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ABSTRACT 

Biology-Inspired Adaptive and Nonlinear Robust Control of BAUV Using 
Pectoral-Like Fins 

by 

Subramanian Ramasamy 

Dr. Sahjendra N. Singh, Examination Committee Chair 
Professor of Electrical and Computer Engineering Department 

University of Nevada, Las Vegas 

Aquatic animals have splendid ability to move smoothly through water using variety of 

oscillating fins. Presently researchers are involved in developing biorobotic autonomous un­

derwater vehicles (BAUVs) which have the ability to swim like marine animals. Multiple 

oscillating fins (dorsal, caudal, pectoral, pelvic, etc.) can be mounted on BAUVs to generate 

control forces for propulsion and maneuvering. In this research work, control of the BAUVs 

using pectoral fins alone is considered. The oscillating pectoral fins produce unsteady periodic 

forces. The control of motion of an BAUV in yaw and dive planes are considered. 

We first design an adaptive controller for controlling the heading angle of an BAUV in the 

yaw plane. The fins are assumed to be oscillating with a combined sway and yaw motion. 

The bias angle of the angular motion of the fin is used as the control input. The yaw angle 

is considered as the output variable. The adaptive controller requires the tuning of a single 

gain and uses only the yaw angle and its derivative for feedback. 
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Then, a robust servoregulator for the control of BAUVs based on the nonlinear internal 

model principle is designed. This design methodology is applied to control of BAUV both 

in the dive plane and yaw plane. In the dive plane, the fins attached to the vehicle have 

oscillatory pitching and heaving motion. The pitch bias angle of the fin is taken as the control 

input. The depth is taken as the output variable. In the yaw plane, the yaw angle command 

tracking of the BAUV is desired. In both the cases, the same design strategy is adopted. 

For the control law derivation, an exosystem of third-order is introduced, and the nonlinear 

time-varying BAUV model, including the fin forces, is represented as a nonlinear autonomous 

system in an extended state space. Based on this representation, a nonlinear robust regulator 

for the set point control of the depth is derived. The control system includes the internal model 

of a fc-fold exosystem, where A; is a positive integer chosen by the designer. It is shown that 

the control system suppresses all the harmonic components of order up to k of the tracking 

error. 

Finally, the servoregulation of BAUVs in the dive plane using indirect adaptive output 

feedback control is considered. It is assumed that the physical vehicle parameters, hydro-

dynamic coefficients, fin forces and fin moments are unknown. This entails the design of a 

parameter identifier to estimate the nonlinear BAUV system parameters. A sampled-data 

control system is designed for the reference trajectory tracking using output feedback. The 

design of a stabilizing control law requires an internal model of the exosignals. The constant 

reference signal and also the constant disturbance input together are taken as the exosignals. 

The closed-loop indirect adaptive feedback control law derived is applicable to both minimum 

phase and non-minimum phase BAUV systems. 

Simulation results show that in spite of uncertainties in the system parameters, precise 

tracking of the BAUV is achieved for the various control design methods indicated. 
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CHAPTER 1 

INTRODUCTION 

1.1 Biological Inspiration 

The marine animals have remarkable navigational and maneuvering capabilities due to 

their various fin structures. Extensive research is going on to understand and mimic the 

swimming mechanism of the these aquatic animals. The fishes have extensive control over 

fin conformation. A fish with its fin structures is shown in Figure 1.1. The fin structures in 

fishes can be broadly categorized into; paired fins and median fins. Most of the known fishes 

have a total of at least seven individual fins. There are four paired fins; pectoral and pelvic 

of two each. Dorsal, caudal and anal fins are the median fins. In this research work, the 

control of autonomous underwater vehicles has been considered by using pectoral fins. The 

pectoral fins contribute to low speed maneuvering. A steady rectilinear motion of an BAUV 

can be achieved by using the pectoral fins. A nonlinear model of a BAUV is considered to be 

attached with two pectoral fins symmetrically placed on either sides of the vehicle and various 

control design methods have been studied for the smooth maneuvering of an BAUV. 

1.2 Literature Review 

Aquatic animals are excellent swimmers and possess a natural ability to navigate smoothly 

through water bodies using their various fin patterns [1, 12, 5, 16]. Presently, lot of research 

is being conducted in the field of biologically inspired underwater vehicle control [2]. The fish 
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motion mechanism can be adapted in the control of BAUVs. In literature, multiple oscillating 

fins mounted on AUVs have been proposed to generate control forces for propulsion and 

maneuvering [10, 11, 4, 20, 18]. Laboratory experiments have been performed to obtain fin 

forces of oscillating fins [20, 18, 19, 3]. Computational fluid dynamics methods have been 

also used to derive the fin forces [17, 15]. The unsteady forces are complex periodic functions 

of the oscillation parameters (bias angle, amplitude, frequency of oscillation, relative phase 

angle, etc.). The mathematical models of BAUVs including the fin forces are nonlinear and 

time-varying. 

Many fishes use oscillating pectoral fins for their smooth maneuvers [44]. The lead-lag 

motion, feathering motion, flapping motion and spanning motion patterns can be observed in 

the pectoral fin motion and these aide their smooth navigation through the water body [1]. 

The adaptive closed-loop feedback control is used when the system parameters are unknown 

or partially known. Since, in the case of the nonlinear BAUVs the hydrodynamic coefficients 

are poorly known, the identification schemes can be used to determine the system parameters. 

Flapping foils have been designed for propulsion and smoother maneuverability of BAUVs. 

The control forces and moments generated by the flapping foils have been measured using 

various computational methods [24, 30, 37]. A lot of research has been done to design control 

systems using traditional methods, whereas the area of pectoral fin control is still relatively new 

field of study. Speed, performance and maneuverability are the striking features of pectoral 

fin control that make it a perfect fit for the control of BAUVs. The design of a smart fin has 

been considered [50]. Inverse feedback linearization technique has been used for the design of 

an adaptive controller [15]. In recent papers [15, 45], the control of BAUVs in the dive and 

yaw planes was considered using pectoral fins, but the system parameters have been assumed 

to be known. The assumption of precise knowledge of system parameters is very restrictive. 
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Furthermore in these papers, it is assumed that state variables are available for feedback. 

In recent papers adaptive control laws have been designed for the trajectory control of the 

yaw angle [13, 14]. However, from the literature it appears that an in depth study into use of 

pectoral fins for control of BAUVs in the dive plane in the presence of parametric uncertainties 

has not been done yet. 

In literature, methods of averaging and discretization of time-periodic systems have been 

proposed for the control of BAUVs. By averaging method, one obtains an approximate average 

time-invariant representation of the BAUV model for simplicity in control law design [39]. But 

the control system designed based on the time-invariant average model ignores the effect of 

time-varying fin forces on the vehicle motion. As such in the closed-loop system, the tracking 

error responses exhibit fluctuations caused by the harmonic components of the fin forces in the 

steady-state. Based on exact discrete-time models of BAUVs [17, 15] sampled-data control 

systems have been developed. For BAUV models with parametric uncertainties, discrete-time 

adaptive laws have been also designed [13, 14]. Of course, exact discretization is not possible 

for nonlinear models of BAUVs. Moreover, discrete-time controllers can give zero tracking 

error only at the sampling instants; and in the closed-loop system, large intersample excursions 

may exist. Besides these approaches, fuzzy and neural control of BAUVs have been considered 

[10, 11, 21]. Open-loop control of a BAUV equipped with six oscillating fins using a cluster 

of inferior olive neurons has been also attempted [4]. 

1.3 Scope of Thesis 

This thesis considers the control of BAUVs using various closed-loop control design meth­

ods, being motivated by the natural ability of the aquatic animals to smoothly navigate 

through water bodies. The adaption of this fish motion mechanism for the control of BAUVs 
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in yaw and dive planes is considered. Though, the marine animals are characterized by a 

variety of their fin patterns, only the contribution of the pectoral fins to their smooth maneu­

vering is studied. The scope of this research work covers the design of an yaw plane adaptive 

controller for a continuous time-varying system by the method of averaging, design of dive and 

yaw plane robust nonlinear controller for a continuous system using internal model principle 

and modular dive plane sampled-data indirect adaptive control law design for the set point 

control of depth. 

The mathematical model for the motion of an BAUV in the dive plane and yaw plane 

is given in chapter 2. Similar to the pectoral fin flapping mechanism found in the fishes, 

the BAUV is designed with a pair of pectoral attached symmetrically to either sides of the 

vehicle. The fins produce a combined heaving and pitching motion in the dive plane. In the 

yaw plane, the fins are assumed to oscillate with a sway and yaw motion. The control forces 

and moments produced by the fins in both dive and yaw planes are nonlinear functions of the 

bias angle, which is taken as the control input. Also, the expression and formulation of the 

net fin forces and moments are shown in chapter 2. 

In chapter 3, an adaptive controller is designed for the control of an BAUV in the yaw 

plane. The fins attached to the vehicle have an oscillatory swaying and yawing motion. 

The bias angle of the fin is taken as the control input. The oscillatory motion of the fins 

produce periodic forces. The method of averaging is used for designing the control law. Even 

though the derivation of the control law is performed for an averaged system, simulations are 

performed on the complete system with time-varying force and moment components included. 

The closed-loop responses show that precise set point control for the yaw angle can be achieved 

in spite of the approximations assumed in the control law derivation. 

In chapter 4, a new approach for the control of nonlinear BAUVs equipped with oscil-
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lating fins is presented. The method is based on the nonlinear servoregulation theory [7, 8]. 

Although, this design approach is applicable to multi-input nonlinear BAUV models, here for 

simplicity, control of a BAUV in the dive plane using a pair of mechanical pectoral fins is 

considered. The fins are assumed to oscillate harmonically, and have a combined pitch and 

heave motion. The pitch bias angle of the fin is treated as a control input. Oscillating fins 

produce time-periodic forces. An exosystem of third-order is introduced to model the periodic 

forces, and the time-varying nonlinear model of the BAUV is represented as an autonomous 

nonlinear system in. an extended state space. For the depth control, based on the nonlinear 

servoregulation theory, an internal model of fc-fold exosystem driven by the tracking error is 

constructed, where k is a positive integer chosen to give desirable tracking accuracy. The 

fc-fold exosystem has ability to produce monomials of degree up to k of the state variables 

of the exosystem. Then the composite system including the linearized model of the BAUV 

and the internal model of the fc-fold exosystem is stabilized to obtain a robust state feedback 

control law for the depth control. It is shown that the controller, including the internal model 

in the loop, suppresses harmonic fluctuations of degree up to k in the tracking error responses. 

This desirable closed-loop property is not possible using the method of averaging [39] or dis­

cretization [17, 15, 13]. Simulation results are presented which show that the servoregulator 

accomplishes set point control of the depth precisely in spite of large parameter uncertainties 

in fin forces. Chapter 5 considers the control of a BAUV in the yaw plane using a control 

design that is similar to the one used in chapter 4. The fins are assumed to be oscillating 

with a combined sway and yaw motion and produce unsteady periodic forces. The bias angle 

of the angular motion of the fin is treated as the control input and only the yaw angle is 

measured for output feedback. The problem of servoregulation is addressed with the design 

of an internal model of the fc-fold exosystem. It is desired to accurately achieve the set point 
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control of the yaw angle. Simulation results presented show that in spite of the parametric 

uncertainties precise yaw angle trajectory control is accomplished with all other parameters 

bounded. 

