryst size and content due to fractionation 

causes the magma viscosity to increase thereby increasing the steepness of the slope angles 

of the shield. If the viscosity increase is coupled with an increase in volatile content, the 

eruption style of the shield could change from Hawaiian to Strombolian, producing a cinder 

cone within the summit crater of the shield. 
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Probable or 
Analytical 

Age (inMa) 

<0.20 

0.220+0.041 

>0.32, <0.64 
0.590+0.065 
0.174+0.046 

>0.11, <0.64 

>0.13, <0.40 
0.530+0.06 

0.588+0.026 

0.640+0.002 

0.759+0.052 

1.292+0.005 

2.053+0.006 

2.2+0.0 

Rock Unit Name 

Gerrit basalt 

Osprey basalt 

Swan Lake Flat basalt 

Gardner River mixed lavas 
(basalt and rhyolite) 

Fails River basalt 

Madison River basalt 

Undine Falls basalt 

Lava Creek tuff 
(Yellowstone caldera cycle) 

Warm River basalt 

Mesa Falls tuff 

Rock Unit Type 

(Henry's Fork caldera cycle) .......,_,......41:~::V~d~4--"'..._.. 

Huckleberry Ridge tuff 
("First" caldera cycle) 

Hepburn Mesa basalt 

Figure 3: Stratigraphic section depicting the relative and absolute ages of basalts 
sampled during this study. Ages were complied from Christiansen (2001) and 
Obradovich (1992); ages determined during this study are in italics. The ages of the 
ash-flow tuffs ~d mixed lava units are inserted to provide chronostratigraphic 
constraints on the ages of the basaltic units. 
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Figure 4: Strombolian phase products (lapilli 
and cinders) in the summit crater of Madison 
River shield. Lense cap is 5. 7 centimeters in 
diameter. 

0 5 10 em 

Figure 5: Tower Road shield within the Swan Lake Flat basalt unit. View to south. 
Shield is approximately 120 meters high and 1330 meters in diameter. 
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CHAPTER3 

DESCRIPTION OF THE PANTHER CREEK VENT 

The Panther Creek vent is 1.8 km southwest of Swan Lake and 1.5 km northwest of the 

Yellowstone National Park Sheepeater Cliff roadside exhibit (See Figure 6). This vent area 

was discovered during this study. It is significant because it represents the first cinder cone 

f01med by a Strombolian eruption in Yellowstone National Park. 

This cinder cone is 0.75 km in diameter at its base. The cone and its associated flows 

cover an area of approximately 6 km2
• Pleistocene glaciation has eroded the cone; therefore 

it is impossible to detennine its original height. The present height of the cone is 75 meters. 

At least three eruptive stages were identified (See Figure 7). During the first eruptive 

phase, partially molten, reddish brown scoria and bombs produced a broad agglutinate cone 

with a summit crater. Some bombs are cored with partially melted "granitic" xenoliths (See 

Figure 8). The amount of melt (visible obsidian) present in the xenoliths varies from <I% to 

90%. The xenoliths with <1% to 10% melt have a light pink groundmass with 20% 

phenocrysts of feldspar (15%) and quartz (5%). The xenoliths that are visibly melted (10 to 

80% melt) consist of a black obsidian groundmass with up to 15% phenocrysts of 0.5 to 1-

mm-sanidine. 

The second eruptive phase produced a lava lake within the summit crater. A 1-meter 

thick exposure of lava lake basalt crops out near the sununit of the cone (See Figure I 0). 
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The lava lake basalt has subtle banding identified by alternating light and dark gray streaks 

(See Figure 9). Besides differing in color, these light and dark streaks difter in phenocryst 

abundance and composition. The light gray bands contain large (0.5-mm) plagioclase laths 

(95%) and rare, miniscule (<I 0 f.!ID) iron oxides grains (<5%) in a holocrystalline 

groundmass. The dark gray bands contain fewer, and smaller ( <0.2 mm), plagioclase laths 

(80%) and larger and more abundant iron oxides grains (20%). 

At the culmination of the second eruptive phase, the lava lake overflowed producing 

flows to the northeast (towards Sheepeater Clift) and to the south (toward Indian Creek 

campground). The flow near the Indian Creek campground is approximately 3.5 meters 

thick, while the flow exposed at Sheepeater Cliff is 8 meters thick. The total volume of the 

flows produced during this stage is approximately 0.03 km3
• 

In thin section, the flows closest to the central vent area have a "swirly" appearance. The 

visible swirls appear to be the same light and dark gray bands visible in lava lake basalt. The 

"swirly" appearance of the lava flows was created as the lava lake spilled over the rim of the 

summit crater and flowed down the slopes of the broad cone. The "swirly" textured lava 

flows are found as far as Indian Creek to the south and 0.5 km southwest of Swan Lake to the 

north (See Figure 6). 

During the third phase, welded scotia erupted again. This reddish-brown agglutinated 

scoria does not contain any of the partially melted felsic xenoliths visible in the products of 

the first eruptive stage. The scoria of this stage crop out on top of the remnants of the lava 

lake and flows (See Figure 11 ). The quantity of the erupted material is unknown. 

A 2.5-m wide composite dike crops out on the northeastem side of the cone (See Figure 

12). This composite dike represents the conduit of this cinder cone. The presence of this dike 
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was critical to the recognition of the Panther Creek cone. The outer portion of the composite 

dike is massive and contains few plagioclase phenocrysts. This portion of the dike is cut by 

the inner dike and is 0.5 meters thick. The outer part of the dike contains 4 to 25 em 

diameter partially-melted granitic xenoliths similar in appearance to the xenoliths described 

in the first stage agglutinated material. Therefore, this portion of dike probably erupted the 

agglutinated scoria of the first eruptive stage. The inner portion of the dike is 2 meters thick 

and is similar in texture and mineralogy to the outer dike, but does not contain any xenoliths. 

Near the top of the im1er dike, it appears to "tum over" to become a lava flow that flowed to 

the north (See Figure 13 ). 

Lava Creek tuff is exposed in gullies below Panther Creek lava flows to the northeast of 

the cone. At the terminus of basalt flows near Sheepeater Cliff, Panther Creek basalt lies 

stratigraphically above the Gardner River mixed basalt and rhyolite lavas. 

Additionally, the lava lake within the Panther Creek cone may have served as a resistant 

layer within the cinder cone that allowed for the preservation of most of the cone during the 

numerous Pleistocene glacial episodes. 

Discussion 

Small volume lava lakes that erupt within the summit craters of cinder cones have been 

documented by many, but the processes involved during their infilling have not been 

described in great detail (Kuntz eta!., 1982; Wolfgang eta!., 1987). The most studied lava 

lake (and most cited in the literature) is the lava lake that fom1ed on the flanks of Kilauea at 

Kilauea Iki. This lava lake fotmed during the 1959-1960 eruptive phase and accumulated 

during a period of lava fountaining (Richter and Moore, 1966). Ultimately, the creation of 

the Kilauea Iki lava lake caused the lava fountaining to cease. The formation of the lava lake 
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within the Panther Creek cone may have accomplished the same feat, by stifling the 

Strombolian emption that formed the cinder cone. The Strombolian emption did not end 

entirely. The emption of scoria most likely continued after the lava lake overflowed its crater 

"basin" because agglutinated scoria overlies the lava lake exposure. 

Also, convection within the 111-meter thick Kilauea lki lava lake was presumed to have 

thoroughly mixed the repeated injections of basalt into one chemically homogeneous unit. 

This appears to have not been the case within the Panther Creek lava lake, as discrete bands 

divided by vesicle layering have preserved a record of the infilling of this lava lake. One 

light (Fe-oxide poor and plagioclase rich) and one dark (Fe-oxide rich, plagioclase poor) may 

represent one period of magma injection into the lake. Alternatively, the alternating colors 

and mineral contents could have been produced by flow banding within one flow. 
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Figure 6: Field map of the newly identified Panther Creek vent within the Swan 
Lake Flat basalt unit. 
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Phase 1 

Phase 2 

Phase 3 
\Phase 1 cone 

~ Phase 1 and 3 scoria cones 

- Outer part of dike 

~ Lava-lake basalt, lava flows and inner part of dike 
related to phase 2 and 3 activity 

Figure 7: Stages of development of the newly discovered Panther Creek cinder 
cone in the Swan Lake Flat basalt unit. 
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Figure 8: Reddish-brown to gray agglutinated 
scoria produced by the fust eruptive stage of the 
Panther Creek vent. Volcanic bomb is composed 
of a partially melted granite block that is 35 em 
across. 

0 5 10 em 
---~:::=::::::a 

Figure 9: Banded lava found within summit crater of Panther Creek vent. 
The banded lava formed within a lava lake. Lens cap is 5.7 centimeters 
in diameter. 
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2"' stage lava lake 

Figure 10: Outcrop oflava lake in the Panther Creek summit crater. 
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Figure 12: Composite dike found on northeast side 
of the Panther Creek cone. Tbis dike represents the 
feeder dike for the Panther Creek vent. Hammer 
handle is 35 centimeters long. 
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Figure 11: Reddish-brown agglutinated scoria 
produced during the third eruptive stage of the 
Panther Creek vent. Agglutinated scoria does 
not contain any of the partially melted felsic 
xenoliths of the first eruptive stage. 
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Figure 13: The inner part of the composite dike turns over into a flow towards the north. 
The outer dike is in contact with the agglutinated scoria of the first eruptive stage. 
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CHAPTER4 

GEOCHEMISTRY 

Analytical Techniques 

Thirty-four basalt samples were collected north of the Yellowstone Caldera within the 

Norris-Mammoth corridor. Basalts associated with the Henry's Fork (Gerrit, Fall River, and 

Warm River basalts) and first caldera (Hepburn Mesa basalt) cycles were also collected. 

Each sample was bagged and labeled and consists of fresh pebble to cobble-sized rock 

pieces. Samples were crushed to pea size in a Bico chipmunk crusher. The chipmunk 

crusher is equipped with tungsten-carbide jaws. The pea size pieces were handpicked to 

identify those samples that contained vesicle fillings. The clean pieces were then placed in a 

shatterbox that uses a tungsten-carbide ring inside a tungsten-carbide lined stainless steel 

bowl. 

Major, and trace element (Ni, Cr, Sc, V, Ba, Rb, Sr, Zr, Y, Nb, Ga, Cu, Zn, Pb, La, Ce, 

and Th) analyses were done using a Rigaku automated X-ray fluorescence spectrometer 

(XRF) at the GeoAnalytical laboratory at Washington State University. Additional trace 

element and rare-earth element (REE) analyses (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, 

Tm, Yb, Lu, Ba, Th, Nb, Y, Ht; Ta, U, Ph, Rb, Cs, Sr, Sc, Zr, and W) were completed using 

a Hewlett-Packard inductively coupled plasma mass spectrometer (ICP-MS) at the 

29 



GeoAnalyticallaboratory at Washington State University. Precision and accuracy for XRF 

and ICP-MS analyses are reported in Appendix A. 

Sr, Nd, and Pb isotopes were analyzed by the Isotope Geochemistry Laboratory at the 

University of Kansas. Feuerbach et al. (1993) provides a detailed description of the methods 

of isotope analysis. Precision and accuracy are reported in Appendix B. 

Geochemistry of Basalts in the Yellowstone Plateau 

Volcanic Field and the Snake River Plain 

The basalts of the Yellowstone Plateau volcanic field and Snake River Plain are 

subalkaline tholeiites (See Figures 14-16) with Si02 ranging from 45.5 to 51%. Basalts in 

the SRP (46.6-50%) and those associated with the Henry's Fork Caldera (45.7-49.83%) are 

lower in silica than those associated with the Yellowstone Caldera (48.3-51.2%) (See Figure 

17). Previous authors have suggested that this increase in silica content is due to crustal 

contamination (Hildreth et al., 1991 ). Magnesium numbers (Mg#) vary from 46 to 59 in 

those basalts associated with the Yellowstone Caldera (See Figure 18). This suggests that 

they are somewhat evolved compared to Mg # of 68-75 for those basalts that are in 

equilibrium with mantle olivine compositions (Wilson, 1989). The Gerrit basalts associated 

with the Henry's Fork Caldera are less evolved with Mg # of 49 to 69. Snake River Plain 

basalts have a broader range ofMg# from 35 to 68. 

CaO ranges from 8.61 to 11.42 wt%. For basalts of the Yellowstone Plateau volcanic 

field, K20, CaO, Ti02, and MnO increase with increasing SiOz, while Ah03, FeO, MgO, and 

P20 5 decrease with increasing Si02 (Figure 17). Basalts of the Snake River Plain have 

slightly different trends; FeO, MgO, Na20, K20, PzOs, and MnO decrease with increasing 

SiOz. 
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A chondrite-nonnalized spider diagram shows that the tholeiitic basalts within the 

Yellowstone Plateau volcanic field are similar to continental flood basalts (See Figure 19). 

An OrB-normalized spider diagram indicates that tbe basalts are also similar to ocean island 

basalts, but are slightly depleted in large ion lithophile elements (LIL ), light rare earth 

elements (LREE), and high field strength elements (HFSE) and are slightly enriched in heavy 

rare earth elements (HREE) compared to OIB (See Figure 20). On an EMORB-nonnalized 

spider diagram (Figure 19), the Yellowstone Plateau volcanic field basalts are equal to 

slightly enriched in LILE, HFSE, and LREE and have similar to HREE abundances. The 

significance of this figure will be discussed in Chapter 7. 

Major Elements 

Major and Trace Element Geochemistry of Basalts 

in the Norris-Mammoth Corridor 

Magnesium numbers (Mg#) for basalts of the Norris-Mammoth corridor vary from 46 to 

59 indicating that these basalts are somewhat evolved compared to mantle peridotite with 

Mg# of 68 to 75 (Wilson, 1989). Si02 contents range from 47 to 52.9-wt%. Al203, MgO, 

CaO, Na20, Ti02, P20 5, and MnO decrease with increasing SiOz (See Figure 21). K20 

increases with increasing Si02. 