Finally, the design of an indirect adaptive closed-loop servoregulator for the dive plane 

control of a nonlinear BAUV using mechanical pectoral-like fins is considered in chapter 

6. The pectoral fins oscillate with a pitch and heave motion. The pitch bias angle of the 

oscillating fins is taken as the control input. Accurate depth trajectory tracking is desired 

in the dive plane and also constant disturbance rejection is to be taken care off. Since the 

nonlinear BAUV hydrodynamic coefficients and fin forces are poorly known, an adaptive 

control technique is used for control system design. The modular control system consists 

of an identifier and a stabilizer. The parameter identifier is designed which estimates the 

unknown system parameters. For the convenient design of stabilizer a sampled-data control 

system is used. The depth is taken as the output variable and only output feedback is employed 

for the synthesis of the control design. The stabilizer is designed using the pole placement 

technique. The advantage of designing an indirect control law lies in its application to both 

minimum phase and non-minimum phase systems. This control method is very significant, as 

the system is found to be non-minimum phase for all choices of the pectoral fin location. It 

is shown that in spite of the uncertainties in the system parameters accurate depth control is 

achieved in the dive plane and also the remaining state variables remain bounded when the 

tracking error converges to zero. 
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Figure 1.1: Fin patterns in a fish 
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CHAPTER 2 

BAUV DYNAMICS 

2.1 Mathematical Model of BAUV In Dive Plane 

The model of a BAUV in dive plane is given in Figure. 2.1. On either sides of the vehicle 

two fins similar to the pectoral fins are attached. The vehicle moves in the dive plane (Xj — Zi 

plane), where OiXiZj is an inertial coordinate system. OBXBZB is body-fixed coordinate 

system with its origin at the center of buoyancy. XQ is in the forward direction, and ZB points 

down. Each of the pectoral fins oscillates with with a combined heave and pitch motion. The 

motion of the fin is described by 

h(t) = hmsin(ujft) (2.1) 

6d(t) = f3 + 9dmsin(ujft + i/i) (2.2) 

where h and 8 are the heave and pitch angles of the fin, hm and 6m are the amplitudes of linear 

and angular oscillations, (3 is the pitch bias angle, LOf (rad/sec) is the frequency of oscillations 

of fins, and V\ is the phase difference between the pitching and heaving motion. 

We assume that vehicle's forward speed u — U is held constant by some control mechanism. 

The equations of motion of a neutrally buoyant vehicle are described by [6] 

m(wd -uq- zGq2 - xGq) = 0.5pl4z'^q + 0.5pl3{z'ww + z'qqu) + 0.5pl2z'wwdu + fpd 

Iyq + mzG(u + wdq) - mxG(wd - uq) = O.bpPM'fl + 0.5pl4(M^+ 

M'qqu) + 0.5pl3M^wdu - XCBWCOSO - zGBWsin8 + mpd 
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Zd = —usin{6) + wcos(6) (2.3) 

where 9 is the pitch angle; q = 6, XQB = XG~XB, mis the mass of the vehicle, ZQB = ZG~ ZB, 

I = body length, p = density; and Zd is the depth. fPd and mpd are the net force and moment 

acting on the vehicle due to the pectoral fins. The primed variables are the nondimensionalized 

hydrodynamic coefficients. Here ((XB,ZB) = 0) and (XG,ZG) denote the coordinates of the 

center of buoyancy and center of gravity (eg), respectively. For control law design, a linearized 

BAUV system is used. But, for simulation purposes the nonlinear BAUV model is considered. 

Linearizing the equations of motion (Eqn 2.3) about Wd = 0, q = 0, Zd = 0, and 6 = 0, we 

obtain 

m — Zw —VCIXQ — Zq 0 

-mxG - M*,- Iy-Mq 0 

0 0 1 

z-JJ zq + mU 0 

MWU Mq - mxGU 0 

1 0 0 

wd 

Q 

Zd 

wd 

q 

Zd 

0 

ZGBW 

-U 

6 + 

fpd 

mpd 

0 

+ 

where, (XGB = 0), (zw, Mq, etc.) are obtained from the hydrodynamic coefficients. 

Simplying the above linearized equations, we can the express the BAUV system model in 

a state-space representation by 

id = Adxd + Bd 

fpd 

mpd 



yd = o o 1 o \xd 

where, the state vector xj is defined as xj = (iVd,q,Zd,6)T € R4. The constant matrices, 

Ad € i?4x4 and Bd € i?4x2 . The output variable is given as yd (depth). 

2.2 Fin Force And Moment In Dive Plane 

The computation of periodic force and moment coefficients are based on the CFD analysis. 

The control force and moment for a single pectoral fin in the dive plane is given by fd and rrid-

The control force and moment coefficients generated by the oscillating fin in the dive plane 

can be described by the Fourier series given by [15] 

M 

fd(t) = Y.lfWsininuft) + ti(0)cos(nuft)} 
n-0 

M 

md(t) = Y,[<iP)sin(ruJft) + fc
n{(3)cos{nu ft)\ (2.4) 

where /°(/3) and raj(/?), a € {s, c} are the Fourier coefficients, and M is an integer. The control 

design does not depend on the value of M. The Fourier coefficients are nonlinear functions of 

the pitch bias angle. The control force and moment for a single pectoral fin is given by fd and 

m,d • For smaller bias angles, fd and m<j can be approximated as 

fZ(P) = /„a(o) + (^ff-)P 

ml{(3) = ma
n(0) + (^§P-W (2-5) 

Here a time-varying vector 4>(t) is defined. It is comprised of sinusoidal functions 

<j)(t) = [l,sin(w0t),cos(wot), ,sin(Mw0t), 

cos(Mw0t))
T G R2M+l (2.6) 

The control force and moment produced by each fin can be written by using Eqns 2.4 - 2.6 as 

fd(t) = <j>T(fa + Pfb) 
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md(t) = 4>T{ma + /3m6) (2.7) 

where fa, fb, ma, m^ € R2M+1. For our control design we have used M=4. The superscript 

T denotes the matrix transposition. The net normal force due to both the fins is given by 

fpd — —Ijd and rripd = 2(dcgd-fd + ma), respectively, where dcgd is the distance of the fin from 

the nose of the vehicle. 

2.3 Mathematical Model of BAUV In Yaw Plane 

Figure. 2.2 shows the schematic of a typical BAUV in yaw plane. Two fins resembling the 

pectoral fins of fish are symmetrically attached to the vehicle. The vehicle moves in the yaw 

plane (Xj — Yj plane), where OIXJY] is an inertial coordinate system. OBXBYB is body-fixed 

coordinate system with its origin at the center of buoyancy. XB is in the forward direction. 

Each fin has two degrees of freedom (sway and yaw) and oscillates harmonically. We assume 

that the combined sway-yaw motion of the fin is described as follows: 

8(t) = 5msin(2Ti ft) 

0y(t) = p + 0yrnsin(2irft + v) (2.8) 

where 5 and 6y correspond to sway and yaw angle of the fin, 5m and 6ym are the amplitudes 

of linear and angular oscillations, (3 is the bias angle, / (Hz) is the frequency of oscillations, 

and v is the phase difference between the sway and yaw motion. 

We assume that vehicle's forward speed u = U is held constant by some control mechanism. 

The equations of motion of a neutrally buoyant vehicle is described by [35] 

m(v + Ur + XGr - YGr2) = Y+r + (y0u + YrUr) + YvUv + fm 

Izr + m(XGv + XGUr + YGvr) = Nfr + (Nyii + NrUr) + NvUv + mm 

ip = r (2.9) 
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where ip is the heading angle, r = tp is the yaw rate, v is the lateral velocity along the Y^-axis, 

(XG,YG) = (XQ,0) is the coordinate of the center of gravity with respect to OB, m is the 

mass, and Iz is the moment of inertia of the vehicle. Yi,,Nf,Yv, etc are the hydrodynamic 

coefficients, and fpy and the net fin force and moment. The global position coordinates 

X and Y of the vehicle are described by the kinematic equations 

X = Ucos(ip) — vsin(ip) 

Y — Usin(ip) + vcos(ip) (2.10) 

As in section 2.1, we linearize the equations of motion (Eqn 2.9) of the BAUV in yaw plane 

to get 

m — Yi, rnXc — Yf 0 

mXG -Ni h-Nr 0 

0 0 1 rP 

YVU YrU -mU 0 

NVU NrU-mXGU 0 

0 1 0 i> 

+ 

/ i py 

m. py 

0 

where, the state vector xy = (v,r,i/j)T € R3. From the above linearized equations of motion, 

the state variable form can be expressed as 

Xy /\yXy "P IDy 
Jpy 

m. 
py 

Vv 0 0 1 Xt, 

12 



where Ay E R3x3 and By e R3x2 are constant matrices. The output variable is yv (yaw angle). 

2.4 Fin Force And Moment In Yaw Plane 

The periodic force and moment calculation are similar to section 2.2. The lateral force is 

shown by fp and yawing moment is shown by mp. The control force and moment coefficients 

generated by the oscillating fins in yaw plane is computed using Eqns. 2.4-2.7. 

mp{t) = 4>T{ma + /3mb) (2.11) 

where fa, /(,, ma, mj, <f>, (3 are defined in section 2.2. The net lateral force due to two fins is 

given by fpy = -2fp and m r a = 2(dcgy.fp + mp), respectively, where dcgy is the moment arm 

due to fin location. 

13 
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Figure 2.1: Model of BAUV in dive plane 
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"V ewwr LA. an g l « 

Figure 2.2: Model of BAUV in yaw plane 
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CHAPTER 3 

ADAPTIVE YAW PLANE CONTROL OF BAUV USING PECTORAL-LIKE FINS 

In this chapter, an adaptive servoregulator is designed for the yaw plane control of an BAUV 

using pectoral-like fins. This controller design can be applied to the control of BAUVs both 

in yaw plane and dive plane. The yaw plane control is considered here. A pair of pectoral 

fins is attached symmetrically to either sides of the BAUV and are assumed to be oscillating 

with swaying and yawing motion. The motion of the fins generate unsteady periodic forces. 

The bias angle of the angular motion of the fin is taken as the only control input. The yaw 

angle is the controlled output variable. The force and moment coefficients of the fin are 

computed by Fourier decomposition methods. For the heading angle control of the BAUV, an 

adaptive servoregulator is designed. The yaw angle and its derivative are used for feedback. 

The physical parameters of the system and also the hydrodynamic coefficients are not known. 

This adaptive design control law design does not require the full knowledge of the system 

parameters. In steady-state, the set point control of the yaw angle is precisely achieved. 

Simulation results show that the other simulation parameters also show bounded oscillations. 

3.1 Problem Definition 

The yaw plane control of an BAUV could be achieved by various methods. In this case, 

the design of an adaptive controller is considered for the BAUV control in the yaw plane. 

The physical model of an BAUV in the yaw plane is given in Figure. 2.2. The equations of 

16 



motion of the BAUV have been given in section 2.3. For the convenience of the readers they 

are described again [35]. 

m(v + Ur + XGr - YGr2) = Yfr + {Y^v + YrUr) + YvUv + } n 

Izf + m(XGv + XGUr + YGvr) = N+r + (Nyi) + NrUr) + NvUv + mm 

tp = r (3.1) 

where ip is the yaw angle, r = ip is the yaw rate, v is the lateral velocity along the Yg-axis, 

(XG,YG) = (XG,0) is the coordinate of the center of gravity with respect to OB, m is the 

mass, and Iz is the moment of inertia of the vehicle. The forward velocity u = U is held 

constant by some control mechanism. Yi,,Nj.,Yv, etc are the hydrodynamic coefficients, and 

fpy and rripy are the net fin force and moment. The global position coordinates X and Y of 

the vehicle are described by the kinematic equations 

X = Ucos(tp) — vsin(ip) 

Y = Usin(il>) + vcos{ip) (3.2) 

The fin force and control moment calculations are shown in detail in section 2.4. In the next 

section, the adaptive control law is designed. 