Trace Elements 

A plot of Cr versus Sr defines several volcanic centers within the Norris-Mammoth 

corridor. Undine Falls basalt has the highest Sr and lowest Cr in the volcanic field. Cr 

increases and Sr decreases in successively younger Swan Lake Flat basalts. A similar trend 

of increasing Cr and decreasing Sr is seen in the Osprey basalt (Figure 22). 
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A plot of Sr versus Zr/Nb was used to discriminate between the vent areas within the 

Swan Lake Flat basalt (See Figure 23). This plot was also used to determine if the basalts 

with no known vent areas were geochemically related to other basalts within the volcanic 

field. The basalts associated with the Panther Creek vent have intermediate Sr (325 to 3 70 

ppm) and low Zr/Nb (7.6 to 8.4). The basalts associated with the Tower Road vent have high 

Sr (425 to 440 ppm) and low Zr/Nb (7.9 to 8.1 ). Last of all, the basalts associated with the 

Horseshoe Hill vent areas have moderate to high Sr (380 to 420) and moderate to high Zr/Nb 

(9.8 to 10.2). 

On a plot of Ni vs. Cr, basalts associated with the Panther Creek cone have higher Cr 

(253 to 330 ppm) but have intermediate Ni (83 to 93 ppm) compared to the other Swan Lake 

Flat vents (See Figure 24). The Horseshoe Hill vents have low Cr (106 to 124 ppm) and 

intermediate Ni (91 to 94 ppm). Tower Road shield vent basalts also have low Cr (132 to 

135 ppm) and intermediate Ni (87 to 91 ppm). 

Isotopic geochemistry of Basalts 

in the Norris-Mammoth Corridor 

Basalts associated with the Panther Creek vent have the lowest 87Sr/86Sr (0.7052 to 

0.7054) and the lowest f.Nd (0.20 to -0.18) compared to the other basalts within the Norris­

Mammoth corridor (See Figure 25). Basalts associated with the Horseshoe Hill vents have 

intermediate 87Sr/86Sr (0.7060) and low to intermediate €Nct (-2.53) compared to the other 

basalts within the Norris-Mammoth corridor. These basalts also have the highest 87Sr/
86

Sr 

and ENd of all the Swan Lake Flat basalts. The basalts associated with the Tower Road vent 

have low 87Sr/86Sr (0.7056) and low BNct (-2.38). The Osprey basalts also have low 87Sr/86Sr 

(0.7054) and one of the lowest ENd (0.14) in the Norris-Mammoth corridor. Undine Falls 
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basalt also has low to intermediate 87Sr/86Sr (0.7052 to 0.7059) and low to intermediate ENd(-

3.15 to -8.43). Finally, the Madison River basalt has higher 87Sr/86Sr (0.7065) and higher ENd 

(-5.46) compared to the other basalts in the Norris-Mammoth corridor. 

Norris-Mammoth corridor basalts cluster into three groups above the Northern 

Hemisphere Reference Line (NHRL) of Hart (1984) (See Figure 26). The Panther Creek 

vent and the Osprey basalts have the highest 206Pb/204Pb (15.49-15.54) and moderate 

207Pb/204Pb (17.77-17.89) compared to the other basalts in the field. The Swan Lake Flat 

basalts associated with the Tower Road shield and Horseshoe Hill vents and the upper flow 

of Undine Falls all Jay along a trend line towards higher 207PbP04Pb (15.46-15.54) and lower 

206Pb/204Pb (17.09-17.34). The lower flow of Undine Falls and Madison River basalts 

follow a trend line towards lower 206PbP04Pb (16.62-16.82) and lower 207PbF04Pb (15.37-

15.42). 
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Figure 14: Selected volcanic rocks of the Yellowstone Plateau volcanic field are 
basalts according to the classification of LeBas et al. (1986). 
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Figure 15: With the exception of Gerrit basalt (HFGE-02), Yellowstone Plateau volcanic 
field basalts are subalkalic. 
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Figure 16: On an AMF diagram, Yellowstone Plateau volcanic field basalts are tholeiitic. 
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SIO, 

Figure 17: Harker variation diagrams for selected Snake River Plain, Henry's Fork, and 
Yellowstone Plateau basalts. K20, Na20, and CaO increase with increasing Si02, while 
Al20 3, FeO, and MgO decrease with increasing Si02• <>=Snake River Plain; • =Gerrit; 
+ =Warm River; *«=Falls River; • =Madison River; IJ =Swan Lake Flat; A =Undine 

Falls; + =Osprey; * =Hepburn Mesa. Gray trend lines includes all YPVF data, but 
excludes SRP basalt data. Additional data from Doe et al. (1982), Lehman et al. (1982), 
Smith and Braile (1984), Hildreth et al. (1991), and Christiansen (2002). 
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Figure 18: Harker variation diagrams for selected Snake River Plain, Henry's Fork, and 
Yellowstone Plateau basalts. Ab03, FeO, and MgO decrease with increasing Si02• 

¢ =Snake River Plain; • =Gerrit; + =Warm River; x =Falls River; • =Madison River; 
o =Swan Lake Flat; a =Undine Falls; + =Osprey; * =Hepburn Mesa. Gray trend lines 

includes all YPVF data, but excludes SRP basalt data. Additional data from Doe et al. (1982), 
Lehman et al. (1982), Smith and Braile (1984), Hildreth et al. (1991), Chrisitansen (2002). 
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Figure 19: Chondrite-normalized spider diagram of Yellowstone Plateau volcanic 
field basalts. Normalized to chondrite compositions (Sun and McDonnell, 1989). 
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Figure 20: OIB-normalized spider diagram of selected Yellowstone basalts. 
EM ORB is plotted for comparison. EM ORB and OIB compostions from Stlll and 
McDonnell (1989). 
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Figure 21: Cr versus Sr define groups which correspond to individual vents or flow units. 
Vents identified are as follows: TR=Tower Road, HH=Horseshoe Hill, O=Osprey, 
PC=Panther Creek, MR=Madison River, UF=Undine Falls, and G=Gerrit. 

41 



* Hepburn Mesa 
6. Undine Falls 
+ Osprey 
~ WannRiver 
+ Falls River 

* GeiTit 
e Madison River 
0 Swan Lake Flat 

Figure 22: Sr versus Zr/Nb was used to discriminate between the vent areas 
within the Swan Lake Flat basalt and separate lava flows and vents within the 
Yellowstone Plateau volcanic field. 
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Figure 23: 87Srf86Sr versus epsilon Nd for tholeiitic basalts in YPVF. Hepburn Mesa, 
Swan Lake Flat, Undine Falls, and Osprey basalt samples fall within the field of ocean 
island basalts while Falls River, Gerrit and Madison River basalts trend towards 
lithospheric isotopic values. OIB and mid-ocean ridge basalts (MORB) fields defined 
by Rollinson (1993). Diagram modified from Rollinson (1993). 
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Figure 24: 206Pbf204Pb and 207PbP04Pb of basalt (solid symbols) sampled in the 
Yellowstone Plateau volcanic field. MORB, OIB, and Snake River Plain basalt fields 
from Wilson (1989). NHRL is the Northern Hemisphere Reference Line of Hart 
(1984). 
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CHAPTERS 

GEOCHRONOLOGY 

Besides the new dates reported in this thesis, other Pleistocene basalts within the 

Yellowstone plateau volcanic field were previously dated using the K-Ar method 

(Obradovich, 1992). A summary of the dates of the sampled basalts for this study is 

presented in Table 1. A description of the new 40 Ar/39 Ar dates is presented below. 

Madison River basalt from known 

Madison River shield (YMR2) 

Sample YMR2 (YMR-03-02) was collected from the summit of the shield 2.0 krn north 

of the Madison River. The age spectrum shows a consistent release of 39 Ar during all the 

incremental heating events (See Figure 25). The first seven steps were used and a reasonable 

isochron was produced giving a date of 0.530±0.06 Ma. Additionally, the isochron diagram 

illustrates that the initial 40ArP6Ar ratio of 295.8±0.7 is within analytical error of the accepted 

ahnospheric 40Ar/36 Ar ratio of 295.5. This indicates no excess or deficiency of 40Ar within 

this sample and that most or all of the 40 Ar is radiogenic. Based on the field data, this date is 

geologically realistic. 

Isolated flow of Madison River basalt (YMR3) 

Sample YMR3 (YMR-03-03) was collected from an exposure 0.2 krn southwest of 

Madison River and 0.5 krn from the West Yellowstone park entrance. The age spectra 

provided by the plateau diagram shows a consistent release of 39 Ar during all the incremental 

heating events (See Figure 26). Steps 2 through 5 were used and a reasonable isochron was 

produced giving a date of 0.358±0.019 Ma. Additionally, the isochron diagram illustrates 
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that the initial 40 ArP6 Ar ratio of 299.5±0.9 is greater than the accepted atmospheric value of 

295.5. If the 40 ArP6 Ar ratio of the initial argon is greater than 295.5, there is "extraneous" 

argon present. The extraneous argon may be incorporated into the groundmass by a process 

other than the insitu decay of 40K. Based on the field data and the geochemical evidence 

presented in Chapter 4, this date is geologically realistic. 

Swan Lake Flat basalt from the Tower 

Road shield (YSLFZ) 

Sample YSLF2 (YSLF-03-02) was collected from 1.7 km north of the summit crater of 

the Tower Road shield. The age spectrum shows a consistent release of 39 Ar during all the 

incremental heating events (See Figure 27). Steps 4 through 7 were used and an isochron 

was produced giving a date of 0.590±0.065 Ma. Additionally, the isochron diagram 

illustrates that the initial 40Ar/36Ar ratio of 293±2.6 is within analytical error of the accepted 

atmospheric 40Ar/36Ar ratio of 295.5. An 40Ar/36Ar of less than 295.5, suggests that there 

may be a deficiency in radiogenic argon. This deficiency may be attributed to a partial loss 

in 40 Ar after cooling of the basalt flow. This may or may not be the case for this particular 

sample. 

Swan Lake Flat basalt from the Panther 

Creek vent (YSLF12) 

Sample YSLF12 (YSLF-03-12) was collected from the inner dike of the Panther Creek 

vent. The age spectmm shows a consistent release of 39 Ar during all the incremental heating 

events (See Figure 28). Steps 2 through 5 were used to produce an isochron, but the age 

produced was within the analytical error of the method thus was not statistically reasonable. 

Additionally, the isochron diagram illustrates that the initial 40Ar/36Ar ratio of 301.7±2.5 is 

greater than the accepted atmospheric value of 295.5. Ultimately, steps 2 through 5 were 
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used to produce a plateau date of0.174±0.046 Ma. At the 2cr confidence level, this Java flow 

is no older than 220 ka. Even considering this date, this basalt is still the youngest sampled 

in the Norris-Mammoth corridor. 

Swan Lake Flat basalt from Sheepeaters' Cliff exposnre (YSLFI) 

Sample YSLFl (YSLF-03-01) was collected from 0.5 km northeast of Sheepeaters' Cliff 

roadside exhibit along the Norris-Mammoth road. The plateau diagram shows that 

approximately 66% of the 39 Ar present was released during the first three, lower temperatnre 

(600-690 °C) step heating events (See Figure 29). No isochron could be produced from the 

discontinuous plateau data, thus a date could not be detem1ined. 

Upper flow of Undine Falls basalt (YU4) 

Sample YU4 (YU-03-04) was collected upstream of Undine Falls 0.5 km north of the 

Tower Road. A statistically significant date could not be obtained from this sample. The age 

spectra shows that approximately 57% of the 39 Ar present was released during the first three, 

lower temperature (600-690 °C) step heating events (See Figure 30). Additionally, the three­

point isochron diagram, which includes steps 1 through 3, illustrates that the initial 40 ArP6 Ar 

ratio of291±11 is less than the accepted atmospheric value of295.5. If the 40ArP6Ar ratio of 

the initial argon is less than 295.5, there is an apparent deficiency in the radiogenic argon, 

which may be attributed to a partial loss in 40 Ar after cooling of the basalt flow. 

Isolated flow of Osprey basalt (YO!) 

Sample YO! (Y0-03-01) was collected from an exposure of Osprey basalt 0.2 km 

northwest of Tower Road approximately 1.5 km from the Tower Road bridge. A 

geologically realistic date could not be obtained from this sample. The age spectrum shows a 

consistent release of 39 Ar during all the incremental heating events (See Figure 31 ). While 

eight steps were used to determine a reasonable isochron, the date derived from the isochron 
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of 3. 7±0.8 Ma does not agree with field data. This basaltic unit must be younger than the 

640 k.y. Lava Creek tuff onto which it flowed. Excess 40 Ar must be present throughout the 

groundmass to produce a plateau with this mmsually old date. 

Isolated flow of Osprey basalt (Y04) 

Sample Y04 (Y0-03-04) was collected from an exposure near the trailhead of Wraith 

Falls 0.2 km southeast of the Tower Road. A geologically realistic date could not be 

obtained from this sample. The age spectra shows that approximately 69% of the 39 Ar 

present was released during the first four lower temperature (600-730 °C) step heating events 

(See Figure 32). Although four steps were used to determine a reasonable isochron, the date 

derived from the isochron of 0. 770±0.22 Ma does not agree with field data. This basaltic 

unit must be yow1ger than the 640 k.y. Lava Creek tuff onto which it flowed. Excess 40 Ar 

must be present throughout the entire groundmass to produce a plateau with this unusually 

old date. 