3.2 Adaptive Control Law 

In this section, the design of an adaptive controller is considered. This thesis work focuses 

on multiple control law design techniques for the control of BAUVs in yaw and dive planes. 

To analyze the performance of different controllers designed, an uniform reference signal is 

given throughout. For the yaw plane control, a constant reference signal is given by ipr = ip* 

and e = -0 — ipT is the tracking error. Defining the state vector x = (xi, £2, ̂ 3)T = (v, r, ip)T G 

17 



R3, solving Eqn 3.1 and substituting fm and mpy using Eqn 2.4, gives the state variable 

representation of the linearized model of the BAUV by 

x = Ax + B 
Jpy 

\ mpy ) 

+ D 

y= [0,0,1}X = CX 

e = x 3 — xpr (3.3) 

where A, B are constant matrices and D is the nonlinear disturbance matrix. 

The output variable is expressed as 

y = ip + Xip = Cx (3.4) 

where A > 0 is a design parameter. Using Eqns 3.3 and 3.4, we can write 

y(s) = C(sl - A^Buis) + C(sl - A^Dvis) (3.5) 

A nc(s)u(s) + nd(s)i)(s) 
(3.6) 

dc(s) 

In Laplace form, s is taken as a Laplace variable. Then, u(s) is the control input and v(s) is 

the unknown disturbance vector, and 

nc{s) = Cadj(sl - A)B 

nd(s) = Cadj{sl - A)F 

dc(s) = det(sl - A) 

where, nc(s) was computed and found to be a Hurwitz polynomial. Therefore, nc(s)/dc(s) is 

minimum phase. 

We consider a reference trajectory ym = \tp* and the the tracking error is given by e\ = y — ym. 

18 



From Eqn 3.4 it can seen that, as e\ tends to zero ip converges to ip*. The tracking error can 

be written as 
nc(s)„, ,. , nd(s) „ 

ei = lMu{s) + W)v{s)'ym{s) (3'7) 

It is our objective to remove the unknown disturbance vector v. For this purpose, we filter 

both sides of Eqn 3.7 by (s/s + fi), where /J is the design parameter (// > 0)[43]. Since ym is 

a constant signal, sym = 0. Therefore, from Eqn 3.7 

; ) « • • 

s + nj 

_ nc(s) / s \ 

The exponentially decaying signals in Eqn 3.8 have been neglected. 

The modified input and disturbance signals can be written as 

where cj/(i) is a bounded function because nc(s) is a Hurwitz polynomial. Further, Eqn 3.8 

can be rearranged as 

e i= { s +sd!(n
st

s) [Ms)+^(s)]=H (s) Ms)+Qf{s)] (3-9) 

A control law Uf(t) has to be designed, so that, the tracking error e\{t) asymptotically 

tends to zero. 

We already saw that nc(s) is Hurwitz and fi > 0, hence for the given BAUV model H(s) is 

minimum phase and has relative degree one. From the root-locus technique, we infer that a 

negative feedback law of the form 

Uf(t) = -Ked (3.10) 

can stabilize the system Eqn 3.9, where Ke > 0. 

19 



A minimal realization of H(s) is given by 

xa = Aaxa + Ba [uf + ujf] 

ei = Caxa (3-11) 

where Aa, Ba, and Ca are the constant matrices. Since H(s) is minimum phase with relative 

degree one, it follows that there exists a unknown gain K* > 0 such that [48, 49] 

P(A - K*BaCa) + (A- K*BaCa)
TP = -Q < 0 

PBa = CT
a (3.12) 

where P and Q are positive definite symmetric matrices. Let K be an estimate of K* and 

consider an output feedback control law 

uf = -kex (3.13) 

One of the advantages of designing an adaptive controller is that, tuning of a single adaptive 

gain is sufficient for the stabilizing the closed-loop system. Now, we adaptively tune K. Using 

Eqn 3.13 in Eqn 3.11 gives 

xa = (Aa - K*BaCa)xa + (K*BaCaxa - KBaex) + Baujf (3.14) 

The parameter error is defined as, K = K* — K, Eqn 3.14 gives 

xa = Axa + KBaex + Baujf (3.15) 

where eigenvalues of A = (Aa — K*BaCa) are found to be in the left half of the s plane. 

For stability analysis, we consider a positive definite quadratic Lyapunov function 

W = xT
aPxa + ~iK2 (3.16) 
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where 7 > 0. From Eqn 3.15, the derivative of W is given by 

W = xT
a{PA + ATP)xa + 2xT

aPKBae1 + 2jKK + 2xT
aPBaL0} (3.17) 

Using Eqn 3.12 in Eqn 3.17 and noting that x^PBa = x„Cj = e\ gives 

W = -xlQxa + 2k{fK + el) + 2e1u>f (3.18) 

It is desired to eliminate K from Eqn 3.18, for this purpose the adaptation law is taken as 

k = -K = -~f~le\ (3.19) 

Substituting Eqn 3.19 in Eqn 3.18 and using Young's inequality gives 

\\C II2 

W = -xT
aQxa + 2eiLUf = -Xmin(Q)\\xa\\

2 + e\\xf + ^J -^ lw/ l < 0 (3.20) 

According to Eqn 3.8, ojf(t) —> 0, as t —» 00, because v is a constant signal. Thus asymptoti­

cally Eqn 3.2 becomes 

^ < - [ A r o i „ ( Q ) + e]||xQ||2 (3.21) 

For a choice of e < Xmin(Q); from Eqn 3.2. we can see that W(xa. K) is positive definite and 

W < 0, xa and K are bounded. We can show that xa [43] (from Barbalat's lemma) tends to 

zero, which implies that e\ —Caxa converges to zero and ip tends to ip*. 

Using Eqn 3.8, the control input u(t) can be obtained. From Eqn 3.8 we have 

u = ( ^ ) uf (3.22) 

which yields 

u(t) = uf(t) + n uf(t)dT (3.23) 
Jo 

Using uf(t) = -K(t)ei{t) in Eqn 3.22 gives 

u(t) -K{t)ex{t) - n [ K{T)ei(T)dT (3.24) 
Jo 
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3.3 Simulation Results 

In this section, simulation results for control of BAUV using an adaptive servoregulator is 

presented. The parameters of the vehicle are unknown, but the adaptive controller design law 

does not require the full knowledge of the system. It is desired to achieve set point control of 

the yaw angle, with the bias angle of the fin as the control input. The parameters of the model 

are taken from [15]. The vehicle parameters are I = 1.391 m, mass=18.826 kg, Iz= 1.77 kgm2, 

Xc = —0.012, YG = 0. The hydrodynamic parameters for a forward velocity of 0.7 m/sec 

are Yf = -0.3781, Y* = -5.6198, Yr = 1.1694,^ = -12.0868, Nf = -0.3781, N* = -0.8967, 

Nr = —1.0186, and Nv = -4.9587. The fins are set with an oscillation frequency of 8 Hz. 

The computation of the chord length (c) and surface area of the foil requires the knowledge 

of the Strouhal number, St = 0.6, where St — •&-, t^o is 0.8 m/sec, / is the frequency of the 

fin oscillation. The fin force and moment coefficients are calculated for this Strouhal number. 

The distance of the fin from the center of gravity eg is dcgy = 0.02 m. For this choice of dcgy, 

the BAUV model is found to be minimum phase. 

From the CFD analysis, the parameter vectors fa, fb, ma, and mb used for simulations are 

fa = (/oc(0),/1
s(0),/f(0),...,/^(0),/^(0))T 

f _ (dfim
 dfim

 dKm
 5/"rm df?(a\\T 

h ~ V^(0)' W{)' W{1 -' ~W{1 W{)) 
ma = (m^(0),m?(0),m^(0),...,ms

M(0),m^(0))T 

/ 9 m „ , , dm3 .„. dm? ,„. dm1!? .„. dm1? , . \ 

""= (*r(0)- i# ( 0 ) ' -W{0% •- ~sf(0)' ^r ( 0 ) ) 
where fa, fb,ma,rrib € R2M+1. Only the four significant harmonics are considered (M =4). 

Then the values of fa,fb,™>a, mb for M=4 are 

fa = (0, -40.0893, -43.6632, -0.3885,0.6215,6.2154, -10.1777, -0.1554,0.6992) 
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fb = (68.9975,0.4451, -16.4704,64.1009, -19.5864, -0.8903, -2.2257,2.2257,4.8966) 

ma = (0,0.6037,0.4895,0, -0.0054,0, -0.0925,0, -0.0054) 

mb = (-0.4986, -0.3739, -0.0935, -0.2493,0.1246,0.0312, -0.0312,0.0935,0) 

(Readers may refer to [15] for the details.) It is pointed out that these parameters are obtained 

using the Fourier decomposition of the fin force and moment, and are computed by multiplying 

the Fourier coefficients by \p-Wa.Uoo2 and ^pWa-cUj2, respectively, where Wa is the surface 

area of the foil. For simulation, the initial conditions of the vehicle are assumed to be x(0) = 0. 

The initial value of the gain K is taken as 20. The design parameters A and u are taken as 

0.01 and 40, respectively. 

Simulations are carried out for a constant reference trajectory i/v converging to ip*=2b 

deg. We note that a fourth-order filter is used to generate the constant reference trajectory. 

A gradually rising exponential command is combined with a third-order filter and is given by 

Q (s) =
 XlU™ 

c W (s + \a){s + Ac2)(s
2 + 2(cujncs + u4) 

is generated, where unc = 4.95, (c= 0.707, Aci = 0.14 and AC2 = 3.5 are the real poles. The 

initial filter conditions are taken as zero. 

Case I: Adaptive yaw plane BA UV control: Constant reference trajectory ip* 

— 25 deg, uij =8 Hz, nominal parameters 

The pectoral fin oscillation frequency is set at 8 Hz. A smooth reference trajectory ipr con­

verging to ip* = 25 deg is generated using a fourth-order filter, as seen above. Simulation 

results for the nominal values of the fin force and moment coefficients are shown in Figure. 

3.2. It is seen that the yaw angle converges to the desired values in little over 30 seconds. The 

control bias input required is around 20 deg. This can be easily provided by the pectoral fins. 
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The magnitude of the tracking error is 0.01 deg. The tracking error has time-zero bias due 

to the averaging of the fin force and control moment. The desired yaw angle output is found 

to oscillate with zero bias around the reference input ipr. Hence the tracking error does not 

converge to zero in steady-state. The control force and moment required are 45 N and around 

0.4 Nm, respectively. 

Case II: Adaptive yaw plane BAUV control: Constant reference trajectory 

ip* = 25 deg, Uf =8 Hz, -25 % uncertainty 

A smooth set point control of the yaw angle was achieved for the nominal values of the fin 

force and moment coefficients. Now the performance of the adaptive controller for perturbed 

values of the fin force and moment coefficients are examined. The values of fa, ft,, ma and 

nib are perturbed by a factor of 0.75. The frequency of the fin oscillation is retained at 8 Hz. 

The simulation results are presented in Figure. 3.3. The performance of the controller in this 

case is almost similar to Figure. 3.2. The response time taken to achieve the target value is 

around 30 seconds. The magnitude of the tracking error is slightly lesser when compared to 

Figure. 3.2. The control input is around 20 deg. 