Table 1: Summary of Basalt Dates Sampled During this Study 
Basaltic Unit Age (Ma) Technique 
Snake River Group (Henry's Fork Caldera) 0.198±0.008 K-Ar 

Gerrit Basalt 
Osprey Basalt 

Lamar River flow 
Madison River Basalt 

Madison River Basalt shield (YMR2) 
Falls River Basalt 

Madison River Basalt (YMR3) 
(may be flow of Falls River Basalt) 

Swan Lake Flat Basalt 
Tower Road shield (YSLF2) 
Panther Creek vent (YSLF12) 

Undine Falls Basalt, upper flow 
Basalt of Warm River 
References: 

<0.20 Estimate 

0.220+0.041 K-Ar 
>0.13, <0.40 Estimate 
0.530±0.060 40Ar/J6Ar 

>0.11, <0.64 Estimate 

0.358±0.016 40Ar/36Ar 

>0.32, <0.64 Estimate 
0.590±0.065 40Ar/36Ar 

0.174±0.046 40Ar/36Ar 

0.588±0.026 K-Ar 
0.759±0.052 K-Ar 

1: Obradovich (1992); 2: Christiansen (2001); 3: Bennett (2005) 
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Figure 25: Age spectrum and isochron diagrams for Madison River basalt from the Madison River shield (YMR2). 
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Figure 26: Age spectrum and isochron diagram for an isolated flow of the Madison River basalt (YMR3). 
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Figure 28: Age spectrum and isochron diagrams for a sample of Swan Lake Flat basalt collected form the inner dike of the Panther Creek vent 
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Figure 30: Age spectrum and isochron diagrams for an isolated flow of Undine Falls basalt (YU4). 
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Figure 31: Age spectrum and isochron diagram for an isolated flow of Osprey basalt (YOI). 
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CHAPTER6 

INTERPRETATION 

Petrogenesis ofNorris-Mammoth Corridor Basalts 

The models discussed in this chapter pertain to the petrogenesis of basalts within the 

Norris-Mammoth corridor. Modeling indicates that independent partial melting of 

compositional variable mantle produced the basaltic magma within the Norris-Mammoth 

corridor. Other models discussed include: (1) open and closed system processes, such as 

fractional crystallization (FC), assimilation-fractional crystallization (AFC), and/or magma 

mixing/commingling; (2) partial melting of heterogeneous mantle; (3) and contamination of 

asthenospheric partial melts by lithospheric mantle and/or cmstal components. Furthermore, 

modeling also provided preliminary evidence of the nature of the mantle source below the 

Norris-Mammoth corridor. 

FC, AFC, and/or Magma Mixing/Commingling 

FC, AFC, and magma mixing/commingling models were tested to explain chemical 

variation between magma groups and among individual magmas within these groups. In 

theory, the geochemical models must be numerically realistic and agree with isotopic source 

characteristics. The models test whether the basalts were derived from the same parent 

magma (co magmatic) and/or melted from the same (or similar) mantle sources ( cogenetic ). 
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Modeling was done using lgpet for Windows (Carr, 2000). Distribution coefficients of 

Cenozoic basalts fi"om the western United States were compiled by the Center for Volcanic 

and Tectonic Studies (CVTS) using data from Budahn et al. (1985), Lemarchand et al. 

(1987), Liotard et al. (1988), and Bradshaw, (1991). Calculation of bulk distribution 

coefficients, to reflect phenocryst percentages in the basalts, was done by using a Microsoft 

Excel spreadsheet written by Tim Bradshaw and later modified by Eugene Smith. 

Obsen,ations 

Geochemical models must honor the following field and geochemical observations. 

1. Olivine and plagioclase are common phenocrysts in all lavas. 

2. Basalts contain zoned and!or sieved plagioclase phenocrysts. No reaction rims are 

present. 

3. Trace element plots (See Figure 20 or 21) demonstrate that each basalt unit has a 

distinct signature. 

4. The Swan Lake Flat basalt from the Panther Creek vent is the most primitive basalt in 

the Norris-Mammoth corridor. It has 87Sr/86Sr of 0.7053 and €Nct of0.18. This basalt 

lies between the OIB and EM ORB fields on a 87 Sr/86Sr vs. ENd plot. 

5. Swan Lake Flat basalt from the Tower Road shield and the Horseshoe Hill vents, 

Undine Falls, Osprey, and Madison River basalts form a linear array on a 87Sr/86Sr vs. 

ENd plot that extends from the Swan Lake Flat Panther Creek basalt to higher 87Sr/86Sr 

and lower ENd values (See Figure 22). 

6. Magmas related to individual vents display different trends on Sr vs. Cr plots (See 

Figure 20). 
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7. Basement rocks in the Norris-Mammoth corridor include: (1) the Lava Creek and 

Huckleberry Ridge tuffs; (2) the Eocene Absaroka Volcanic Supergroup, which 

include trachybasaltic, shoshonitic, and silicic rocks; (3) Cambrian to Cretaceous 

sedimentary rocks that are mostly marine clastics and carbonates; ( 4), and 

Precambrian basement that consists of late Archean granitic gneiss and smaller 

amounts of metasedimentary and metavolcanic rocks. 

Assumptions 

1. Basalt magma related to volcanoes in the Norris-Mammoth corridor is cogenetic. In 

other words, the magmas erupted within the Norris-Mammoth corridor are similar in 

chemistry, were produced by partial melting of a similar mantle source over a short 

period of time (less than 600 ka). Most likely, these magmas did not share the same 

magma chamber. 

2. Small volun1es of basaltic magma erupted over short periods of time from individual 

cinder cones are most likely comagmatic. 

3. Considering the small volume of magma erupted over the 2.2 million year eruptive 

history of basaltic magma in the Norris-Mammoth corridor, it is highly unlikely that a 

single magma chamber could persist for the entire time span of the volcanic field. 

Therefore, simple FC and AFC models involving a single magma body are not 

suitable for explaining chemical variations between magma groups. Production of 

similar parental magmas from similar mantle sources by multiple partial melting 

events over the life span of the volcanic field is more likely. 

Basalt Models 

Osprey 
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Osprey basalt is geochemically distinct in trace element concentrations, but is isotopically 

similar to the basalts erupted from the Panther Creek vent. The most evolved Osprey basalt 

can be produced by fractional crystallization (FC) of more primitive samples. Using Sr and 

Cr, samples Y0-03-02, Y0-03-01, and Y0-03-04 can he produced from Y0-03-02A by 2%, 

18%, and 29% fractionation, respectively, of 69% plagioclase and 31% olivine (See Figure 

39A). Alternatively, using Ce and Zr, samples Y0-03-02A, Y0-03-01, and Y0-03-04 can 

be produced from Y0-03-02 by 8%, 32%, and 35% fractionation, respectively, of 78% 

plagioclase and 22% olivine (See Figure 39B). 

-Table 2· Summarv ofFC Models to 12roduce Evolved OsQrey SamQles (01 02 and 04) from 
Primitive Osorev Samole (02A) 

Model (from Y0-03-02A) Y0-03-01 Y0-03-02 Y0-03-04 

Model 1 (Cr vs. Sr) 
2%FC of69% 18% FC of69% 29%FC of69% 

Plagioclase, 31% Plagioclase, 31% Plagioclase, 31% 
Figure 36A 

Olivine Olivine Olivine 

Model 1 (Ce vs. Zr) 
8%FC of78% 32%FC of69% 35% FC of69% 

Plagioclase, 22% Plagioclase, 31% Plagioclase, 31% 
Figure 36B 

Olivine Olivine Olivine 

Swan Lake Flat 

Assimilation-fractional crystallization, fractional crystallization, and/or mixing models do 

not work to relate any of the basalts within the Swan Lake Flat basalt unit. Each vent erupted 

basalts that were from a distinct partial melting event. This conclusion is confirmed by: (I) 

the variation in incompatible element composition and (2) isotopic heterogeneity (See Figure 

33). 

As stated previously, the basalts that empted from the Panther Creek vent are the most 

isotopically primitive of all the basalts in the Norris-Mammoth corridor. Therefore, if the 

Norris-Mammoth corridor basalts are cogenetic, FC or AFC models using samples of this 

basalt as the parent rock should produce most, or all, of these basalts. Using Sr and Cr, and 
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the most isotopically primitive Panther Creek basalt (YSLF-03-14), fractionation of the 

phenocryst assemblage present in YSLF-03-14 (75% plagioclase and 25% olivine) ought to 

approximate concentration of Sr and Cr in the Norris-Mammoth corridor basalt (See Figure 

36). However, the model produces magmas with higher Cr and lower Sr, or the opposite of 

what is required to match the composition of Norris-Mammoth corridor magmas. Therefore, 

fractional crystallization could not produce the observed compositional variation. 

Partial Melting of Heterogeneous Mantle 

Lateral compositional variation 

Partial melting of mantle with lateral compositional variation would produce magmas 

with varying isotopic ratios within a single volcanic field. Melting of laterally variable 

mantle assumes that melting is occurring at similar depths, but that mantle isotopic 

compositions vary on the kilometer, or smaller, scale. If this model is correct, patterns of 

isotopic variation should be random with no geographic or age correlation. However, there is 

a correlation of chemistry with geographic position; magmas become more isotopically 

enriched from west to east (See Figure 37). 

In detail, there is an age and the isotopic composition correlation between basalts. Older 

Madison River and Undine Falls magmas are more isotopically enriched and are distributed 

along a broad arc north of the Yellowstone Caldera (Plate 1 ). Younger Swan Lake Flat and 

Osprey magmas are more isotopically depleted and are located in the Norris-Mammoth 

corridor. The trends of isotopic composition suggest that random lateral compositional 

variability in the mantle is not the cause of the isotopic variations observed in these magmas. 

Based on these arguments, lateral heterogeneity can be ruled out as the sole cause of 

compositional variations in these magmas groups. 
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Changes in the depth of melting (or vertically heterogeneous mantle) 

Partial melting of mantle at varying depths may also result in lavas with varying isotopic 

ratios. If lithospheric mantle is melted, an isotopically-enriched (high 87Srl6Sr and low ENd) 

and incompatible element enriched (i.e. light REE) basaltic magma would be created. If 

basalt is produced from an EMORB-like, upper asthenospheric mantle, the magma would be 

low in 87Sr/86Sr, high in ENd, and depleted in incompatible elements. If basalt is produced 

from and OIB-like, lower asthenospheric mantle, the magma would have intermediate 

87Sr/86Sr and eNd and would be enriched in incompatible elements. 

Undine Falls, Swan Lake Flat, and Osprey basalts all erupted in the same locality over 

the last -600 ka. While, trace element abundances are similar, isotopic ratios vary as a single 

trend from the isotopically depleted Swan Lake Flat and Osprey cluster to the more 

isotopically enriched Undine Falls magmas (See Figure 22). If progressively deeper mantle 

was melted over time, the basalts produced would become more isotopically depleted with 

time. This isotopic trend (from high 87Sr/86Sr and low £Nd to low 87Sr/86Sr and high ENd witb 

time) is observed in Undine Falls, Swan Lake Flat, and Osprey samples. Changing the depth 

of melting with time can generate the observed isotopic trend in the northern section of the 

Norris-Mammoth corridor. 

In general, magmas in the Norris-Mammoth corridor become more EMORB-like from 

west to east, therefore, changes in geochemistry is more likely related to geography and the 

age of the magma. Based on the observations presented above, lateral mantle variability can 

be discounted. Vertical mantle heterogeneity may control basalt compositions in the 

northern portion of the Norris-Mammoth corridor, but carmot explain the chemical variability 

in all the basalts of the Non-is-Manm1oth corridor. 
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Contamination of asthenospheric mantle partial melts 

Contamination models discussed in this section involve lithospheric mantle assimilation 

and contan1ination of asthenospheric partial melts with crust that is present in the Norris­

Mammoth corridor and Yellowstone Plateau volcanic field. 

Lithospheric Mantle Contamination 

Evidence of lithospheric mantle contamination is noticeably apparent when Sr and Nd 

isotopes are compared to known mantle provinces in the Yellowstone Plateau volcanic field 

(see Figure 33). With the exception of one Undine Falls sample, the remainder of the 

sampled basalts trend toward the field of lithospheric mantle; higher Sr ratios and lower 

epsilon Nd. The lower flow of Undine Falls basalt plots near the field of other Wyoming 

Province Archean volcanic rocks. 

Crustal Contamination 

Variations in basalt geochemistry in relation to the individual magma groups may be 

related to contamination by different composition crustal materials. Possible contaminants in 

the Yellowstone Plateau volcanic field include, but are not limited to: 

1. Precambrian erustal xenoliths found in basalts erupted in the vicinity oflsland Park; 

2. Precambrian crustal rocks in the Gallatin Range and north of Gardiner, Montana; 

3. Paleozoic clastic sedimentary rocks and limestones; 

4. Eocene Absaroka volcanic rocks; and/or 

5. Tertiary and Quaternary volcanic rocks (rhyolite domes, flows and ash-flow tuffs). 

Field evidence of crustal contamination occurs in the Panther Creek feeder dike (See 

Chapter 2). Partially melted granitic xenoliths were incorporated in the outer portion of the 

feeder dike and are present in bombs within the first stage agglutinated scoria. In thin 
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section, the partially melted xenoliths are surrounded by basaltic glass. No other evidence of 

mixing or commingling was present in thin-section. 

Late Archean rocks have the greatest likelihood of contaminating the basaltic magmas 

dming their ascent and storage within mid-level crust. Archean rocks outcrops are present 

throughout the Wyoming Province. In general, Archean lower cmst has lower tNd, 
87Sr/86Sr 

and 206PbP04Pb and higher 207Pb/204Pb compared to Proterozoic and younger basement rocks 

(Taylor and McLeunan, 1985). 

Proterozoic intem1ediate to felsic rocks crop out approximately 12 km north of the 

Norris-Manm1oth corridor within the Beartooth Mountains of Montana (Hildreth et a!., 

1991). These rocks range in composition from granite and granodiorite to amphibolite in 

composition and have high 87Sr/6Sr, low ENd, and high 206PbP04Pb. (Wooden eta!., 1988). 

Minor amounts of assimilation of these silica-rich rocks would produce a volcanic suite 

with varying SiOz contents. Si02 content, however, varies little in selected basalt samples 

from the Yellowstone Plateau volcanic field (See Figure 35). Small variations in SiOz may 

imply that the crustal assimilates may have been mafic or ultramafic in composition, such as 

lower cmstal granulites or mantle rocks (O'Brien eta!., 1995). 

Leeman et a!. (1985) identified mafic xenoliths in Spencer-Kilgore area approximately 

100 kilometers southwest of the Yellowstone Plateau volcanic field. They used Sr, Nd, and 

Pb isotopic analyses to "evaluate the nature and age of the basement beneath the Snake River 

Province (Leeeman et a!., 1985)." The xenoliths range from charnockite to norite and have 

low 200Pb/204Pb and medium 207Pb/204Pb compared to Norris-Mammoth corridor basalts. 

Although the mafic xenoliths may be considered a potential contaminant, the Pb isotope 
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ratios are too depleted to generate the isotopic ratios seen in the Norris-Mammoth corridor 

basalts (See Figure 34). 

Other potential crustal contaminants may have the proper isotopic ratio, but can be 

eliminated because their major or trace element abundances may be unsuitable. For example, 

a high Si02 contaminant would create a magma that is no longer basaltic in composition. 

Also, the lead isotopic ratios of some of the potential crustal contaminants relative to the lead 

ratios of the sampled Norris-Mammoth corridor basalts also exclude crustal contamination 

(See Figure 34). For example, the 207Pb/204Pb of Paleozoic limestone and Mesozoic clastic 

rocks is considerably higher than any of the basalts in the Norris-Mammoth corridor. These 

examples, alone, discount most of the Precan1brian crustal rocks, Paleozoic clastic 

sedimentary rocks, Eocene Absaroka, and Tertiary and Quaternary volcanic rocks (See 

Figure 34). Also, many of the xenoliths (i.e. Crazy Mountain xenoliths) have values that are 

similar to those of the Norris-Mammoth corridor basalts. Assimilation of these xenoliths 

would result in little variation. 

Additionally, the Paleozoic and Mesozoic sedimentary rocks and the Eocene Absaroka 

volcanic rocks are not likely to be significant sources of crustal contamination in the Norris­

Mammoth corridor because of their stratigraphic thickness. In the Yellowstone region, the 

maximum thickness of the Cambrian to Cretaceous marine section is approximately 2.5 km, 

while the thickness ofthe Eocene Absaroka volcanic section is estimated at 1.5 km (Hildreth 

et al., 1991 ). The Precambrian to Eocene stratigraphic section is not a likely contaminant 

because the section lies above the "rhyolitic density barrier" that may be beneath the 

Yellowstone Plateau (Spell et al., 2004; Lehman et a!., 1982; Smith and Braile, 1984). 

Detailed active-seismic experiments show the top of a rhyolitic magma body (that may still 
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be molten) larger in area than the Yellowstone Caldera at approximately 5-6 km beneath the 

surface (Lehman eta!., 1982; Smith and Braile, 1984). This batholith-sized body may act as 

a density barrier to ascending basaltic magma at depth. Based upon the hypothesis by Spell, 

eta!. (2004), a similar "density banier" may be forming in the Norris-Mammoth corridor. If 

this is the case, this density banier lies beneath the Paleozoic and Mesozoic units, therefore it 

is highly unlikely that basaltic magma would have accumulated in a chamber large enough to 

incorporate crustal assimilates above this density barrier. 

In conclusion, limited crustal contamination did occur in the Panther Creek basalts of 

Swan Lake Flat. Petrologic and geochemical evidence suggests that these xenoliths were not 

mixed within the basaltic magma. Other potential crustal contaminants either do not have 

comparable major and trace element contents (like Si02 or Pb) or Sr, Nd, or Pb isotopic 

ratios to produce the geochemical trends within the Norris-Mammoth corridor. 

Independent mantle partial melts 

The argument for the formation of Norris-Mammoth corridor basalts by independent 

partial melting of heterogeneous mantle is supported by the following data: 

I. Clustering of data from each volcanic center on several different trace element 

diagrams; 

2. Lack of continuous chemical variation between volcanic centers; 

3. Simple fractional crystallization (FC) cannot produce the necessary trace element 

compositions; and 

4. The fact that lavas associated with each volcanic unit have different isotopic ratios. 

A Sr vs. Cr plot was originally used to define groups of basalts that erupted from separate 

vents (See Figure 20). This diagram shows grouping of Swan Lake Flat basalts, which 
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initially appeared to be two separate vents, and discrete clustering of Undine Falls, Madison 

River, and Osprey basalts. Further analysis of Sr vs. Zr/Nb diagram demonstrates that the 

Swan Lake Flat basalt actually clusters into three groups that are consistent with the three 

identified vent areas (Tower Road, Horseshoe Hill, and Panther Creek) in the Norris­

Mammoth corridor. The lack of continuous variation between the clustered volcanic centers 

on the above mentioned diagrarus is evidence in support of independent partial melting. The 

Swan Lake Flat basalt, from the Panther Creek vent, and the Osprey basalt, are the most 

isotopically primitive of all the basalts within the Norris-Manrmoth corridor, therefore, they 

should be an end member composition in all modeling for petrogenesis in the NmTis­

Mammotb corridor. When these end members are used in FC or AFC geochemical 

modeling, they cannot produce any of the more evolved basaltic magmas (See Figure 36). 

Isotopic dissimilarity is another indication of independent partial melts. As stated 

previously, the Panther Creek vent and Osprey are the most isotopically primitive basalts in 

the Norris-Marumoth corridor and plot in the OIB field, close to the Bulk Silicate Earth 

composition (See Figure 33). The remainder of the basalts sarupled in the Norris-Marumoth 

corridor trend towards the lithospheric mantle domain, or are depleted in 87Sr/86Sr and 

enriched in Nd. 

Nature of the Mantle Source beneath the Yellowstone 

Plateau Volcanic field 

The youngest Yellowstone Plateau volcanic field basalts should retain a "chemical 

fingerprint" of the source of the basalts that have continually erupted throughout the eastem 

Snake River Plain during the last 14 Ma. This fingerprint may be best revealed in a simple 

mixing model using Gerrit basalt and EM ORB to produce the Sheepeaters' Cliff flow from 
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the Panther Creek vent (See Figure 40). Both the Gerrit basalt and the Sheepeaters' Cliff 

flow most likely erupted within the same 50,000 time interval (Chapter 5 and Christiansen, 

2001 ). During the initial process, the closest analog (in the Yellowstone Plateau volcanic 

field) to the average eastern Snake River Plain basalts was chosen to represent a portion of 

the "fingerprint." Sample HFGE~03-04 was used to represent the basalts that have 

continually erupted throughout the Snake River Plain in the last 14 Ma (See Figure 39). 

Also, this basalt was chosen because it is likely the youngest flow of the Gerrit basalt as 

Cliff near Swan Lake Flat (YSLF-03-01). Mapping and geochemistry have indicated that the 

Sheepeaters' Cliff flow erupted from the Panther Creek vent, one of the youngest vents 

within the Norris-Mammoth corridor (See Figure 37). This simple model demonstrates that 

the source of the Swan Lake Flat basalt is probably in the upper mantle. This EMORB 

component may represent basalt produced by the upper mantle thermal anomaly referenced 

by Smith et al. (2004). 

Su111111ary 

• Modest volumes of erupted material, isotopic diversity, 2 m.y. span of ages, vent 

distribution scattered over a 140 km2
, and the apparent lack of a consistent time-

compositional patterns are factors, considered cumulatively, indicate independent partial 

melting episodes, ascent and storage within the lithosphere of each basaltic magma tmit. 

• Sr and Nd isotopes provide evidence of lithospheric mantle contamination when 

compared to known mantle provinces in the Yellowstone Plateau volcanic field (see 
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Figure 33). With the exception of one Undine Falls sample, the remainder of the sampled 

basalts trend toward the field of lithospheric mantle; higher Sr ratios and lower epsilon 

Nd. The lower flow of Undine Falls basalt plots near the field of other Wyoming 

Province Archean volcanic rocks. 

• Limited crustal contamination may have occurred at the Panther Creek vent of the Swan 

Lake Flat basalt; this is evident by out partially melted felsic xenoliths. Significant 

crustal contan1ination within the NMC can be eliminated based upon the lack of suitable 

major and trace element abundances and isotopic ratios of the possible contaminants. 

• Changes in the lateral extent of the partially melted mantle can be ruled out because the 

ND, Sr, and Pb isotopic systems do not change from enriched to depleted with time in the 

Norris-Man1111oth corridor. Changes in the depth of partial melting can produce local 

isotopic variation (i.e. the northern portion of the Norris-Mammoth corridor) but cannot 

account for variation in the entire Norris-Mammoth corridor. 

• Fractional crystallization and assimilation-fractional crystallization models cannot 

explain the geochemical differences between magma groups. The Osprey basalt is the 

only basaltic ll11it whose flows can be explained by fractional crystallization. 
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Figure 33: Sr and Nd isotopic ratios for tholeiitic basalts in Yellowstone Plateau volcanic 
field. Hepburn Mesa, Swan Lake Flat, Undine Falls, and Osprey basalt samples fall 
within the field of ocean island basalts while Falls River, Gerrit and Madison River basalts 
trend towards lithospheric isotopic values. OIB and mid-ocean ridge basalt (MORB) 
fields defined by Rollinson (1993) and pre-Eocene Wyoming Province xenoliths from 
Feeley et al. (2003) after Dudas et al. (1987) and Joswiak (1992). Diagram modified from 
Rollinson (1993). 
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Figure 378: Fractional crystallization model for Osprey basalt flows. Samples 
Y0-03-02A, Y0-03-01, and Y0-03-04 can be produced from Y0-03-02 by 8%, 
32%, and 35% fractionation, respectively, of78% plagioclase and 22% olivine. 
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Figure 39B: The youngest flow of Gerrit basalt (HFGE-03-04) ~) is similar to 
an average Snake River Plain basalt composition (!{?) and falls within the Sanke 
River Plain basalt field (White et al., 2002; Hughes, et al., 2004). 
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Figure 40: A mixing model (+) of 55% EMORB (-) and 45% Gerrit basalt 
(HFGE-03-04) (*) can produce a composition remarkably similar to the 
Sheepeaters' Cliff flow of Swan Lake Flat basalt (YSLF-03-01) (D). 
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CHAPTER 7 

DISCUSSION 

Implications for the "Deep Plume" model 

Traditionally, the "hotspot" mantle plume hypothesis has been applied to the Yellowstone 

Plateau volcanic field to explain the path of rhyolite and basaltie volcanism that trends to the 

southwest to merge with the eastern Snake River Plain. Initially, the hotspot model was 

developed by Wilson (1963) to explain the large volumes of basaltic lava erupting from the 

Hawaiian volcanic chain. Hotspots are interpreted as large-scale thermal plumes derived 

from the core-mantle boundary (Wilson, 1963). 

Hotspots provide localized sources of exceptional heat energy that may sustain volcanism for 

long periods of geologic time. Over time, these mantle plumes create a time-transgressive 

linear chain of volcanism at the earth's surface (i.e. the Hawaiian-Emperor seamount chain). 

Thus, the "hotspot" hypothesis was applied to the eastern Snake River Plain, and the 

Yellowstone Plateau volcanic field, to explain the trend of rhyolitic volcanic centers 

becoming younger to the northeast. 

The northwest trending, backward-propagating "hotspot" track of the Newberry melting 

anomaly and recent seismic tomography has challenged the idea of a deep-seated mantle 

plume (or hotspot) beneath the Yellowstone Plateau volcanic field (Humphreys et a!., 2000; 

Christiansen et a!., 2002). The Newberry melting anomaly is a bimodal basalt-rhyolite 
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system in central Oregon that has the same rate of propagation as the Snake River Plain­

yellowstone anomaly. 

Christiansen (2002) arguments against the application of deep-seated mantle plume 

model to the Yellowstone Plateau volcanic field are as follows: 

I. The deep mantle model does not explain the coeval volcanism along the eastern and 

western branches of the Snake River Plain. 

2. The Yellowstone "melting anomaly" seems to have developed at the same time as the 

Newberry melting anomaly in southeast Oregon. The symmetry and rate of 

propagation suggests a link between the two systems. 

3. The Basin and Range tectonic province south of the Yellowstone and Newbeny areas 

has undergone large amounts of extension, whereas, the areas to the north have 

undergone significantly less extension. 

4. The melting anomaly began to propagate at the western edge of the Archean 

continental crust of Wyoming (Reed, 1993). Eaton et a!. (1975) and Mabey et a!. 

(1978) show a regional aeromagnetic anomaly along the axis of the eastern Snake 

River Plain that continues southwestward into Nevada and northeastward across 

Montana and into Canada. This anomaly cuts across Laramide structures in a region 

practically undeformed during the Cenozoic but parallels the principal Precambrian 

structural trend. 

Seismic tomography models generated by Humphreys et al. (2000), Dueker et al. (2001), 

and Christiansen (2002) suggest the possibility that the "hotspot" beneath the Yellowstone 

Plateau is rootless and may only extend 300 km into the mantle. Most recently, Smith 

(2004) proposed a mantle plume that projected NW into the mantle. Smith could not image 
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this thermal feature any deeper than the 660-km discontinuity. He suggested that a mantle 

plume does exist, but is primarily an upper mantle feature and does not extend to the core­

mantle boundary. If these models are correct, then melting may be attributed to a shallow 

mantle source rather than a deeper, asthenospheric source, as the original "hotspot" 

hypothesis suggests. 

If these recent seismic tomography images are accurate, and the Yellowstone Plateau 

volcanic field basalts do record the nature of their mantle source (as indicated by this thesis), 

this source would be in the upper mantle. The mixing model presented in Chapter 6, utilized 

the upper mantle, EM ORB composition of Sun and McDonnell (1989) and the trace element 

composition of Gerrit basalt to produce Swan Lake Flat basalt. This model provides 

additional geochemical evidence that a shallow mantle thermal anomaly (EMORB 

composition) may be responsible for the basalt production in the Yellowstone Plateau 

volcanic field. 