Case III: Adaptive yaw plane BA UV control: Constant reference trajectory 

ip* = 25 deg, u)f = S Hz, +25 % uncertainty 

In this case, an uncertainty factor of 1.25 is added to the fin force and moment. The simulation 

results are shown in Figure. 3.4. The performance of the controller has slightly deteriorated 

when compared to Figure. 3.2 and Figure. 3.3. Even though the response time taken for 

the BAUV to reach i/)r is around 30 seconds, the control bias required is has increased to 

around 30 deg. It can be intuitively seen that for further perturbations to force coefficients, 

the control input required would increase. 
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Figure 3.1: Closed-loop system 
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Figure 3.3: Adaptive yaw plane BAUV control: Constant reference trajectory ip* = 25 deg, 
u)f =8 Hz, -25 % uncertainty 
(a) Yaw angle, ^ , and reference yaw angle, \t r (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg). 
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CHAPTER 4 

NONLINEAR ROBUST DIVE PLANE CONTROL OF BAUV USING INTERNAL 

MODEL PRINCIPLE 

This chapter presents the design of a robust servoregulator for the control of nonlinear BAUVs 

based on the nonlinear internal model principle. This design methodology is applicable to 

complete nonlinear multi-input BAUV models. In this chapter the control of motion in the 

dive plane is considered. The application of this design methodology for the yaw angle control 

is shown in chapter 5. The fins are assumed to be oscillating with a combined pitch and heave 

motion. The mean angle of pitch motion of the fin is used as a control variable. The oscillation 

of the fins generate unsteady periodic forces. The control law design requires an exosystem 

of third-order. The nonlinear BAUV model, with the fin forces included, is represented as 

a nonlinear autonomous system. Then, a nonlinear robust servoregulator is designed for the 

depth command tracking. The control law has two parts of design. First, an internal model 

of a A;-fold exosystem is derived, where k is a positive integer left to the choice of the designer. 

Then, a stabilizer if designed for the stabilization of the closed loop system. It is seen that all 

the harmonic components of order up to k of the tracking error are suppressed. Simulation 

results are presented in the end of the chapter, which show that in spite of uncertainties in the 

parameters of the system, the depth is accurately controlled for a given reference command 

input. 
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4.1 Problem Definition 

It is desired to design a robust servoregulator to achieve set point control of the depth in 

the dive plane. The physical model of an BAUV in dive plane is shown in Figure. 2.1. The 

equations of motion of the BAUV in the dive plane Eqn. 2.3 is given in chapter 2. For easy 

understanding, the mathematical model of an BAUV is again given here [6] 

m(wd -uq- zGq2 - xGq) = Q-hpl^z'^q + 0.5pl3(z'ww + z'qqu) + 0.5pl2z'wwdu + fpd 

Iyq + mzG(u + wdq) - mxG(wd - uq) = 0.bpl5M'g<j + 0.5pl4(M^+ 

M'gqu) + 0.bpl3M'wwdu - XGBWCOS6 - zGBWsin9 + mpd 

zd — —usin(6) + wcos(6) (4.1) 

where 6 is the pitch angle; q = 9, XGB = XG-XB, ZGB = zG-zB,l = body length, p = density; 

and zd is the depth. fpd and mpd are the net force and moment acting on the vehicle due to 

pectoral fins. The primed variables are the nondimensionalized hydrodynamic coefficients. 

Here ((XB, ZB) = 0) and (xG, zG) denote the coordinates of the center of buoyancy and center 

of gravity (eg), respectively. The calculation of the fin forces and moment coefficients are 

given in chapter 2. 

Let zr = z* be a constant reference signal and e = zd — zr be the tracking error. Defining 

the state vector x = (xi,X2,xz,X4)T = (wd,q,zd,6)T 6 R4, solving Eqn 2.3 and substituting 

for fpd and mpd from Eqn 2.4, gives the state variable representation of the BAUV of the form 

x = Ax + Bv + ni(x) 
fd 

md 

2/ = [0,0,1,0]* 

e = y-zr (4.2) 
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where ni(x) denotes the vector due to the nonlinear functions of Eqn 2.3. In view of Eqn 2.4 

the state equation Eqn 4.2 is a nonlinear time-varying system. 

4.2 Third-Order Exosystem 

We are interested in representing Eqn 4.2 as a time-invariant system. For this, we select 

an exosystem 

/ \ ( 
0 0 0 

0 0 -uf 

\ ( \ 

\0tOf 0 / 

Vl 

Kv2/ 

(4.3) 

= Avv 

where v — (vo,v\, v2)
T € R3. Define vp = (vi,v2)

T. Using Eqn 4.3, one can generate any 

constant and sinusoidal signals sin(nu)ft) and cos(nuft) for any integer n. This can be verified 

easily. Let vo = 1, V\ = cos to ft and v2 = sinto ft; then i>i,t>2 satisfy Eqn 4.3, and one can easily 

show that 

sin2uj ft = 2u1t>2 

COS 2<jjft — [v\ — v\) 

sin 2>ujft = 2v\v2 + {v\ - v\)v2 

cos3o;/t = (v\ — v\)v\ — 2v\v\ (4.4) 

Continuing this process, one can easily show that sm(nu>ft) and cos(nu>ft) can be expressed 

as homogeneous polynomials, whose each term is monomial in variable V\ and v2 of degree n. 

As such one can express the fin force and moment as functions of state vector v in the form 

M 

7o(/3) + E 7^(/3)<(uP) + lcM<{vp) (4.5) 
fd(t,P) ^ 

y md(t,p) J n = l 
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9f(v,P) 

and TTn(vp) = smnujft and TC^(VP) = cosnuift are homogeneous polynomials in variables v\ and 

V2 degree n, and 

7o(/3) 
m) 

Jn(P) 

im 

<(/?) 

im 

J 
\ 

\ mc
n(P) J 

Using Eqn 4.5 in Eqn 4.2 gives a time-invariant representation of Eqn 4.2 of the form 

x = A(w)x + g(vp, /3, w) + nt(x, w) = gx(x, v, w) (4.6) 

e = x3- z v0 

where g(v,/3,w) = Bvgf{v,(3) and w = Rp denotes the vector consisting of all the unknown 

parameters of the BAUV model including fin forces. For example, w includes the uncertain 

parameters of the Fourier coefficients. 

Expanding the nonlinear terms of Eqn 4.6 in Taylor series, one can represent Eqn 4.6 in 

the form 

x = A{w)x + B(w)uc + E(w)v + ni2{uc, v, x, w) (4.7) 

e = H\x + H2v = h(x, v0) 

where uc = j3, H\ = (0,0,1,0), H2 = {—z*, 0,0), n;2 denotes nonlinear vector functions of 

second and higher order terms in (5, v\, v2 and x, and 

B(w) = ^(0,0, w) 
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E(w) = g(0,0,w),-fT-(0,0,w) 
OVr, 

Note that E\VQ ( VQ = 1) is a constant vector and E\ is the first column of E. For the choice 

of vo = 1, i>i = cosw/i, U2 = sinw/t, the system Eqn 4.2 and Eqn 4.7 are equivalent. 

For the purpose of control law derivation, we embed the system Eqn 4.2 in a larger class of 

system Eqn 4.7 in which we allow v 6 V, an open set in R3. Of course, unknown coefficients of 

two sinusoids sin{ujt) and cos(u)ft) can be merged with vp and remaining unknown parameters 

are elements of w. We have set the goal for approximate tracking for practical reasons. It 

will be seen that the design of control law such that e tends to zero is a difficult problem 

due to time-varying periodic fin forces. The class of control laws of interest is of the form 

uc = kc(x, xs), where xs G Rn° is state vector of a dynamic system 

%s 9s \%si €) (4.8) 

for an appropriate choice of vector functions gs(xs,e). We observe that the tracking error is 

an input signal to the dynamical system Eqn 4.8 

Define J) £ i?4+Tlc. Then the closed-loop system can be written as 

Xr — (4.9) 
A(w)x + Bkc(x, xs) + E{w)v + nii(kc{x, xs),v, x, w) 

gs(xs,h(x,v0)) 

= gc(xc,v,w) 

Let the nominal value of the unknown parameter vector w be w* and w = w — w* be the 

perturbation from the nominal value. We assume that w G W, an open set surrounding w = 0. 

We introduce the following definition to be used later. 

Definition: Let V be an open neighborhood of the origin R3. A sufficiently smooth function 

ok : V —* R is said to be zero up to the kth order if ok(0) = 0, and its all partial derivatives of 

order less than or equal to k vanish at v = 0. 
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We are interested in the design of a kth-ovder nonlinear robust control system (termed kth-

order servoregulator) such that the closed-loop system Eqn 4.9 has the following properties. 

Property 1: All the eigenvalues of the matrix ^ ( 0 , 0 , w*) have negative real parts. 

Property 2: For all sufficiently small xc(0), i>(0), and w, the trajectory (xc(t),v(t)) of the 

composite system Eqn 4.9 and Eqn 4.3 satisfies 

lim (e(t) - ok(v(t)) = lim (h{x{t),v(t)) - ok(v(t)) = 0 (4.10) 

where k is the chosen positive integer. 

The Property 2 implies that steady-state tracking error of the closed-loop system is zero 

up to kth order. By choosing k large enough, designer can accomplish desired tracking error 

accuracy in the steady-state. 

4.3 Control Law 

In this section, the question of existence of a solution of the posed kth-ordei output regu­

lation is considered. Based on [7,8], the following result is stated. 

Theorem 1: Suppose that in the closed-loop system Eqn 4.9, Property 1 holds. Then the 

closed-loop system also satisfies Property 2 if and only if there exists sufficiently smooth func­

tions Xc(v,w) = [XT(v,w),Xj(v,w)}T with Xc(0, «;*) = 0 which satisfies for v 6 V and 

w € W 

dXJv, w) . ,-r. . . 
T^ Avv = gc{Xc(v, w),v, w) 

e(u, w) = h{X(v, w), v) = ok(v) (4.11) 

It is possible to synthesize a control law to solve the problem of the kth order regulation 

using the solution of Eqn 4.11. However, it is not easy to solve the partial differential equation 

Eqn 4.11, and moreover, the solution depends on the unknown parameter w. 
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4.4 Internal Model 

In this section, we now seek a solution for the regulation problem based on the nonlinear 

internal model principle [8]. This approach avoids the computation of Xc(v,w). To motivate 

the construction of an internal model, we look into an approximate solution of Eqn 4.11. One 

can attempt to obtain a solution of Eqn 4.11 by selecting Xc(v,w) = (XT(v,w),Xf(v, w))T 

and Uc(v,w) = kc(X(v,w),Xs(v,w)) as polynomial functions of variables i>o,Uiand v2 given 

by 
k 

i=\ 

k 

Xs{v,w) = YJ^siwv[l] + ok{v) 
1=1 

k 

Uc(v, w) = Yl U^y[l] + °*(u) (4'12) 

where v^ = [vo,vx, v2]
T and v® = Vp = [v[,v[~1v2,v[~2V2,...., vl

2]
T, for I = 2,3,...., and 

k 

e{v, w) = h(X(v, w),v) = Y^ YiwV[l] + ok(v) (4.13) 

Here Xiw,Xs\w, Udw and Yiw are constant matrices of appropriate dimensions depending, per­

haps, on w. Each component of the vector polynomial vp' is monomial in variables v\ and v2 of 

degree I. Essentially the elements of vp form a basis for homogeneous polynomials of degree I 

in variables v\ and v2. In view of Eqn 4.12, to satisfy Eqn 4.10 it is essential to design a control 

law which can cancel all the terms of v® ,1 = 1, ....,k, occurring in e(v,w) = h(X(v,w),v) 

in steady state. This requires construction of a dynamic system (termed internal model of 

fc-fold exosystem) which can produce signals v®, I = 1, ,k. The fc-fold exosystem can be 

constructed as follows. First of all i>M = (vo,Vi,v2)
T and vp satisfy 

vW = AvVM i\ Al%M 

vf =Ap%f,1 = 2,2,,...,k (4.14) 
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where 

0 -u)} 

UJ} 0 

and Ap are appropriate matrices. (The expressions for Ap and their characteristic polyno­

mials, for I = 1, ...,4, are collected in the appendix II.A) 

Define a state vector 

Vkf 

M 

(4.15) 

The vector Vkf satisfies the differential equation 

vkf = diag[AW,A$\....,^]vkI (4.16) 

= AkjVkf 

where Akf = diag(A^\ Ap ,...., Ap ). The system Eqn 4.16 is the k-fold exosystem which 

generates not only the exogenous signal v, but also the higher order terms of the exogenous 

signal vp up to order k. According to the internal model principle, for fct/l-order robust regulator 

design [8], one introduces an internal model of fc-fold exosystem Eqn 4.16. 