Relationship of the Snake River Plain to the 

Norris-Mammoth corridor and source of basalts 

Yellowstone Plateau voleanic field basalts are slightly depleted in LIL, HFSE, and in 

LREE elements relative to Offi (See Figure 19). The eastern Snake River Plain basalts are 

also depleted in LIL elements and HFSE compared to other OIB basalts but are not as 

enriched in LREE and HREE as are the Yellowstone Plateau volcanic field basalts. Basalts 

in the Yellowstone Plateau and Snake River Plain are enriched in Ba compared to OIB (See 

Figure 20). Fitton eta!. (1991) also noted this Ba enrichment within the Snake River Plain 

and suggested that high Ba is typical of many late Cenozoic Cordilleran basalts. 
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A trend of incompatible element depletion compared to OIB, as well as lower ENd, occurs 

from west to east, from the Henry's Fork area to the Norris-Marmnoth corridor. Starting 

with Gerrit basalt in the west followed by Madison River, the Swan Lake Flat and Osprey 

basalts to the east, the LIL, HFSE, and LREE become more depleted relative to OIB and 

become chemically more like EM ORB (Figure 40). 

Although the Snake River Plain and Yellowstone Plateau basalts are similar to EM ORB 

(and OIB) basalts in trace element composition, their Sr and Nd isotopic ratios are not. For 

example, the Gerrit basalt, although more comparable to OIB, has higher 87 Sr/86Sr than the 

basalts of the Nonis-Marmnoth corridor. Lum et a!. (1989) explained the elevated Sr 

isotopic ratios in the SRP (which are similar to the Gerrit basalt) by contamination with 

Archean lithosphere that had experienced an early event of high Rb/Sr enrichment and 

subsequent rapid growth in 87Sr/86Sr. This was followed by an episode of partial melting that 

substantially reduced the concentrations of most of the incompatible elements. Ultimately, 

both Yellowstone Plateau and Snake River Plain basalts have emiched Sr isotopic ratios and 

depleted Nd ratios compared to OIB. The basalts of the Norris-Mammoth corridor may also 

have been contaminated in the lithosphere as they rose from their mantle source, as revealed 

by their emiched Sr and depleted Nd isotopic ratios. 

The future of volcanism in the Yellowstone 

Plateau volcanic field 

To determine if the most recent basaltic volcanism within the Norris-Mammoth corridor 

represents the initiation of a new caldera cycle, or the termination of the Yellowstone Caldera 

phase, isotopic values from Doe et al. (1982), Hildreth eta!. (1991), and Smith (1997) of 

recent basalts (<2.2 Ma) were plotted against time and suggest a relationship of ENd and 

80 



87Sr/86Sr to periods of caldera fommtion (See Figure 41). For example, 87Sr/86Sr changed 

from 0. 707 to 0. 703 and ENd from -7 to 0.1 at the inception of the first caldera cycle (2.1 Ma). 

This trend suggests injection of asthenospheric basalt into the crust at about the same time as 

caldera formation. Injection of basalt in the lithosphere may trigger partial melting of the 

crust that will ultimately lead to generation of large volumes of rhyolitic magma and caldera 

formation. 

The isotopic signatures of the post-Yellowstone Caldera basalts (Osprey, Swan Lake Flat, 

Madison River, and Undine Falls) have both high and low values of 87Sr/86Sr and ~>Nct· 

Undine Falls basalt erupted after the eruption of the Lava Creek tuff that formed the 

Yellowstone Caldera and has an ENd of -8.4 (lower flow) and -3.2 (upper flow) and a 

87Sr/86Sr of0.7059 (lower flow) and 0.7052 (upper flow). Madison River basalt has low ENct 

(-5.5) and high 87Sr/86Sr (0.7065). Three vents of Swan Lake Flat basalt have varying ENd 

and 87Sr/86Sr. The Tower Road shield and Horseshoe Hill vents have ENct -2.3 and -2.5 and 

87Sr/86Sr of 0.7056 and 0.7060. The Panther Creek vent has the highest ENd (0.20) in the 

corridor and 87Sr/86Sr of0.7053. Osprey basalt has an ENd of 0.14 and 87Sr/86Sr of0.7054. 

When the new dates, and the dates of Obradovich (1992) for post-Yellowstone caldera 

basalts, are plotted against Nd and Sr isotopes, there is a general trend of increasing ENd with 

decreasing time. This trend suggests that the basalts of the Norris-Mammoth corridor may be 

recording a new influx asthenospheric mantle. The isotopic ratios of the Gerrit basalts are an 

exception. These basalts may: (1) signify the termination of Henry's Fork caldera cycle or (2) 

represent the transition of the Snake River Plain with the Yellowstone Plateau volcanic field. 

Ultimately, these EMORB-like basaltic partial melts are injected into the overlying 
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lithosphere, causing partial melting of the crust and the generation of rhyolitic magma, along 

with the initiation of a new caldera cycle within the Yellowstone Plateau volcanic field. 
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Figure 43: Stratigraphic section showing depletion in epsilon Nd in the NMC basalts with time. 
This depletion may be due to an increase of basalt injections into the crust. The ages of the rhyolite 
and mixed lava units also provide chronostratigraphic constraints on the ages of the basaltic units, 
140Arfl9Ar dates completed as part of this Master's thesis. 
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CHAPTERS 

SUMMARY AND CONCLUSIONS 

The basalts of the Norris-Mammoth corridor within the Yellowstone Plateau volcanic 

field have an erupted volume of -94 km3
, but this estimate is conservative. The surface 

area of the erupted units experienced numerous glacial episodes during the Pleistocene. 

Basalt in the Yellowstone Plateau volcanic field is minor in volmne compared to felsic 

rock types. The tholeiitic eruptive products predominantly formed small Hawaiian-style 

shield volcanoes that may terminate with a Strombolian phase in the summit crater. A 

newly identified volcanic vent, called the Panther Creek vent, within the Swan Lake Flat 

basalt stratigraphic unit, was primarily Strombolian in its eruption style. This vent is the 

first cinder cone recognized in Yellowstone National Park. 

The oldest post-Yellowstone caldera basaltic unit in the Norris-Mammoth corridor is 

the Undine Falls basalt (588 ka) while the youngest is the Swan Lake Flat basalt that 

erupted from the Panther Creek volcano (174 ka). Basalt units within the Norris­

Mammoth corridor, and the Yellowstone Plateau volcanic field, can be differentiated by 

isotopes and trace element geochemistry. Magnm mixing, fractional crystallization, 

and/or assimilation/fractional crystallization models cannot generate one basaltic unit 

from another. The simplest model to explain source of the youngest basalt unit (Swan 

Lake Flat basalt that erupted from the Panther Creek vent) in the Norris-Mammoth 
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corridor is one of "source mixing." Partial melting produced EM ORB-like basalt in the 

({')'?,;;> 
upper mantle. This basalt was contaminated within the lithospheric mantle by 

fractionated basalts from previous caldera cycles. This model is best illustrated with a 

simple mixing model between the youngest Gerrit basalt and an EMORB-like source. 

Also, there was some contamination with old (Archean) lithosphere. 

The new, more precise 40Ar/36Ar ages for post-Yellowstone caldera basalts, along 

with Nd and Sr isotopes show a general Sr depletion and Nd enriclunent with decreasing 

age of Norris-Mammoth corridor basalts. This suggests that the basalts within the Norris-

Mammoth corridor may be recording a new influx asthenosphere-derived partial melts 

into he overlying lithosphere. Pooling of multiple basaltic partial melts in the lithosphere 

could be melting surrounding crust, generating rhyolitic magma that may coalesce to 

form a batholith-sized magma chamber and the initiation of a new caldera cycle. 
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APP.END!XA 

PETROGRAPHY 

All basalts within the Yellowstone Plateau volcanic field are tholeiites with sparse to 

abundant phenocrysts of plagioclase and olivine. YPVF basalts are hypersthene and olivine­

nonnative tholeiites. They differ from basalts of the eastern Snake River Plain, which are 

quartz-normative basalts. 

For this study, the unit names suggested by Christiansen (1974) and Christiansen and 

Blank (1974a; 1974b; 1975a; l975b) are used to discriminate between basalt flows of the 

YPVF. Classification into local trends was determined by geochemistry in Chapter 4. 

Hepburn Mesa basalt 

Hepburn Mesa is porphyritic basalt with I 0% phenocrysts of plagioclase (50%) and 

olivine (50%). The subhedral plagioclase (1.0 to 4.0 mm) crystals are sieved, slightly zoned, 

and somewhat rounded. Some of the euhedral olivine (0.5 to 2.0 mm) are fractured while 

others show at least one good crystal face. Some of the plagioclase and olivine phenocrysts 

occur in crystal "clots," which may be portions of mechanically broken crystal cumulates. 

Subhedral olivine and euhedral plagioclase are visible in the matrix. Amorphous iron oxide 

also exists in the matrix. 
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Gerri t Basalt 

The Gerrit basalt flows are medium-gray to black and all exhibit a diabasic texture 

(Hamilton, 1965). The vesicle content ranges from 5 to 20% of the total volume of the rock. 

Some diktytaxitic vesicles are 0.5 to 2.0 em in diameter and may be partially filled with 

white to tan zeolites. 

These porphyritic basalts contain abundant plagioclase (61-71 %) and olivine (29-39%). 

There are two types of plagioclase phenocrysts. The first and most abundant (-98%) are 

euhedral but fractured. These are 1.5 to 3.0 mm in length. Also, these plagioclase laths are 

intersertial with respect to the g:roundmass and show cloudy albite twilming (due to the 

presence of clay from secondary alteration). The second type of plagioclase is rare (-1 %). 

These anhedral crystals may be up to 3.0 mm in length, have heavily sieved cores and are 

zoned. The anhedral olivine crystals are small (0.5 to 1.5 mm) and are highly fractured. 

Crystals within the groundmass are absent and the groundmass primarily consists of pale to 

dark brown amorphous iron oxide. 

Basalt ofWam1 River and Shotgun Valley 

The Warm River and Shotgun Valley basalt flows are medium-gray and holocrystalline. 

Vesicles exhibit a diktytaxitic texture and are 0.5 to 3.0 em in diameter. The vesicle content 

ranges from 2 to 5% of the total volume of the rock. Wam1 River and Shotgun Valley basalts 

are phenocryst rich (80% of rock) and contain phenocrysts of plagioclase (50-60%) and 

olivine (40-50%). The 0.25-0.75 mm plagioclase laths are euhedral, although slightly 

fractured. Also, the plagioclase laths show cloudy albite twinning due to presence of 

secondary clay alteration. There are at least two generations of olivine. The first (-25%) is 
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larger (up to 0.75 mm), subhedral, and is predominantly fractured. The second, and 

dominant (-75%), olivine phase appear as small (0.1 to 0.25 mm) anhedral to subhedral 

crystals that appear to have grown after the plagioclase laths crystallized. The plagioclase 

and smaller olivine phenocrysts within the groundmass exhibit an "ophimottled" texture 

(MacKenzie et al., 1982). This texture is characterized by plagioclase laths that are 

intergrown in optically continuous olivine crystals. The groundmass also consists of pale to 

dark brown amorphous iron oxide. 

Falls River basalt 

The Falls River basalt flows are medium gray and bolocrystalline. Vesicles are 

diktytaxitic, spherical, and are 0.5 to 3.0 em in diameter. The vesicle content ranges from 2 

to 5% of the total volume of the rock. The Falls River basalt is porphyritic ( <5% 

phenocrysts) with 80% subophitic phenocrysts of intergrown plagioclase (46-61 %) and 

olivine (23-39%). The 0.25-0.5 mm plagioclase laths are euhedral, although slightly 

fractured. Also, the plagioclase laths show cloudy albite due to secondary clay alteration. 

There are at least two sizes of olivine. The larger phase (-25%) is 0.75 to 1.5 mm in 

diameter, subhedral, and is fractured. Also this larger olivine phase contains oxides within 

their crystalline structure. The second, and dominant (-75%), olivine phase appears as small 

(0.1 to 0.25 mrn) crystals in the matrix. The groundmass consists mainly of pale to dark 

brown amorphous iron oxide. 

Madison River basalt 

Madison River basalt is porphyritic, but contains fewer phenocrysts than the basalts 

described previously. This basalt contains 5 to 15% phenocrysts of plagioclase (65%) and 

olivine (35%). The plagioclase phenocrysts are 1.0-3.0 mm in length and are present as 
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individual crystals and as crystal "clots". The individual crystals are subhedral to euhedral 

and may be zoned and/or sieved. The plagioclase is not altered; there is have clear albite 

twinning and the crystals are not sieved. The subhedral olivine crystals are 0.25 to 1.0 mm in 

diameter and are fractured. Slight alteration to iddingsite occurs along fi·actures. Skeletal 

olivine is also present. Iron oxide crystals and plagioclase, along with micro lites of olivine, 

are found within the matrix. 

Undine Falls basalt 

The Undine Falls basalt is similar to the Madison River basalts because they porphyritic 

with few phenocrysts. This basalt contains 2 to 5% phenocrysts of plagioclase (68%) and 

olivine (32%). The plagioclase phenocrysts are 1.0-4.0 rnn1 in size, subhedral to euhedral 

and may be zoned and/or sieved. Some plagioclase crystals are no longer zoned and their 

crystal forms are partially replaced by minerals that are present in the matrix. The subhedral 

olivine crystals are 0.25 to 0.5 mm in diameter and are fractured. Alteration to iddingsite 

occurs along fractures and around the rims. The plagioclase and smaller olivine phenocrysts 

within the groundmass exhihit an "ophimottled" texture (MacKenzie et aL, 1982). Abundant 

iron oxides (-15%) are also found within the matrix. 

Swan Lake Flat basalt 

Horseshoe Hill vents 

The basalts associated with these vents are porphyritic and contain (50%) phenocrysts of 

plagioclase (62-67%) and olivine (33-38%). The plagioclase crystals occur in two phases. 

The dominant phase (~90%) consists of 0.25 to 0.75 mm plagioclase laths that are fractured 

but have clear albite twinning. The second phase (-10%) consists ofsubhedral, 0.75-2.0 mm 

individual crystals that are rounded, zoned, and/or sieved. In hand specimen, the crystals of 
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this phase are labradorescent. Crystal "clots" are also present and appear to be broken 

portions of olivine and plagioclase cumulates. The euhedral olivine crystals are 0.5 to 0.75 

mm in diameter and are fractured. Iron oxide crystals (-5%), olivine, and plagioclase occur 

in the matrix. 

Tower Road Shield 

The basalts of this shield volcano are porphyritic with (5%) phenocrysts of plagioclase 

(75%) and olivine (25%). The plagioclase phenocrysts are 1.0-2.5 mm, subhedral to 

euhedral, broken, somewhat rounded, and zoned. Some plagioclase crystals are fractured and 

filled with minerals that are present in the matrix. The euhedral olivine is 0.25 to 0.5 mm in 

size and fractured. Skeletal olivine is also present. Iron oxide ctystals ( -1 0%) and 

plagioclase, along with micro lites of olivine, are found in the matrix. 

Panther Creek vent 

The basalts of this cinder cone volcano are porphyritic (5 to 15%) with phenocrysts of 

plagioclase (75%) and olivine (25%). There are two phases of plagioclase phenocrysts. The 

dominant plagioclase phase (-95%) is euhedral, 0.5-1.50 111111 in size, and has clear albite 

twinning. Crystals of the major phase are sometimes associated with olivine crystals, hence 

this phase may originate from olivine and plagioclase clots. Tbe minor plagioclase phase 

(-5%) consists of rounded and/or broken, sieved or partially resorbed crystals. Some of 

these crystals are fractured and filled with minerals that are present in the matrix. The 

euhedral olivine crystals are 0.1 to 0.5 mm in diameter and are fractured. Iron oxide crystals 

(~10%), olivine, and plagioclase are found in the matrix. 
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Osprey basalt 

Osprey Falls basalt flows are medium to dark gray. Additionally, they are massive, 

slightly vesicular, and holocrystalline. The vesicles range in size from 0.5 to 4.0 em and the 

content ranges from 2 to 5% of the total volume of the rock. The porphrytic Osprey basalt 

flows are similar to the Swan Lake Flat, Madison River, and Undine Falls basalts. This 

basalt contains 2 to 5% phenocrysts of plagioclase (32%) and olivine (68%). The plagioclase 

phenocrysts are 2.0-4.5 mm, subhedral to euhedral and are zoned and/or sieved. Some 

plagioclase crystals are fractured and filled with minerals that are present in the matrix. The 

subhedral olivine crystals are 0.25 to 0.5 mm in diameter and are fractured. Slight alteration 

to iddingsite occurs along fractures and rims. Skeletal olivine is also present. Iron oxide 

(-5%) and plagioclase, along with microlites of olivine, are found in the matrix. Pilotaxitic 

flow textures occur around the only exan1ple of a disaggregated plagioclase masses in the 

thin section. 
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APPENDIX B: GEOCHEMICAL DATA 
Precision and Accurac~ 

XRF and ICP-MS values and analytical precision of USGS basalt standard (BCR- I) for oxides, trace elements, and 
isotopic ratios. 

Oxide High Low Variation Anall:tical Precision pal 
Si02 50.89 48.00 2.89 +0.36 

Ti02 2.393 1.346 1.05 +0.008 
Al20 3 16.3 15.02 1.28 +0.22 
FeO• 14.62 10.03 4.59 +0.02 
MnO 0.232 0.159 0.07 +0.002 
MgO 8.99 6.23 2.76 +0.2 
CaO 11.73 9.00 2.73 +0.02 
Na,o 3.08 2.28 0.80 +0.1 

K20 1.03 0.28 0.75 +0.14 

P20 5 0.869 0.17 0.70 +0.004 

Trace Elements High Low Variation Analytical Precision (2a) 

Ni 459 64 395 +2 
Cr 318 65 253 +4 
Rb 21 3 18 +1.34 
Ba 535 127 408 +25.36 
Nb 316 7.8 24 +I 
Hf 7.022 2.147 4.875 +0.14 
Ta 2.425 0.718 1.707 +0.04 
La 42.135 8.320 33.815 +0.98 
Ce 79.786 17.465 62.320 +1.24 
Nd 43.498 10.776 32.722 +0.96 
Eu 3.481 1.262 2.219 +0.08 
Gd 10.968 3.929 7.039 +0.16 
Tb 1.742 0.724 LOIS +0.02 
y 37.297 21.736 15.560 +0.58 
Yb 4.415 1.729 2.685 +0.06 
Lu 0.690 0.262 0.428 +0.02 

Isoto~ic Ratio Hi~h Low Variation Anal~tical Precision 
87Sr/86Sr 0.708755 0.705224 0.003531 +0.018 

141Nd/144Nd 0.512648 0.512206 0.000443 +0.023 
20''Pb/204Pb 17.893310 16.625125 1.268185 +0.076 
207

Pb/
204

Pb 15.546363 15.373502 0.172861 +0.00002 
20'Pb/2114Pb 38.538114 37.111206 1.426907 +0.00001 
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APPENDIX B: GEOCHEMICAL DATA 
Precision and Accuracy 

XRF and ICP-MS test of contamination of pure quartz caused by grinding bowl of tungsten carbide (WC) from 
Washington State University GeoAnalytical Labratory. Tungsten carbide bowl causes significant 
contamination ofNb and Ta. From Johnson eta!. (1999). 

Unnormalized 
Major elements results Trace Elements 

(ICP-MS) (in ppm) 

Si02 98.25 La 0.00 

Al20 3 0.18 Ce 0.20 

Ti02 0.02 Pr 0.03 
FeO* 0.01 Nd 0. II 
MnO O.Ql Sm 0.02 
CaO 0.02 Eu O.Q\ 
MgO 0.00 Gd 0.02 
K,O 0.01 Tb 0.00 

Na20 0.00 Dy 0.02 

P,O, 0.0009 Ho 0.00 
Total 98.48 Er 0.01 

Tm 0.00 
Trace Elements Yb 0.01 

{'XRF) (in EEm) Lu 0.00 
Ni 9 Ba 3.16 
Cr 0 Tb 0.07 
Sc Nb 1.38 
v 5 Yb 0. II 
Ba 2 Hf 0.05 
Rb 4 Ta 1.62 

Sr 3 u O.Ql 
Zr 10 Pb 0.03 
y I Rb 0.28 

Nb 0 Cs 0.01 
Ga 0 
Cu 5 
Zn I 
Pb I 
La 0 
Ce 13 
Tb 0 
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APPENDIX B: GEOCHEMICAL DATA 

Precision and Accuracy (continued) 

Accuracy of X-ray Fluorescence Sprectrometry (XRF) from Washington State University GeoAnalyticallabratory. 

U.S.G.S. standard BCR-1 (basalt) was used as a reference. From Johnson eta!. (1999). 

Major elements 

Si02 

Al10, 
Ti02 

FeO* 
MnO 
CaO 
MgO 
K20 
Na20 

P20 5 

Total 

Trace Elements 

Ni 
Cr 
Sc 
v 
Ba 
Rb 
Sr 
Zr 
y 

Nb 
Ga 
Cu 
Zn 
Pb 

La 
Ce 
Th 

BCR-1 

2.29 
12.16 
0.19 
7.12 
3.49 

1.75 

3.34 

0.37 
100.00 

27 
29 

405 
727 
45 

329 
176 
36 
13 
21 
16 

128 
12 
32 
62 
5 

BCR-1 BCR-1 

2.27 2.266 

12.03 12.32 
0.18 0.184 
7.09 7.09 
3.53 3.55 
1.75 1.72 

3.36 3.35 

0.37 0.367 
100.00 100.00 

27 16 
32 33 

415 407 
726 681 
45 47 
324 330 
175 190 
34 38 
12 14 
25 22 
9 19 

125 130 
13 14 
2 25 

45 54 
9 6 
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APPENDIX B: GEOCHEMICAL DATA 
Precision and Accuracy (continued) 

Determination of X-ray Fluorescence Sprectrometry (XRF) precision from Washington State University 
GeoAnalytical Labratory. Seven repeat analyses of reference bead (BCR-1) during a single XRF nm over a 

three week period. From Johnson et al. (1999). 

Published Mean of7 

Major Element concentration replicated Standard coefficient 

~wt%) i!:SGS) anal~ses deviation variable 

Si02 55.22 55.16 0.03 0.0 

Al,o, 13 92 !3.62 0.02 0.1 

Ti02 2.266 2286 0.009 0.4 

Feo• 12.32 12 73 0.02 0.2 
MnO 0.184 0.184 0.001 0.4 

CaO 7.09 6.99 0.02 0.2 

MgO 3.55 3.52 0.05 1.4 

K20 1.72 1.74 0.00 0.2 

Na20 3.35 3.38 0.05 1.3 
P,o, 0.367 0.378 0.001 0.3 
Total 100.00 99.99 

Trace Elements 

Ni 0 0 
Cr 16 28 I 5 
Sc 33 26 2 7 
v 407 401 7 2 
Ba 681 745 11 1 
Rb 47 46 0 
Sr 330 326 0 0 

Zr 190 176 1 I 
y 38 36 0 
Nb 14 13 0.6 5 

Ga 22 23 3 
Cu 19 12 2 18 

Zn 130 124 2 
Pb 14 10 2 19 

La 25 19 8 41 

Ce 54 51 11 21 

111 6 8 20 
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APPENDIX B: GEOCHEMICAL DATA 
Major and Trace Element Abundances 

Basalt of Falls River 

Major elements Warm River Basalt Gerrit Basalt 

in wt% HFWS-03-01 HFFR-03-01 HFGE-03-01 HFGE-03-02 HFGE-03-03 HFGE-03-04 

Si02 48.45 49.56 47.42 45.42 48 13 48.62 

Al20 3 16.38 15.27 15.73 15.22 16.30 15.02 

Ti02 1.35 1.89 2.00 3.31 1.38 2.39 
FeO* 10.19 11.26 11.60 14.62 10.75 12.12 
MnO 0.18 0.18 0.19 0.23 0.18 0.19 
CaO 11.73 9.59 10.74 9.78 10.85 9.79 
MgO 8.71 8.40 8.49 6.81 8.99 7.75 

K 20 0.28 0.56 0.53 0.50 0.33 0.71 

Na20 2.28 2.42 2.38 2.67 2.37 2.51 

P20 5 0.20 0.33 0.43 0.87 0.22 0.59 

Total 99.74 99.46 99.51 99.43 99.51 99.70 
Mg# 60.4 57 I 56.61 45.37 59.86 53.26 

Trace elements 
in ppm HFWS-03-01 HFFR-03-01 HFGE-03-01 HFGE-03-02 HFGE-03-03 HFGE-03-04 

Zr (XRF) 86 147 174 300 101 222 
La (ICP-MS) 8.32 19.86 2197 42.13 11.89 28.55 
Ce (ICP-MS) 17.47 39.07 44.09 79.79 23.95 56.91 
Pr (ICP-MS) 2.26 4.79 5.30 10.03 3.02 6.90 
Nd (ICP-MS) 10.78 21.05 23.22 43.50 13.78 30.52 
Sm(ICP-MS) 3.18 5.43 5.77 10.69 3.79 7.60 
Eu (lCP-MS) 1.26 1.96 1.99 3.48 1.47 2.59 
Gd (ICP-MS) 3.93 5.75 6.04 10.97 4.26 7.64 
Tb (ICP-MS) 0.68 0.95 0.98 1.74 0.75 1.24 
Dy (ICP-MS) 4.31 5.88 5.88 10.38 4.60 7.34 
Ho (lCP-MS) 0.91 1.17 1.18 2.07 0.97 1.45 
Er (ICP-MS) 2.44 3.10 3.13 5.38 2.59 3.79 

Tm (ICP-MS) 0.35 0.43 0.44 0.74 0.38 0.52 

Yb (ICP-MS) 2.15 2.63 2.68 4.41 2.27 3.17 
Lu (ICP-MS) 0.33 0.41 0.42 0.69 0.36 0.48 
Ba (ICP-MS) 136.91 352.19 383.22 552.48 194.71 442.51 
Ba (XRF) 146 353 403 535 202 452 

Th (ICP-MS) 0.67 1.35 0.77 1.55 0.70 1.90 
Nb (XRF) 7.8 14.4 19.3 31.6 8.8 21.4 

Y (XRF) 23 29 31 51 25 36 
Hf(ICP-MS) 2.15 3.81 3.96 7.02 2.56 5.31 
Ta (ICP-MS) 0.72 1.20 1.51 2.42 1.04 1.64 
U (ICP-MS) 0.14 0.26 0.21 0.28 0.14 0.37 

Ph (ICP·MS) 1.50 3.95 2.76 4.92 2.05 4.93 
Rb (XRF) 5 10 7 5 3 13 

Cs (ICP-MS) 0.08 0.12 0.17 0.04 0.05 0.18 

Sr(XRF) 191 282 280 277 225 285 
Sc (ICP-MS) 41.53 34.47 36.29 38.49 38.24 34.04 
Cr (XRF) 333 372 306 122 318 261 
Ni (XRF) 108 135 78 64 159 112 
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APPENDIX B: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements Madison River Basalt Osprey Basalt 
in wt % YMR-03-02 YMR-03-03 Y0-03-01 Y0-03-02 Y0-03-02A Y0-03-04 

Si02 50.89 48.00 49.14 49.31 49.70 49.43 

Al10, 15.29 15.40 15.36 15.82 15.75 15.47 

Ti02 1.98 2.37 1.99 1.52 1.65 1.95 

FeO* 11.64 13.23 10.96 10.43 10.03 10.87 

MnO 0.17 0.20 0.17 0.16 0.17 0.17 

CaO 9.00 9.48 10.87 11.20 11.10 10.96 

MgO 6.33 6.71 7.52 8.13 8.01 7.72 

K20 1.03 0.62 0.37 0.35 0.38 0.36 

Na20 2.90 3.08 2.61 2.45 2.45 2.55 

P,o, 0.26 0.32 0.26 0.17 0.18 0.25 

Total 99.49 99.41 99.25 99.54 99.42 99.73 

Mg# 49.22 47.49 55.02 58.19 58.76 55.88 

Trace elements 
in ppm Thffi-03-02 YMR-03-03 Y0-03-01 Y0-03-02 Y0-03-02A Y0-03-04 

Zr (XRF) 157 166 131 92 99 125 

La (ICP-MS) 25.09 20.45 14.47 9.45 10.08 13.72 

Ce (ICP-MS) 48.15 40.56 30.19 20.25 21.74 28.99 
Pr (JCP-MS) 5.68 5.09 3.94 2.69 2.88 3.77 
Nd (JCP-MS) 24.29 22.95 18.24 12.76 13.83 17.72 