The roots of the minimum polynomial of Akf are precisely given by all the distinct members 

of the following set: 

Afe = { A | A = 0 and juf(h - Z2); h + l2 = I; h,l2 = 0 ,1 , . . , Z; 1 = 1,2,..., k }(4.17) 

Now the internal model is constructed using the minimum polynomial of Akf of the form 

xs = Gixs + G2e (4.18) 
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where xs e Rc and 

/ 

G\ = diag 0, 

V 

(4.19) 
0 —ujf 0 — %jf 0 — kojf 

W/ 0 2u)f 0 A;u;y 0 

The vector G2 is chosen such that the pair (G\, G2) is controllable. It can be verified that G2 

is given by 

bo 

0 

h 

0 

b2 

G2 (4.20) 

satisfies the controllability property of pair (Gi, G2) as long as 6, ^ 0, i = 0,...., &;. 

4.5 Stabilizer Design 

For completing the design, all one now has to do is to stabilize the closed-loop system. For 

this purpose, consider the augmented system Eqn 4.7 and Eqn 4.18 given by 

A(w) 0 

G2H\ Gi 

(4.21) 

Now one needs to find a control law such that (x = 0, xs = 0) of the nonlinear system 
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Eqn 4.21 is exponentially stable for v = 0. For exponential stabilization of the origin, it is 

sufficient to stabilize the linearized model obtained from Eqn 4.21, which for v = 0, is given 

by 

dXr 

dt 

A(w) 0 B(w) 
xc + 

G2Hx Gi 0 

= Ac(w)xc + Bc(w)uc 

where Ac and Bc are defined in Eqn 4.22. 

For the system Eqn 4.22, a stabilizing control law exists if 

(4.22) 

rank = 4 (4.23) 
A(w)-XI B[w) 

Hi 0 

for all A, which are the roots of the minimal polynomial of Akf (that is, for A = 0 and 

A = ±juifl, I = 1,2,3,..., k). Here / denotes an identity matrix. Of course, the characteristic 

roots of Akf are the eigenvalues of the internal model matrix G\. The matrices A and B 

of the augmented system Eqn 4.22 depend on the unknown parameter vector w. As such 

a feedback control law is obtained by the stabilization of Eqn 4.22 at the chosen nominal 

(known) parameter value w*. A stabilizing feedback law takes the form 

-K\x — Kixs = ~Kxc (4.24) 

where the gain vector K can be computed using either pole assignment technique or the linear 

optimal control theory such that the closed-loop matrix Aci = [Ac(w*) — Bc(w*)K] is Hurwitz. 

Here, we design the control law using the optimal control theory. For optimal control, a 

quadratic performance index 

/

oo 

{xT
cQxc + ru\)dt (4.25) 

0 
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is chosen, where the weighting matrix Q is a positive definite symmetric matrix and r > 0. 

The optimal gain vector is given by 

K = r-lBl{w*)P (4.26) 

where Pa is the positive definite symmetric matrix, which satisfies the algebraic Riccati equa­

tion [9] 

AT
c{w*)P + PAc(w*) - PBc{w*)r-lBl(w*)P + Q = 0 (4.27) 

The weighting matrix Q and r can be chosen to shape the transient responses. 

Although the gain vector K is computed for a known nominal value oiw, it follows that 

the closed-loop matrix Aci(w) remains Hurwitz for perturbations w € W, where W is a 

sufficiently small open set. Thus it follows that the origin xc = 0 of the nonlinear system Eqn 

4.21 is exponentially stable for v = 0 and for sufficiently small Co. In the closed-loop system 

including the internal model of the k-fold exosystem, one can show that Yiw in the Taylor 

series expansion of the tracking error Eqn 4.13 are null vectors for small w and / = l,...,k. 

Thus the tracking error e(t) satisfies Eqn 4.10 as t —* oo , and therefore, the steady-state 

tracking error is zero up to kth-ovdei. 

4.6 Simulation Results 

In this section, simulation results for the closed-loop system Eqns 4.1, 4.18 and 4.24 using 

MATLAB/SIMULINK are presented. The parameters of the model are taken from [17]. 

The BAUV is assumed to be moving with a constant forward velocity of 0.8 m/sec. The 

vehicle parameters are / = 1.282 m , m= 4.1548 kg, Iy= 0.5732 kgm2, XQ = 0, and ZG = 

0.578802 x 10~8 m. The hydrodynamic parameters for the forward velocity of 0.8 m/sec 

are z\ = -0.825 x 10~5, 4 = -0.825 x 10"5, z'q = -0.238 x 10~2, z'w = -0.738 x 10~2, 

M'q = -0.16 x 10~3, M ; = -0.825 x 10~5, M'q = -0.117 x 10"2, and M'w = 0.314 x 10~2. The 
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pectoral fins are attached at a distance of dcgd = 0.15 m. The simulation results are obtained 

for fin oscillation frequencies of / = 6 Hz and / = 8 Hz. Of course, the controller design is 

applicable for any choice of frequency of oscillation of the fins. 

Using CFD analysis, the fin forces and the moments coefficients have been obtained for a 

fixed Strouhal number St — 0.6, where St = •$-, £/<„ is 0.8 m/sec, / is the frequency of the 
Coo 

fin oscillation and c is the chord of the foil. The parameter vectors /„, fb, ma, and mj used 

for simulations are 

/. = (/0
c(o), /f(o), AC(O), ..., rM(o), rM(o))T 

fb - [w{)' Wil W{)' •'" ~W{}' W{)) 

ma = K(0),m^(0),m?(0),...,ms
M(0),mc

M(0))T 

fdmc
n,^ <9mf ,n. dmc, ,n. dm^1 .„. dm*4 \ 

m» - (V(0)- ni^ ni{<i)' •••• -# ( 0 ) i -# ( 0 )) 
where fa, fb,ma,mb € R2M+1. In the Fourier expansion, four harmonic components, which 

are dominant, are retained; that is, M=4. Then the values of fa, fb, ma, nib for M=4 are 
fa = (0, -40.0893, -43.6632, -0.3885,0.6215,6.2154, -10.1777, -0.1554,0.6992) 

fb = (68.9975, 0.4451, -16.4704,64.1009, -19.5864, -0.8903, -2.2257,2.2257,4.8966) 

ma = (0,0.6037,0.4895,0, -0.0054,0, -0.0925,0, -0.0054) 

mb = (-0.4986, -0.3739, -0.0935, -0.2493,0.1246,0.0312, -0.0312,0.0935,0) 

(Readers may refer to [17] for the details.) It is pointed out that these parameters are ob­

tained using the Fourier decomposition of the fin force and moment, and are computed by 

multiplying the Fourier coefficients by ^p.Wa.Uoo2 and \p.Wa.cUj1, respectively, where Wa 

is the surface area of the foil. For simulation, the initial conditions of the vehicle are assumed 

40 

file:///p.Wa.cUj1


to be x(0) = 0, and xs(0) = 0. 

A smooth reference trajectory zr(t) converging to z*, the target depth, using a fourth-order 

filter 

Gc(s) = 
\\U)nc 

(s + Xcl)(s + Ac2)(s2 + 2(;cujncs + LO%C) 

is generated, where conc = 4.95, (c= 0.707, Aci = 0.14 and Xc2 = 3.5 are the real poles. 

A simple servocompensator of first-order providing integral error feedback, as well as a 

compensator representing the internal model of 2-fold exosystem are designed. The latter 

servocompensator is of fifth-order. For the first-order compensator, G\ = 0, and Gi — 0.5 and 

for the fifth-order, one has 

\ 
G\ = diag 0, 

0 -LUf 

LOf 0 

0 -2w/ 

2uf 0 
/ 

G2 = [0.5,0,0.5,0,0.5]5 

If the input e to the servocompensator is zero, then the first-order system generates constant 

trajectory, but the fifth-order servocompensator can generate trajectories of the form Ci + 

C2sin(uift + 6i) + Czsin{2u)jt + 82) by appropriate choice of initial conditions. For the control 

law design linear optimal control theory is used. For the first-order compensator Q=l and for 

the fifth-order, Q is an identity matrix of dimension 9 x 9 , and r = 0.0001. 

Case I: BA UV control using first-order servocompensator: UJJ =6 Hz, nom­

inal parameters 

The complete closed-loop system including the nominal BAUV model and the first-order servo­

compensator is simulated for a fin oscillation frequency of 6 Hz. A smooth reference trajectory 

zr(t) converging to z* = 25 m is generated. Thus it it desired to steer the BAUV to a depth 

of 25 m. The optimal controller gains are computed for the nominal BAUV model. Selected 
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responses are shown in Figure. 4.1. It is observed that the BAUV attains the target depth in 

little over 30 seconds. We note that, for easy understanding the depth variable z<i is denoted 

by z in the simulated figures. In steady-state, fin forces, moment, and bias angle exhibit 

bounded periodic oscillations. Note that the chosen servocompensator has a simple pole at 

zero and as such it can only suppress any nonzero bias in the tracking error. We observe 

that indeed, average tracking error is zero, but periodic oscillations including the fundamental 

component (six Hz) and higher harmonics persist. The magnitude of the tracking error e is 

observed to be around 0.08 m. The maximum control magnitude is around 8 deg. The peak 

control force needed is 12 N and the control moment is 0.15 Nm. 

Case II: BAUV control using first-order servocompensator: Uf = 6 Hz, -25% 

uncertanity 

Now simulation is done to examine the effect of uncertainties in the control force and moment 

coefficients. For this purpose the elements of the vectors fa, /(,, ma and rrib are perturbed by 

a factor of 0.75 for simulation; that is, the perturbed values of these vectors are 25% lesser 

than the nominal values. However, the controller gains used in Figure. 4.1 computed for the 

nominal values are retained. Selected plots are provided in Figure. 4.2. It is again noted that 

with the servocompensator of first-order, the oscillatory components of the tracking error are 

not suppressed. But, the average value of the tracking error is zero. The magnitude of the 

tracking error is 0.05 m. The maximum control magnitude and the response time to attain 

the target depth are of the same order as in Figure. 4.1. 

Simulation is also done for fin force coefficients with +25% uncertainty (perturbed values 

are 1.25 times the nominal values) using the nominal controller. In this case also, a smooth 

control to the desired depth is accomplished. (In order to save space, the results are not shown 
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here). 

Case III: BAUV control using internal model of 2-fold exosystem: LOJ = 6 

Hz, nominal parameters 

For attenuating the dominant oscillatory components of the tracking error, it is essential to 

synthesize servocompensator of higher-order. For the purpose of illustration, a servocompen-

sator of fifth-order is deigned using internal model of 2-fold exosystem. Selected responses 

for the nominal BAUV model are shown in Figure. 4.3. It is seen that desired depth is 

smoothly attained. The magnitude of the tracking error is significantly smaller compared to 

that of Figure. 4.1. Interestingly, the designed servocompensator suppresses the constant 

bias, fundamental and second harmonic components in the tracking error response, and only 

oscillations of frequency 18 Hz and higher remain. Although, one can design a higher order 

compensator, we observe that even this fifth-order servocompensator yields maximum error 

little over 0.01 m, which is negligible for practical purposes. The maximum control magnitude 

is observed to be around 30 deg. The target depth is attained in a little over 30 sees as in 

Figure. 4.1. 