Sm (ICP-MS) 6.25 6.24 5.22 3.78 4.05 4.97 

Eu (ICP-MS) 1.97 2.22 1.88 1.45 1.56 1.83 
Gd (ICP-MS) 6.55 6.71 5.65 4.38 4.54 5.58 

Th (ICP-MS) 1.08 1.12 0.94 0.72 0.76 0.93 

Dy (ICP-MS) 6.54 6.85 5.73 4.32 4.49 5.49 

Ho (ICP-MS) 130 1.35 1.10 0.83 0.90 1.07 

Er (ICP-MS) 3.32 3.52 2.83 2.14 2.25 2.79 

Tm (ICP-MS) 0.47 0.50 0.38 0.29 0.31 0.38 

Yb (ICP-MS) 2.83 2.95 2.27 1.73 1.81 2.19 

Lu (ICP-MS) 0.42 0.45 0.34 0.26 0.27 0.33 

Ba (ICP-MS) 343.12 280.90 177.15 135.88 133.45 146.80 

Ba (XRF) 341 269 174 127 135 139 

Th (ICP-MS) 4.17 1.79 115 0.77 0.80 1.07 

Nb (XRF) 17.7 16.6 14.5 9.0 10.3 14.3 

Y(XRF) 33 34 28 21 22 26 
Hf(ICP-MS) 4.33 4.34 3.38 2.42 2.61 3.28 

Ta (ICP-MS) 1.40 1.30 1.12 0.75 1.13 1.11 

U (ICP-MS) 0.67 0.36 0.26 0.21 0.21 0.26 

Pb (ICP-MS) 5.07 2.83 1.77 1.41 1.52 1.64 

Rb (XRF) 21 11 4 5 5 4 
Cs (ICP-MS) 0.23 0.15 0.07 0.15 0.09 0.06 

Sr(XRF) 289 284 318 338 332 307 

Sc (ICP-MS) 28.01 30.49 32.69 31.73 31.41 34.85 

Cr (XRF) 98 87 207 175 173 236 

Ni (XRF) 81 81 100 110 107 100 
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APPENDIX B: GEOCHEMICAL DATA 
Major and Trace Element Abundances {continued} 

Horseshoe Hill vent 
Major elements Undine Falls Basalt Swan Lake Flat Basalt 
in wt% YU-03-01 YU-03-03 YU-03-04 YSLF-03-04 YSLF-03-05 YSLF-03-07 

Si02 48.89 49.01 49.80 49.88 50.08 50.47 
Al20 3 15.96 15.96 15.46 15.66 15.69 15.69 
Ti02 1.87 1.85 1.85 1.62 1.60 1.67 
FeO* 11.30 11.79 11.22 10.33 10.33 10.04 
MnO 0.17 0.18 0.16 0.16 0.16 0.16 
CaO 10.41 9.76 10.11 10.57 10.54 10.55 
MgO 6.23 6.84 6.82 7.44 7.45 7.42 
K20 0.73 0.60 0.61 0.44 0.47 0.47 

Na20 2.83 2.87 2.79 2.59 2.63 2.68 

P,o, 0.29 0.25 0.26 0.20 0.20 0.21 
Total 98.69 99.10 99.07 98.89 99.15 99.36 
Mg# 49.56 50.85 51.99 56.21 56.24 56.88 

Trace elements 
in ppm YU-03-01 YU-03-03 YU-03-04 YSLF-03-04 YSLF-03-05 YSLF-03-07 
Zr (XRF) 144 130 135 111 109 109 
La (ICP-MS) 19.98 16.18 17.59 13.55 13.22 13.06 
Ce (ICP-MS) 40.50 33.08 35.22 27.07 26.73 26.67 
Pr (ICP-MS) 4.96 4.19 4.36 3.43 3.43 3.41 
Nd (ICP-MS) 22.13 18.94 19.39 15.94 15.67 15.80 
Sm(ICP-MS) 5.58 5.08 5.17 4.41 4.41 4.40 
Eu (ICP-MS) 1.96 1.82 1.88 1.60 1.56 1.64 
Gd (ICP-MS) 5.71 5.34 5.51 4.81 4.69 4.88 
Th (ICP-MS) 0.93 0.87 0.89 0.79 0.78 0.80 
Dy (ICP-MS) 5.51 5.27 5.31 4.75 4.73 4.85 
Ho (ICP-MS) 1.08 1.03 1.04 0.92 0.90 0.92 
Er (ICP-MS) 2.82 2.62 2.68 2.35 2.28 2.31 
Tm (ICP-MS) 0.39 0.37 0.37 0.32 0.31 0.33 
Yb (ICP-MS) 2.26 2.18 2.10 1.86 1.84 1.90 
Lu (ICP-MS) 0.35 0.34 0.32 0.28 0.29 0.29 
Ba (XRF) 302 250 324 207 189 230 
Ba (ICP-MS) 300.35 248.84 322.46 205.23 205.03 244.42 
Th (ICP-MS) 1.11 1.35 1.45 1.41 1.37 113 
Nb (XRF) 13.6 13.9 14.5 11.2 10.5 11.0 
y (XRF) 27 26 26 23 22 22 
Hf(ICP-MS) 3.72 3.40 3.51 2.97 2.88 2.95 
Ta (ICP-MS) 1.17 1.28 1.22 0.96 0.93 0.93 
U (ICP-MS) 0.28 0.32 0.29 0.31 0.31 0.28 

Ph (ICP-MS) 3.13 2.68 3.25 2.11 2.04 2.05 
Rb (XRF) 10 10 7 8 9 6 

Cs (ICP-MS) 0.27 0.15 0.36 0.15 0.17 0.12 
Sr (XRF) 420 398 416 374 373 378 
Sc (ICP-MS) 29.00 28.89 31.37 28.83 28.49 30.08 
Cr (XRF) 66 65 80 132 135 124 
Ni (XRF) 80 81 89 94 93 91 
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APPENDIX B: GEOCHEMICAL DATA 
Major and Trace Element Abundances {continued~ 

Tower Road shield He!!burn Panther Creek cinder cone 
Major elemmts Swan Lake Flat Basalt Mesa Basalt Sn:an Lake Flat Basalt 
in wt% YSLF-03-02 YSLF-03-07 YHM-03-01 YSLF-03-01 YSLF-03-09 YSLF-03-10 

Si02 49.52 50.47 48.40 49.46 50.08 50.47 
Al20 3 16.10 15.69 15.97 15.26 15.69 15.69 
Ti02 1.69 1.67 1.97 1.85 1.60 167 
FeO* 10.90 10.04 11.21 10.86 10.33 10.04 
MnO 0.17 0.16 0.18 0.17 0.16 0.16 
CaO 10.07 10.55 10.87 11.04 10.54 10.55 
MgO 7.14 7.42 7.44 7.51 7.45 7.42 
K20 0.65 0.47 0.50 0.43 0.47 0.47 

Na20 2.95 2.68 2.59 2.52 2.63 2.68 
P,o, 0.24 0.21 0.23 0.24 0.20 0.21 
Total 99.42 99.36 99.37 99.34 99.15 99.36 
Mg# 53.88 56.88 54.19 55.21 55.39 55.58 

Trace elements 

in ppm YSLF-03-02 YSLF-03-07 YHM-03-01 YSLF-03-01 YSLF-03-09 YSLF-03-10 
Zr (XRF) Ill 109 133 119 118 121 
La (ICP-MS) 15.48 13.06 15.67 14.30 14.05 16.07 
Ce (ICP-MS) 30.37 26.67 32.23 29.91 29.20 32.57 
Pr (ICP-MS) 3.76 3.41 4.09 3.82 3.72 4.09 
Nd (ICP-MS) 16.81 15.80 18.65 17.63 17.11 18.56 
Sm (ICP-MS) 4.47 4.40 5.05 4.91 4.84 5.17 
Eu (ICP-MS) 1.64 1.64 1.79 1.81 1.76 1.72 
Gd (ICP-MS) 4.83 4.88 5.46 5.30 5.32 5.49 
Tb (ICP-MS) 0.79 0.80 0.91 0.88 0.86 0.90 
Dy (ICP-MS) 4.73 4.85 5.48 5.23 5.24 5.46 
Ho (ICP-MS) 0.95 0.92 1.09 0.99 1.01 1.05 
Er (ICP-MS) 2.35 2.31 2.84 2.54 2.53 2.72 
Tm(ICP-MS) 0.32 0.33 0.39 0.36 0.35 0.37 
Yb (ICP-MS) 1.89 1.90 2.34 2.08 2.02 2.13 
Lu (ICP-MS) 0.30 0.29 0.36 0.31 0.30 0.33 

Ba (ICP-MS) 325.51 244.42 235.51 167.35 163.83 175.92 
Ba (XRF) 319 230 214 155 151 170 
Tb (ICP-MS) 1.12 1.13 1.16 1.07 1.07 1.74 
Nb (XRF) 13.1 11.0 14.8 14.1 14.1 14.1 
Y (XRf) 22 22 27 26 26 26 
Hf(ICP-MS) 2.94 2.95 3.57 3.16 3.08 3.29 
Ta (ICP-MS) 1.12 0.93 1.27 1.16 1.09 1.22 
U (ICP-MS) 0.26 0.28 0.31 0.27 0.27 0.39 

Pb (ICP-MS) 2.07 2.05 2.16 0.95 0.90 1.72 
Rb (XRF) 11 6 8 7 8 13 
Cs (!CP-MS) 0.14 0.12 0.07 0.11 0.10 0.19 
Sr (XRF) 419 378 306 339 341 333 
Sc (!CP-MS) 28.25 30.08 35.81 30.55 32.08 30.12 
Cr (XRF) 106 124 115 257 252 253 
Ni (XRF) 87 91 89 87 87 83 
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APPENDIX B: GEOCHEMICAL DATA 
Major and Trace Element Abundances {continued} 

Panther Creek cinder cone 
Major elements Swan Lake Flat Basalt 

in wt% YSLF-03-11 YSLF-03-12 YSLF-03-13 YSLF-03-14 YSLF-03-16 

Si02 49.50 49.83 49.40 49.94 49.58 

A1 20 3 15.14 15.26 15.04 15.40 15.23 

Ti02 1.80 1.82 1.73 1.77 1.84 
FeO* 10.90 10.84 10.73 10.20 10.83 
MnO 0.17 0.17 0.17 0.17 0.17 
CaO 10.99 11.00 11.21 11.25 10.97 
MgO 7.64 7.76 7.90 7.95 7.61 

K20 0.43 0.42 0.41 0.38 0.43 

Na,o 2.52 2.54 2.46 2.48 2.58 

P20, 0.24 0.23 0.24 0.22 0.24 

Total 99.32 99.87 99.28 99.76 99.48 
Mg# 55.54 56.09 56.79 58.15 55.61 

Trace elements 
in ppm YSLF-03-11 YSLF-03-12 YSLF-03-13 YSLF-03-14 YSLF-03-15 

Zr (XRF) 116 117 107 109 118 
La (LCP-MS) 13.10 13.43 12.21 12.78 13.84 
Ce (ICP-MS) 27.13 28.16 25.65 26.69 28.86 
Pr (ICP-MS) 3.49 3.61 3.32 3.44 3.72 

Nd (ICP-MS) 16.12 16.68 15.11 16.12 17.11 
Sm (ICP-MS) 4.51 4.70 4.31 4.52 4.80 
Eu (ICP-MS) 1.63 1.68 1.58 1.66 1.72 
Gd (ICP-MS) 4.98 5.09 4.74 4.85 5.14 
Th (ICP-MS) 0.81 0.85 0.78 0.81 0.86 
Dy (ICP-MS) 4.87 5.06 4.76 4.84 5.09 
Ho (ICP-MS) 0.92 0.97 0.92 0.93 0.97 
Er (ICP-MS) 2.40 2.44 2.29 2.38 2.50 
Tm (ICP-MS) 0.33 0.33 0.32 0.32 0.35 
Yb (ICP-MS) 1.94 1.97 1.84 1.90 1.99 
Lu (ICP-MS) 0.29 0.30 0.27 0.28 0.30 
Ba (XRF) 155 144 161 161 157 
Ba (ICP-MS) 152.70 156.44 148.82 145.68 161.30 
Th (ICP-MS) 1.02 1.05 0.94 0.92 1.05 
Nb(XRF) 13.6 14.2 12.7 12.8 13.8 

Y (XRF) 24 25 22 23 26 
Hf(ICP-MS) 2.94 3.06 2.75 2.81 3.03 
Ta (ICP-MS) 1.07 1.08 0.96 1.04 1.09 
U (ICP-MS) 0.26 0.26 0.23 0.22 0.27 

Pb (ICP-MS) 0.67 0.90 0.55 1.42 1.51 

Rb (XRF) 7 6 8 5 6 

Cs (ICP-MS) 0.09 0.09 0.08 0.11 0.09 
Sr(XRF) 334 333 333 329 337 
Sc (ICP-MS) 32.05 32.64 33.28 33.20 33.23 

Cr (XRF) 268 283 328 330 257 
Ni (XRF) 86 90 93 91 87 
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APPENDIX B: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Panther Creek cinder cone 
Major elements Swan J,ake Flat Basalt (xenoliths} 
in wt% YSLF -03-100 YSLF-03-10G 
Si02 73.87 74.93 
Al20 3 13.41 12.74 

Ti02 0.13 0.11 

FeO* 1.74 1.34 
MnO 0.02 0.03 

CaO 0.96 0.70 
MgO 0.26 0.10 
K20 5.22 5.13 

Na20 3.15 3.14 
P20 5 0.02 0.04 
Total 98.79 98.26 
Mg# 20.8 11.5 

Trace elements 
in ppm YSLF-03-100 YSLF -03-1 OG 
Zr (XRF) 220 558 
La (ICP-MS) 77.10 68.12 
Ce (ICP-MS) 147.80 123.57 
Pr (ICP-MS) 14.55 13.06 