Case IV: BA UV control using internal model of 2-fold exosystem: UJJ = 6 

Hz, +25% uncertanity 

Now simulation is done to examine the robustness of the control system. It is assumed that the 

fin force coefficients are 25% greater than the nominal values, but the nominal control system 

used for Figure. 4.3 is retained. Selected responses are shown in Figure. 4.4. Similar to Figure. 

4.3, we observe that the vehicle attains the desired depth and controller is able to suppress the 

bias, fundamental and second harmonics in the tracking error response. Compared to Figure. 

4.3, the tracking error magnitude in Figure. 4.4 is a little higher at 0.02 m, but the maximum 

control magnitude and the target depth response time are of the same magnitude. 
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Case V: BAUV control using first-order servocompensator: to/ = 8 Hz, nom­

inal parameters 

The frequency of the pectoral fin oscillation is set at 8 Hz and the performance of the first-

order servocompensator is evaluated. Of course, for 8 Hz the fin force and moment coefficients 

have changed, and the feedback gains of the controller are redesigned, using the same values 

of Q and r. The responses are shown in Figure. 4.5. It is observed that the average tracking 

error is zero, but the oscillatory components in the tracking error are still present. The sim­

ulation results shown in Figure. 4.5 are some what similar to the results obtained in Figure. 

4.1. Though, the tracking error pattern in Figure. 4.5 and Figure. 4.1 are the same, the 

magnitude of the tracking error in Figure. 4.5 is 0.025 m, lesser than that in Figure. 4.1. 

The maximum control magnitude and the target depth response time in both Figure. 4.5 and 

Figure. 4.1 are almost the same. 

Case VI: BAUV control using first-order servocompensator: ujf = 8 Hz, 

+25% uncertainty 

An uncertainty of +25% is introduced in the fin force coefncents for simulation. The results 

using the nominal controller of Figure. 4.5 are shown in Figure. 4.6. The magnitude of the 

tracking error in Figure. 4.6 is 0.04 m, whereas in Figure. 4.5 it was 0.025 m. The target 

depth response time is close to 35 sees. The maximum control magnitude is around 8 deg. 

Case VII: BA UV control using internal model of 2-fold exosystem: LOJ = 8 

Hz, nominal parameters 

It is assumed that the fins are oscillating at 8 Hz. For obtaining improved responses, a 

fifth-order servocompensator for the nominal values of the parameters is designed. Simula­

tion results of the nominal BAUV are shown in Figure. 4.7. We observe that target depth 

is attained and oscillations of fundamental and second harmonic in the tracking error are 
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suppressed. Compared to the case of first-order servocompensator in Figure. 4.5, we observe 

significant reduction in the peak magnitude of the steady-state tracking error. The magnitude 

of the tracking error is 0.004 m in Figure. 4.7 which is substantially lesser than the tracking 

error magnitude of 0.025 m in Figure. 4.5. The maximum control magnitude is around 30 

deg as in the case of Figure. 4.3. The target depth is reached in little over 30 sees. 

Case VIII: BA UV control using internal model of 2-fold exosystem: u>f = 8 

Hz, -25% uncertainty 

To examine the robustness of the designed controller an uncertainty of —25% is added to the 

nominal values of the vectors fa, /{,, ma and nib for simulation. The selected responses are 

shown in Figure. 4.8. The tracking error magnitude for the chosen uncertainty is around 

0.002 m. The maximum control magnitude and the target depth response time are similar in 

both Figures. 4.7 and 4.8. 
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Figure 4.1: BAUV control using first-order servocompensator: uoj — 6 Hz, nominal parameters 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 9 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.2: BAUV control using first-order servocompensator: u)f = 6 Hz, -25% uncertainty 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 6 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.3: BAUV control using internal model of 2-fold exosystem: Uf = 6 Hz, nominal 
parameters 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 8 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.4: BAUV control using internal model of 2-fold exosystem: ujf = 6 Hz, +1 
uncertainty 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 0 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.5: BAUV control using first-order servocompensator: ujf = 8 Hz, nominal parameters 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 9 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.6: BAUV control using first-order servocompensator: w/ = 8 Hz, +25% uncertainty 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 6 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.7: BAUV control using internal model of 2-fold exosystem: LO; = 8 Hz, nominal 
parameters 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 8 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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Figure 4.8: BAUV control using internal model of 2-fold exosystem: ojf = 8 Hz, -25% uncer­
tainty 
(a) Dive plane depth, z, and reference depth, zr (m), (b) Pitch angle, 8 (deg), (c) Lateral 
force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (m), (g) Tracking 
error plotted for smaller time interval, e (m) 
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CHAPTER 5 

NONLINEAR ROBUST YAW PLANE CONTROL OF BAUV USING INTERNAL 

MODEL PRINCIPLE 

This chapter presents the control of BAUVs in the yaw plane based on the nonlinear internal 

model principle. A smililar application of the internal model principle was seen in chapter 

4, for the control of an BAUV in dive plane. In this chapter, the BAUV control using 

pectoral-like fins is considered in the yaw plane. The fins are assumed to be oscillating with 

a combined sway and yaw motion. The bias angle of the angular motion of the fin is taken 

as the control input. The yaw angle is taken as the output variable. The oscillating pectoral 

fins produce large unsteady periodic forces. A continuous-time state variable representation 

of the nonlinear BAUV is considered for the design of a closed-loop control system for the set 

point control of the yaw angle. For the purpose of a robust nonlinear servoregulator design, an 

exosystem of third-order is considered. The third-order exosystem converts the time-variant 

state variable representation of the BAUV into time-invariant form. An internal model of 

a k-iold exosystem is designed for the derivation of the control law, where k is a design 

parameter which decides the accuracy of the yaw angle command tracking. For any choice 

of k, the simulations results show that all the harmonic components of the tracking error of 

order up to k can be suppressed. For nonlinear BAUVs the physical systems parameters and 

hydrodynamic coefficients are poorly known. The control law design, including the internal 

model and stabilizer design is adapted from chapter 4. Despite the uncertainties in the BAUV 
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system parameters, the simulation results show that the set point control of the yaw angle is 

achieved precisely. 

5.1 Problem Formulation 

Our objective is to design a robust servoregulator for controlling the yaw angle of an BAUV 

in the yaw plane. The physical model of an BAUV in the yaw plane is given in Figure. 2.2. 

The mathematical model of an BAUV in the yaw plane is described in chapter 2, but for the 

convenience of the readers it is again presented here. The equations of motion of a neutrally 

buoyant vehicle is described by [35] 

m(v + Ur + XGr - YGr2) = Y+f + (Y^v + YrUr) + YvUv + fn 

Izr + m(XGv + XGUr + YGvr) = N+r + (Nyii + NrUr) + NvUv + mm 

ip = r (5.1) 

where ip is the heading angle to be controlled, r = ip is the yaw rate, v is the lateral velocity 

along the Y^-axis, (XG,YG) — (XG,0) is the coordinate of the center of gravity with respect 

to OB, fn is the mass, and Iz is the moment of inertia of the vehicle. Y^,Nj.,Yv, etc are the 

hydrodynamic coefficients, and /TO and mm are the net fin force and moment. The global 

position coordinates X and Y of the vehicle are described by the kinematic equations 

X = Ucos(ip) — vsin{ip) 

Y = Usin(ip) + vcos(i)) (5.2) 

The constant reference signal is given by tpr = ip* and e = ip — tpr is the tracking error. 

Defining the state vector x = (xi,x2,x3)
T = (v,r,ijj)T € i?3, solving Eqn 5.1 and substituting 

fm and rripy using Eqn 2.4, gives the state variable representation of the BAUV given by the 
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system 

x = Ax + Bv 

' ^ 
+ nAx) 

\my J 

2/= [0,0,1]* 

e = Xo, - ipr (5.3) 

where ni(x) denotes the terms due to the nonlinear functions of Eqn 5.1. In view of Eqn 

2.4 the state equation Eqn 5.3 is a nonlinear time-varying system. For control law design 

convenience ni(x) is neglected and only the linearized components of Eqn 5.2 are considered. 

But, for simulation purposes the entire BAUV model in Eqn 5.2 is considered. 

5.2 Exosystem and Control Law Design 

In order to express Eqn 5.3 in a time-invariant form, a third-order exosystem is designed 

/ . \ 

XV2J 

( 
0 0 

0 0 

v 0 Uf 

0 

-Uf 

° J 

( \ 
v0 

Vl 

{v2j 

(5.4) 

= Avv 

where v = (v0,vi,V2)T € R3. Define vp = (vi,v2)
T. (Readers can find the detailed exosystem 

design in section 4.2, in chapter 4.) The control law design comprises the design of an internal 

model and the stabilizer. The internal model is derived in section 4.4, in chapter 4. The final 

form of the internal model is given by 

xs = dxs + G2e 
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where xs G Rc is defined in Eqn 4.8 and 

/ 

G\ = diag 0, 

V 

0 -uf 

LOf 0 

0 —ktOf 

kujf 0 

0 -2uf 

2u)S 0 

The vector G2 is chosen such that the pair (Gi, G2) is controllable. It can be verified that G2 

is given by 

h 

0 
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0 

b2 

G2 

satisfies the controllability property of pair (Gi, G2) as long as 6j 7̂  0, i = 0,...., k. 

The stabilizing feedback law is given by 

uc = —K\X — K2xs = —Kxc 

where the gain vector K can be computed using either pole assignment technique or the linear 

optimal control theory. The stabilzer design is explained in detail in section 4.5 of chapter 4. 

To avoid redundancy in details, the complete derivation of the stabilizer design is not shown 

here. 
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5.3 Simulation Results 

The closed-loop system Eqns 5.1, 4.18 and 4.24 are simulated for yaw angle control using 

MATLAB/SIMULINK and the results are presented in this section. Constant time-varying 

reference trajectories are employed for tracking, and the performance of the robust servoreg-

ulator in the presence of uncertainties is examined. The parameters of the model are taken 

from [15]. The BAUV is assumed to be moving with a constant forward velocity of 0.8 m/sec. 

The vehicle parameters are I = 1.391 m, mass=18.826 kg, Iz= 1.77 kgm2, XG — —0.012, 

YQ — 0. The hydrodynamic parameters for a forward velocity of 0.8 m/sec are Y+ = —0.3781, 

Yi, = -5.6198, Yr = 1.1694,Y„ - -12.0868, Nf = -0.3781, N* = -0.8967, Nr = -1.0186, and 

Nv — —4.9587. simulations have been carried out for fin oscillation frequencies of f = 6 Hz 

and f = 8 Hz. Of course, the control law is applicable for higher choice of fin frequencies too. 