Nd (ICP-MS) 56.53 47.43 
Sm (ICP-MS) 13.62 11.59 
Eu (!CP-MS) 1.38 0.44 
Gd (ICP-MS) 14.44 10.86 
Th (ICP-MS) 2.62 2.13 
Dy (ICP-MS) 17.04 13.69 
Ho (ICP-MS) 3.65 2.85 

Er (!CP-MS) 10.10 8.08 
Tm (ICP-MS) 1.42 1.22 
Yb (ICP-MS) 8.08 7.61 
Lu (TCP-MS) 1.19 1.11 
Ba (XRF) 754 128 
Ba (ICP-MS) 755.63 140.16 
Th(XRF) 23 28 
Nh (XRF) 45.9 59.3 
Y (XRF) 106 72 
Hf(TCP-MS) 7.66 13.95 
Ta (ICP-MS) 3.36 4.58 

U (ICP-MS) 4.60 6.88 
Pb (ICP-MS) 21.71 28.59 
Rb (XRF) 175 216 
Cs (ICP-MS) 2.95 3.01 
Sr (XRF) 62 30 
Sc (ICP-MS) 2.61 2.28 
Cr(XRF) 50 52 
Ni (XRF) 5 7 
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APPENDIX B: GEOCHEMICAL DATA 
Sr, Nd, and Pb Isotopic Ratios 

Sample Rb (ppm) Sr (ppm) Rb/Sr '
7Sr!''sr 

YU-03-01 10 440 0.022727273 0.705224442 
YU-03"04 7 416 0.016826923 0.705973948 
HFFR-03-01 10 282 0.035460993 0.70875527 
YMR-03-02 21 289 0.07266436 0.706523352 
HFGE-03-04 13 285 0.045614035 0.707282358 
YSLF-03-01 7 339 0.020648968 0.705385443 
YSLF-03-02 II 419 0.026252983 0.705687445 
YSLF-03-05 9 373 0.024128686 0.706060048 
YSLF-03-09 8 341 0.023460411 0.705390943 
YSLF-03-11 7 334 0.020958084 0.705372043 
YSLF-03-12 6 333 0.018018018 0.705382343 
YSLF-03-14 5 329 0.015197568 0.705278942 
YSLF-03-16 6 337 0.017804154 0.705388 
Y0-03-04 4 307 0.013029316 0.705412343 
YHM-03-01 8 306 0.026143791 0.705453144 

104 



APPENDIX B: GEOCHEMICAL DATA 
Sr, Nd, and Pb Isotopic Ratios (continued) 

Sample Nd (ppm) Sm(ppm) ''7SmJ"'Nd 143Nd/144Nd llNd 

YU-03-01 5 22.899 0.136 0.51220567 -8.43339 
YU-03-04 5 20.072 0.143 0.51247613 -3.15769 
HFFR-03-01 5 21.718 0.139 0.51224212 -7.72238 

YMR-03-02 6 25.060 0.138 0.51235765 -5.46876 
HFGE-03-04 7 32.314 0.133 0.51227642 -7.05341 

YSLF-03-01 4 17.877 0.150 0.51264734 0.18225 

YSLF-03-02 4 17.245 0.143 0.51251585 -2.38286 

YSLF-03-05 4 15.858 0.149 0.51250842 -2.52769 

YSLF-03-09 4 17.710 0.150 0.51262858 -0.18382 

YSLF-03-11 4 17.007 0.150 0.51263140 -0.12868 
YSLF-03-12 4 17.285 0.150 0.51264841 0.20304 

YSLF-03-14 4 16.661 0.152 0.51264411 0.11921 
YSLF-03-16 4 17.509 0.149 0.51264316 0.10066 

Y0-03-04 5 18.290 0.153 0.51264515 0.13947 

YHM-03-01 5 19.410 0.147 0.51261135 -0.51985 
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APPENDIX B: GEOCHEMICAL DATA 
Sr, Nd, and Pb Isotopic Ratios (continued) 

Sample Pb 206Pbi'04Pb 207Pb/204Pb 208Pb/2114Pb 
YU-03-01 4 16.625 15.374 37.111 
YU-03-04 0 17.149 15.543 37.819 
HFFR-03-01 6 17.094 15.539 38.143 
YMR-03-02 5 16.825 15.423 38.147 
HFGE-03-04 4 17.101 15.530 38.195 
YSLF-03-01 0 17.804 15.529 38.516 
YSLF-03-02 0 17.388 15.464 37.877 
YSLF-03-05 4 17.194 15.500 38.152 
YSLF-03-09 0 17.771 15.536 38.518 
YSLF-03-11 0 17.788 15.526 38.515 
YSLF-03-12 0 17.792 15.521 38.458 
YSLF-03-14 0 17.749 15.500 38.415 
YSLF-03-16 0 17.836 15.546 38.522 
Y0-03-04 0 17.893 15.533 38.538 
YHM-03-01 2 17.345 15.508 37.993 
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APPENDIX C: SAMPLE LOCATIONS FOR PETROGRAPHIC ANALYSIS AND 
GEOCHEMICAL DATA 

All locations were taken in the UTM coordinate system using the National Geodetic Vertical Datum of 1929. 
All coordinates are located in the northern hemisphere within zone 10. When coordinates were not taken with 
a GPS unit, approximate UTM coordinates were estimated from documented sample locations on I :24,000 
topographic map. 

Samj!IC # Sameie Descril!tion Easting Northing 
YSLF-03-01 Swan Lake Flat basalt, Panther Creek flow 528000 4975600 
YSLF-03-02 Swan Lake Flat basalt, Tower Road shield 528325 4975482 
YSLF-03-03 Swan Lake Flat basalt, Horseshoe Hill vent 526646 4974165 
YSLF-03-04 Swan Lake Flat basalt, Horseshoe Hill vent 522333 4965773 
YSLF-03-05 Swan Lake Flat basalt, Horseshoe Hill vent 522804 4964896 
YSLF-03-06 Swan Lake Flat basalt, Tower Road shield 527472 4976051 
YSLF-03-07 Swan Lake Flat basalt, Horseshoe Hill vent 521241 4969306 
YSLF-03-08 Swan Lake Flat basalt, Panther Creek agglomerate 520553 4971375 
YSLF-03-09 Swan Lake Flat basalt, Panther Creek flow 520552 4371286 
YSLF-03-10 Swan Lake Flat basalt, Panther Creek dike 520660 4971507 
YSLF-03-11 Swan Lake Flat basalt, Panther Creek flow 520529 4971543 
YSLF-03-12 Swan Lake Flat basalt, Panther Creek dike 520681 4971546 
YSLF-03-13 Swan Lake Flat basalt, Panther Creek flow 520755 4971892 
YSLF-03-14 Swan Lake Flat basalt, Panther Creek flow 520904 4970381 
YSLF-03-15 Swan Lake Flat basalt, Panther Creek flow 520675 4971310 
YSLF-03-16 Swan Lake Flat basalt, Panther Creek flow 520570 4971399 
YMR-03-01 Madison River basalt, shield vent scoria 503776 4947981 
YMR-03-02 Madison River basalt, shield vent flow 503761 4947837 
YMR-03-03 Madison River basalt, unknown vent 497161 4943839 
YU-03-01 Undine Falls basalt, lower flow 527387 4976753 
YU-03-03 Undine Falls (Gardiner) basalt 524495 4986898 
YU-03-04 Undine Falls basalt, upper flow 536164 4978240 
Y0-03-01 Osprey basalt, unknown vent 528593 4976574 
Y0-03-02 Osprey basalt, unknown vent 529035 4976315 
Y0-03-02A Osprey basalt, unknown vent 525965 4977740 
Y0-03-04 Osprey basalt, unknown vent 529716 4976289 
HFGE-03-01 Gerrit basalt, vent unknown 463910 4907035 
HFGE-03-02 Gerrit basalt, NW of Snake River plain 464316 4893203 
HFGE-03-03 Gerrit basalt, vent unknown 465809 4907570 
HFGE-03-04 Gerrit basalt, Hatchery Butte vent 467560 4902099 
HFFR-03-01 Falls River basalt 465816 4874155 
HFWS-03-01 Warm River basalt 477334 4888732 
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APPENDTXD 

GEOCHRONOLOGY 

40 ArP9 Ar Analytical Techniques 

The following description of analytical teclmiques was provided by Kathy Zanetti and 

Dr. Terry Spell of the Nevada Isotope Geochronology Laboratory (NIGL). "The whole rock 

samples were crushed, sieved, treated with HN03, and washed in distilled water and 

handpicked to remove phenocrysts and weathered material leaving as pure as a groundmass 

sample as possible. Selected samples were wrapped in AI foil and stacked in sealed 6 mm 

(inside diameter) Pyrex tuhes. Individual packets averaged 3 mm thick and neutron fluence 

monitors (FC-2, Fish Canyon Tuff sanidine) were placed every 5-10 mm along the tube. 

Synthetic K-glass and optical grade CaF2 were included in the irradiation packages to 

monitor neutron induced argon interferences from K and Ca. Loaded tubes were packed in 

an AI container for irradiation. Samples were irradiated at McMaster Nuclear Reactor at 

McMaster University, Ontario, Canada. The san1ples were in-core for 7 hours in the 5C 

position where they were surrotmded by fuel rods on all four sides. Correction factors for 

interfering neutron reactions on K and Ca were determined by repeated analysis of K-glass 

and CaF2 fragments. Measured (40ArP9Ar)K values were 0.0001 (± 100%). Ca correction 

factors were e6ArP7 Ar) Ca = 2.62 (± 2.28%) X 104 and e9 ArP7 Ar) Ca = 6.59 (± 0.44%) X 

10-4
• J factors were determined by fusion of 3-5 individual crystals of neutron fluence 
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monitors which gave reproducibility's of 0.05% to 0.41% at each standard position. 

Variation in neutron flux along the 100 mm length of the irradiation tubes was <4%. 

Irradiated crystals together with CaF2 and K-glass fragments were placed in a Cu sample 

tray in a high vacuum extraction line and were fused using a 20 W C02 laser. Sample 

viewing during laser fusion was by a video camera system and positioning was via a 

motorized sample stage. Samples analyzed by the furnace step heating method utilized a 

double vacuum resistance furnace similar to the Staudacher et al. (1978) design. Reactive 

gases were removed by a single MAP and two GP-50 SAES getters prior to being admitted to 

a MAP 215-50 mass spectrometer by expansion. The relative volumes of the extraction line 

and mass spectrometer allow 80% ofthe gas to be admitted to the mass spectrometer for laser 

fusion analyses and 76% for furnace heating analyses. Peak intensities were measured using 

a Balzers electron multiplier by peak hopping through 7 cycles; initial peak heights were 

determined by linear regression to the time of gas admission. Mass spectrometer 

discrimination and sensitivity was monitored by repeated analysis of atmospheric argon 

aliquots from an on-line pipette system. Measured 40ArP6Ar ratios were 291.42 ± 0.24% 

during this work, thus a discrimination correction of 1.01400 (4 AMU) was applied to 

measured isotope ratios. The sensitivity of the mass spectrometer was -6 x 10-11 mol mv-t 

with the multiplier operated at a gain of 52 over the Faraday. Line blanks averaged 1.83 m V 

for mass 40 and 0.01 mV for mass 36 for laser fusion analyses and 2.54 mV for mass 40 and 

0.01 m V for mass 36 for furnace heating analyses. Discrimination, sensitivity, and blanks 

were relatively constant over the period of data collection. Computer automated operation of 

the sample stage, laser, extraction line and mass spectrometer as well as final data reduction 

and age calculations were done using LabSPEC software written by B. Idleman (Lehigh 
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University). An age of 27.9 Ma (Steven eta!., 1967; Cebula eta!., 1986) was used for the 

Fish Canyon Tuff sanidine flux monitor in calculating ages for samples. 

For 40 Ar;39Ar analyses a plateau segment consists of 3 or more contiguous gas fractions 

having analytically indistinguishable ages (i.e. all plateau steps overlap in age at ± 2a 

analytical error) and comprising a significant portion of the total gas released (typically 

>50%). Total gas (integrated) ages are calculated by weighting by the amount of 39 Ar 

released, whereas plateau ages are weighted by the inverse of the variance. For each sample 

inverse isochron diagrams are examined to check for the effects of excess argon. Reliable 

isochrons are based on the MSWD criteria of Wendt and Carl (1991) and, as for plateaus, 

must comprise contiguous steps and a significant fraction of the total gas released. All 

analytical data are reported at the confidence level of 1 cr (standard deviation). 

Cebula, G.T., M.J. Kunk, H.H. Mehnert, C.W. Naeser, J.D. Obradovich, and J.P. Sutter, The 

Fish Canyon Tuff, a potential standard for the 40 Ar-39 Ar and fission-track dating 
methods (abstract), Terra Cognita (6th Int. Conf on Geochronology, 
Cosmochronology and Isotope Geology), 6, 139, 1986. 

Staudacher, T.H., Jessberger, E.K., Dorflinger, D., and Kiko, J., A refined ultrahigh-vacuum 
furnace for rare gas analysis, J. Phys. E: Sci. Instrum., 11, 781-784, 1978. 

Steven, T.A., H.H. Mehnert, and J.D. Obradovich, Age of volcanic activity in the San Juan 
Mountains, Colorado, U.S. Geol. Surv. Prof Pap., 575-D, 47-55, 1967. 

Wendt, I., and Carl, C., 1991, The statistical distribution of the mean squared weighted 
deviation, Chemical Geology, v. 86, p. 275-285. 

NOTE: Discrimination values used during sample analyses are as follows: 

40 Ar/36Ar 

291.24 ± 0.28% 
290.87 ± 0.12% 

40 Ar 36Ar 

4 AMU discrimination 
1.01463 
1.01593 

Furnace Blank Averages 

6.35 0.019 for samples YSLF-2, YO!, YMR2, YMR3, Y04, YU4 
5.34 0.017 for san1p1es YSLF-1 
6.18 0.026 for samples YSLF-12 
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Plate I: Geologic map of selected basalt and rhyolite onits within Yellowstone National Park. Modified 
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