As seen in section 4.6 of chapter 4, a fixed Strouhal number St = 0.6 is considered for 

the fin force and moment coefficients. The parameter vectors / a , fb, ma, and mb used for 

simulations are 

fa = (/oc(0),/f(0),/r(0),.. . ,/^(0),/^(0))T 

fb - \w{)' W{)' W{)'"" W{)' W{)) 
ma = K(0),mK0),mJ(0),...,ms

M(0),mc
M(0))T 

where fa, fb, ma, mb G R2M+1. The values of fa, fb, ma, mb for M=4 are 

fa = (0, -40.0893, -43.6632, -0.3885,0.6215,6.2154, -10.1777, -0.1554,0.6992) 

fb = (68.9975,0.4451, -16.4704,64.1009, -19.5864, -0.8903, -2.2257,2.2257,4.8966) 

ma = (0,0.6037,0.4895,0, -0.0054,0, -0.0925,0, -0.0054) 
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mb = (-0.4986, -0.3739, -0.0935, -0.2493,0.1246,0.0312, -0.0312,0.0935,0) 

(Readers may refer to [15] for the details.) For simulation, the initial conditions of the vehicle 

are assumed to be x(0) = 0, and x8(0) = 0. 

Simulations were carried out for a constant reference trajectory ipr converging to ip*=25 

deg. As seen in section 4.6 of chapter 4, a fourth-order filter of the form 

Q (3\ =
 XlUJnc 

c{ ' {s + Xd)(s + Ac2)(5
2 + 2CcW„cS + u4 ) 

is generated, where conc = 4.95, (c= 0.707, Aci = 0.14 and Ac2 = 3.5 are the real poles. 

A first-order servocompensator and a fifth-order servocompensator are designed. The 

values of the constant matrices (Gi, G2) used in servocompensator design in section 4.6 of 

chapter 4 are retained here. The controller gains are calculated using linear optimal control 

theory technique. For the first-order compensator Q=l and for the fifth-order, Q is an identity 

matrix of dimension 8 x 8 , and r = 0.001. 

Case I: BA UV control using first-order servocompensator: uif =6 Hz, nom­

inal parameters 

The first-order servocompensator along with the nominal BAUV parameters are simulated. 

The fins are assumed to be oscillating at a frequency of 6 Hz. We are interested in steering the 

BAUV at an yaw angle of 25 deg. A constant reference trajectory ipr{t) converging to ip* = 25 

deg is generated. The closed-loop responses are shown in Figure. 5.1. Optimal control theory 

technique is used to compute the controller gains. It is seen that the set point control of the 

yaw angle is reached in little over 25 seconds and other simulation parameters show bounded 

oscillations. A selected portion of the tracking error is simulated to highlight the non-zero 

bias suppression. In accordance with the theory, it is observed that the designed first-order 

servocompensator has the ability to suppress only non-zero bias of the tracking error, whereas 
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the fundamental component (six Hz) and higher harmonics are still present. The magnitude 

of the tracking error e is observed to be around 0.025 deg. The lateral control force produced 

by the fins is 30 N and the control moment is 0.25 Nm. The maximum control input required 

is 20 deg and this can be easily provided by the fins. 

Case II: BAUV control using first-order servocompensator: uij = 6 Hz, -25% 

uncertanity 

In the previous case, simulations were carried out for nominal fin force and moment coefficients. 

To examine the robustness of the designed servocompensator, uncertainties are introduced 

in the control force and moment coefficients. The constant vectors fa, fa, ma and ra\, are 

perturbed by a factor of 0.75 for simulation; that is, the perturbed values of these vectors are 

25% lesser than the nominal values. The controller gains used in case I are retained. The 

closed-loop responses are shown in Figure. 5.2. Even in the presence of uncertainties in the 

force and moment coefficients, the behavior of the servocompensator is similar to case I. The 

average value of the tracking error is zero, whereas the higher harmonics in the tracking error 

are still present. The magnitude of the tracking error is 0.05 deg, which is almost similar to 

Figure. 5.1. The maximum control magnitude in this case too is 20 deg and the response 

time to reach the desired reference yaw angle is around 25 seconds. 

Case III: BAUV control using internal model of 2-fold exosystem: utf = 6 

Hz, nominal parameters 

To suppress the higher oscillatory harmonics in the tracking error, a servocompensator of 

fifth-order is designed using internal model of 2-fold exosystem. Selected responses for the 

nominal BAUV model are shown in Figure. 5.3. The reference trajectory target is reached 

in little over 25 seconds. As expected, the constant bias, fundamental and second harmonic 

components in the tracking error are suppressed, and only oscillations of frequency 18 Hz and 
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higher remain. It is also observed that the magnitude of the tracking error is 0.001 deg, which 

is much lower than that in Figure. 5.1. In this case a fifth-order servocompensator is designed, 

but servocompensators of higher orders can be designed for suppression of higher frequencies 

present in the tracking error. The maximum control magnitude is observed to be around 25 

deg. The response time for reaching the desired heading angle is little over 30 sees. 

Case IV: BA UV control using internal model of 2-fold exosystem: LOJ = 6 

Hz, +25% uncertanity 

The fin force coefficients are assumed to be 25 % greater than the nominal values for examining 

the robustness of the servocompensator. Simulated results are shown in Figure. 5.4. The 

behavior of the closed-loop system in the presence of uncertainties is found to be similar to the 

nominal fin force coefficients . The zero-bias, fundamental and second harmonic components 

are suppressed, with all other simulation parameters bounded, as found in case III. 

Case V: BAUV control using first-order servocompensator: uif = 8 Hz, nom­

inal parameters 

Simulations similar to cases I - IV are carried out for a pectoral fin oscillation frequency of 

8 Hz. In this case, the performance of a first-order servocompensator is evaluated. The fin 

force, moment coefficients and the feedback gains have been recalculated for a fin frequency of 

8 Hz. For the feedback controller gain calculation using the optimal control theory technique, 

the values of Q and r are retained. The responses are shown in Figure. 5.5. As seen earlier in 

Figure. 5.1, the average tracking error is zero, but the oscillatory components in the tracking 

error still exist. The magnitude of the tracking error is 0.001 deg. It is observed that better 

controller performances are achieved for higher fin oscillation frequencies. 

Case VI: BAUV control using first-order servocompensator: ujj = 8 Hz, 

+25% uncertainty 
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The robustness of the first-order servocompensator was tested for a fin oscillation frequency 

of 6 Hz in case II. Here, the fin oscillation frequency is set at 8 Hz. The fin force and 

moment coefficients are perturbed by a factor of 1.25. The results are shown Figure. 5.6. The 

magnitude of the tracking error is 0.01 deg. The response time is close to 30 seconds. The 

maximum control magnitude is around 20 deg. 

Case VII: BA UV control using internal model of 2-fold exosystem: uj — 8 

Hz, nominal parameters 

In case III it was seen that, by using an fifth-order servocompensator the higher harmonics 

in the tracking error could be suppressed up to 18 Hz. Now, simulations are carried out 

at a fin oscillation frequency of 8 Hz and the results are shown in Figure. 5.7. A smooth 

maneuvering of the BAUV to the reference target is observed. As seen in Figure. 5.3, the 

constant bias, fundamental component and the second harmonics in the tracking error are 

suppressed. Interestingly, magnitude of the tracking has significantly reduced for Uf = 8 Hz. 

In Figure. 5.3, the magnitude of e was 0.001 deg, whereas, in Figure. 5.7 it is 0.0005 deg. This 

confirms our claim that for higher fin oscillation frequencies, better responses are obtained. 

As in the case of all other simulations, the control input required is stable at around 20 deg 

to 30 deg. 

Case VIII: BA UV control using internal model of 2-fold exosystem: uif = 8 

Hz, -25% uncertainty 

An uncertainty factor of -25% is introduced and the fin force coefficients are perturbed by a 

factor of 0.75. The simulated results are shown in Figure. 5.8. Frequencies greater than 24 Hz 

alone are seen in the tracking error response. This confirms the robust nature of the designed 

fifth-order servocompensator. 
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Figure 5.1: BAUV control using first-order servocompensator: u>/ = 6 Hz, nominal parameters 
(a) Yaw angle, \I/, and reference yaw angle, * r (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg), (g) 
Tracking error plotted for smaller time interval, e (deg). 
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Figure 5.2: BAUV control using first-order servocompensator: LOJ = 6 Hz, -25% uncertainty 
(a) Yaw angle, ty, and reference yaw angle, \I>r (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg), (g) 
Tracking error plotted for smaller time interval, e (deg). 
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Figure 5.3: BAUV control using internal model of 2-fold exosystem: UJJ = 6 Hz, nominal 
parameters 
(a) Yaw angle, \[>, and reference yaw angle, \I/r (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg), (g) 
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Tracking error plotted for smaller time interval, e (deg). 
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Figure 5.6: BAUV control using first-order servocompensator: Wf = 8 Hz, +25% uncertainty 
(a) Yaw angle, * , and reference yaw angle, \&r (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg), (g) 
Tracking error plotted for smaller time interval, e (deg). 
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Figure 5.7: BAUV control using internal model of 2-fold exosystem: uif = 8 Hz, nominal 
parameters 
(a) Yaw angle, 'J/, and reference yaw angle, tyr (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg), (g) 
Tracking error plotted for smaller time interval, e (deg). 
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Figure 5.8: BAUV control using internal model of 2-fold exosystem: cof = 8 Hz, -25% uncer­
tainty 
(a) Yaw angle, * , and reference yaw angle, tyr (deg), (b) Lateral velocity, v (m/sec), (c) 
Lateral force (N), (d) Moment (Nm), (e) Bias angle (deg), (f) Tracking error, e (deg), (g) 
Tracking error plotted for smaller time interval, e (deg). 
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CHAPTER 6 

MODULAR DIVE PLANE ADAPTIVE CONTROL OF BAUV USING MECHANICAL 

PECTORAL FINS 

In this chapter, a sampled-data adaptive control system for dive plane control of BAUVs using 

the pectoral-like fins is presented. The pectoral fins attached to the BAUV are assumed to be 

oscillating with combined pitch and heave motion. The bias angle of the pitch motion of the 

fin is considered as an control input variable. Periodic forces generated by flapping pectoral 

fins are modeled by using the computational fluid dynamics method. The parameters of the 

nonlinear BAUV model including the fin forces and moments are assumed to be unknown. This 

entails the design of a parameter identifier to estimate the nonlinear BAUV system parameters. 

A modular sampled-data adaptive control consisting of the identifier and a stabilizer system 

is designed for the depth control of the BAUV. For the synthesis of the control law, only the 

output variable (depth) is measured. The design of a stabilizing control law requires an internal 

model of the exosignals. Here, the constant reference signal and also the constant disturbance 

input together are taken as the exosignals. The derived control system accomplishes accurate 

depth command tracking as well as the disturbance rejection. The control system is applicable 

to both minimum phase and non-minimum phase BAUV systems. The simulation results are 

presented which show precise depth trajectory control in spite of parametric uncertainties and 

constant disturbance input. 
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6.1 Problem Statement 

We are interested in designing an indirect adaptive servoregulator for the control of an 

BAUV in the dive plane using mechanical pectoral fins. The equations of motion of an BAUV 

in the dive plane is given in chapter 2. The model of an BAUV in dive plane is given in Fig. 

2.1. For easy understanding the equations are given again [6] 

m(wd -uq- zGq2 - xGq) = 0.5pl4z'qq + 0.5pl3(z'ww + z'qqu) + 0.bpl2z'wwdu + fpd 

Iyq + mzG{u + wdq) - mxG(wd - uq) = 0.5pl5M'qq + 0.bplA{M[b+ 

M'qqu) + Q.5pl3M^wdu - XGBWCOS6 — zGBWsin6 + mpd 

Zd — —usin(9) + wcos(6) (6.1) 

where 6 is the pitch angle; q = 8, XGB = XG — XB, m is the mass of the vehicle, ZGB = zG — ZB, 

I = body length, p = density; and zd is the depth. fpd and mPd are the net force and moment 

acting on the vehicle due to the pectoral fins. The primed variables are the nondimensionalized 

hydrodynamic coefficients. Here ((XB,ZB) = 0) and (xG,zG) denote the coordinates of the 

center of buoyancy and center of gravity (eg), respectively. Readers can refer to chapter 2 for 

control force and moment calculation details. Defining a state vector x = (xi,X2,X3,X4)T = 

(wd, q, Zd, 0) £ R4, solving Eqn. 6.1 and substituting for fpd and mPd from Eqn 2.4, gives the 

state variable representation of the BAUV of the form 

x = Ax + B + ni(x) 
h 

md 

2/=[0,0,1,0]! (6.2) 

where ni(x) consists of the nonlinear terms of model Eqn 6.1. For the purpose of design, 

second-order nonlinear function n;(x) will be ignored. 
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The output y = Zd is the controlled variable. The values of matrices A and B and the 

Fourier coefficients of the control force and moments in Eqn 2.4 are unknown. Let zr = z* be 

a constant reference signal, we are interested in derivation of an adaptive control system for 

the depth trajectory control using only output feedback. The control system has a modular 

structure consisting of an identifier and a stabilizer. Both constant and sinusoidal exponential 

trajectories are considered for smooth depth trajectory tracking and the depth tracking error 

(z<i(t) — zr(t)) is desired to asymptotically converge to zero. In the next section a parameter 

identifier will be designed to determine the unknown BAUV system parameters. 

6.2 Estimation of BAUV System Parameters 

In this section design of a parameter identifier is considered. Once the BAUV parameters 

are ascertained, an adaptive control law can be designed for desired depth trajectory tracking. 

The system in Eqn 6.2 is time-varying. It is desired to obtain a discretized form of Eqn 6.2 

for the purpose of convenient design. 

The control input uc = /3 is varied at regular intervals with a sampling time T = XQTQ, 

where x0 is an integer, and To = (2n/w0) — l / / 0 is the fundamental period of fin oscillation. 

The pitch bias angle in the sampled form is given by 

uc(t) = uc(kT) = uck,t € [kT, (k + 1)T), k = 0,1, 2,... (6.3) 

and discretizing the linear vector differential equation, one obtains discrete-time representation 

from Eqn 6.2 given by 

x[{k + 1)T] = Adx(kT) + Bduck + Dd 

y(kT) = Cpx(kT) (6.4) 

where Ad and Bd are the discretized constant matrices and Dd is a constant vector. Of course 
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Ad, Bd and Dd are unknown. Readers may find a complete derivation of the discrete-time 

model in [17]. We now need to estimate Ad, Bd and Dd. 

The system Eqn 6.4 is found to be observable and can be conveniently expressed in ob­

servable canonical form. A state transformation of system Eqn 6.4 exists, where v = Qx. The 

new system is of the form [36] 

v[(k + 1)T\ = 

-a3 1 0 0 

-a2 0 1 0 

-a! 0 0 1 

-a0 0 0 0 

v(kT) + 

• 

h 

b2 

h 

b0 

Uck + 

-
dU3 

dU2 

du\ 

duo 

= A0c(kT) + B0uck + D0 

y(kT) 1 0 0 0 x(kT) = Cdv(kT) (6.5) 

where A0 = QAdQ~\ B0 = QBd, C = CpQ-\ D0 = QDd, and v(kT)=[Vl(kT), ....,v4{kT)} is 

the new state vector. The transfer function of the BAUV relating y{kT) and uc(kT) is given 

by 

b3z
3 + b2z

2 + bxz + b0 N{z, nz (6.6) 
z4 + a3z

3 + a2z
2 + a\z + a0 P(z,np) 

where n2 = (bo, 61,625 ^3) and np = (00, a,i, a2,a3) are the numerator and denominator polyno­

mials of G(z). z is the z-transform variable, we are interested in obtaining estimates of the 

unknown parameters 6, and a*. Using Eqn 6.5, the linearly parametric output equations are 

given by 

y[(k + 1)T] = -a3y(kT) + v2{kT) + b3uck + du3 

y[{k + 2)T] = -a3y[(k + 1)T] - a2y(kT) + v3(kT) + b3uc{k+1) + b2Uck + du3 + du2 

y[(k + 3)T] = -a3y[(k + 2)T] - a2y[{k + 1)T] - alV{kT) + v4(kT) + b3uc{k+2) 
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+b2uc(k+i) + biuck + du3 + du2 + dui 

y[(k + 4)T] = -a3y{(k + 3)T] - a2y[(k + 2)T] - aiy{(k + 1)T)] - a0y(kT) + 63uc(fc+3) 

+b2uc(k+2) + hudk+i) + boUck + du3 + du2 + dul + du0 (6.7) 

z is the discrete domain operator,(i.e. z(kT) = [(k + 1)T]), Using Eqn 6.7 

z4y{kT) = (63z
3 + b2z

2 + bxz + b0)uc(kT) - (a3z3 + a2z
2 + axz + a0)y(kT) + d* (6.8) 

where d* is a constant. For identifying the unknown parameters fy, a, and d*, we consider a 

stable parameter estimator polynomial of the form 

A(z) = z4 + A323 + \2z
2 + XlZ + A0 (6.9) 

Then operating Eqn 6.8 by A - 1 (2) gives 

z4 b3z
a + b2z

2 + biz + b0 a3z
3 + a2z

2 + axz + a0 ,7 „ . , d* 
y{kT) = —-r uc(kT) • — y(kT) + —-r (6.10) A(z)"v ' A(z) C{K1> A(z) "v ' A(z 

We note that 

zAA-\z) = 1 - (A323 + A2z
2 + A^ + A0)A"1(2) 

Eqn 6.10 gives 

nrr. hz3 + b2z'2 + biZ + bQ y{kT) = — uc{kT)+ 

[(A3 - a3)z
z + (A2 - a2)z

2 + (Ai - ax)z + (A0 - ao)]../l/r^ , d* 
A(z) y{kl)+A(z) l b - 1 1 } 

The unknown numerator and denominator coefficients of the BAUV system transfer function 

are expressed in the parametric vector form 

0* = [b0,61,62,63, (Ao - a0), (Ai - ai), (A2 - a2), (A3 - a3), d*]T e R9 

1 2 

Z2 2 3 1 ,, „, 2 

A ( z ) ^ ' Ajz)Uc(kT)' W)V{kn W)y{kn 
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z1 ,,„s z3 

A(zf{kn W)y{kT),A {Z)1] E (6'12) 

where,cf>p(kT) is the regressor vector. Eqn 6.11 can be written as 

y(kT) = 8f<t>p(kT) (6.13) 

The regressor vector (j)p(kT) is obtained from (3{kT), y(kT) and the unit step sequence. There 

exist many parameter identification schemes to obtain an estimate of the parameter vector 

6*. For simplicity, here a normalized gradient algorithm is considered for the identification of 

these parameters. 

Let the 6p(kT) be an estimate of 9*p. Define the estimation error 

e(kT) = 6T(kT)(j)p(kT)-y(kT), k e 0,1,2,... (6.14) 

Using Eqn 6.13 in Eqn 6.14 gives 

e(fcT) = 6P
T (kT)(f>p{kT) 

where 

§p(kT) = ep{kT) - e; (6.15) 

is the parameter error vector. For the derivation of the identifier [13, 40], a normalized 

quadratic cost function 

T(Qs e2 6p
T(kT)MkT)<t>l(kT)9~p(kT) 

J{6) = W = ^ ( 6"1 6 ) 

is minimized, where m is the normalizing signal. The steepest descent direction of J(6P) is 

— (fa) = ~(^p(t>p(kT)), which suggests the adaptive update law for 8p(kT) given by 

0 \(k + 1YT1 - 9 (kT) - T(t>p(kT)e(kT) 

6p(0) = 9p0,ke 0,1,2,... (6.17) 
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where T is a positive definite symmetric matrix (denoted as T > 0) satisfying 0 < T < 21 (I 

denotes an identity matrix), the normalizing signal m = [ko + 4%(kT)4>p(kT)]i, and ko > 0 

being a design parameter. 

The stability analysis of this identifier can be done using a Lyapunov function 

,~TT 

v(6p) = ep r-lep 
(6.18) 

and then showing that 

V(6p(k + 1)T) - V(6p(kT)) < -a, 
e2(kT) 

m2{kT) 
(6.19) 

for at\ = (2 — Amax(r)) > 0, where Amai(.) denotes the maximum eigenvalue of T. Using Eqn 

6.19, one can show that the algorithm Eqn 6.16 guarantees that 9{kT), ^,kX € L°° (the set 

of bounded sequences) and ^X, {0[{k + 1)T] - 6(kT)) 6 I? (the set of square summable 

sequences). (See [40] for the details.) 

The elements of the regressor vector 6p(kT) can be obtained using two niters having state 

variable forms given by 

u>i[(fc + l)T] = Axwx{kT) + bxu{kT), 

w2[(k + 1)T] = Axw2(kT) + bxy(kT) (6.20) 

where Wi € R4, 

A, 

0 0 

0 0 

0 0 
A 

—Ao —Ai — A2 —A3 

Then it easily follows that 4>p(kT) = [•w{(kT),w2
r(kT),A~1(z)l]T. A simplification in the 

regressor is possible if one ignores the exponentially decaying signal of A - 1(z)l . Since A - 1(z)l 
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tends to the constant sequence A/ = (1 + Ao + Ai + A2 + A3) 1, one can replace ^ 9 by Â  , 

where ^ denotes the ith elements of 4>p. 

6.3 Adaptive Output Feedback Control Law 

The parameter identifier designed in the previous section provides an estimate of the 

unknown numerator and denominator coefficients of the transfer function in Eqn 6.6, and the 

constant d*. In this section an indirect adaptive output feedback method will be used for the 

control of BAUV for tracking constant trajectories. The adaptive control law is designed to 

counter the effects of the constant disturbance input D0 as well. 

For a reference output signal zr(kT), satisfying the 

Qm(z)zr(kT) = 0 

and for a disturbance input satisfying 

Qm(z)D0 = 0 (6.21) 

where, Qm(z) is a monic polynomial, an output feedback control input is to be found for 

asymptotic tracking of zr(kT). A constant signal in the z-domain is given by, yms(z) = h^ri 

(k e R), Qm{z) = (z - 1). According to the internal model principle, Q^{z) should be 

operated with the transfer function (G(z)) of the BAUV for solving the output regulation 

problem [43]. 

The adaptive control law is designed using a two step approach. First the parameters of 

the BAUV Eqn 6.4 are considered to be known, but the disturbance signal D0 is assumed 

to be unknown, and a control law is derived. Once this control law is obtained with known 

system parameters, then an adaptive control law is designed to adaptively update the control 

law parameters from the adaptive estimates of the parameter of the plant (Eqn 6.4) to be 
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controlled. The stabilizer includes Q^(z) in the forward path. The structure of the closed-

loop system is shown in Figure. 6.1. For the controller design, it is required to find the 

polynomials C(z) and D(z) such that the closed-loop system is asymptotically stable [43]. 

The control law is given by 

D(z,nd) 
u, c(kT) = (zr(kT) - zd(kT)) (6.22) 

_C(z,nc)Qm(z 

where the stabilizer polynomials D and C are chosen as 

C(z, nc) = z3 + c2z
2 + c\z + c0 

D(z, nd) = dAzA + d3z
3 + d2z

2 + dxz + d0 (6.23) 

and stabilizer parameter vectors nc and nd are given by 

nc = (c0,ci,c2) e Rn~l =R3 

nd = (d0,du ...,d4) G Rn+nq = R5 (6.24) 

The degree of the monic polynomial C is given by 

5(C) = (n - 1) 

where, the state vector x is of dimension n = 4 (degree of a polynomial is denoted as 5), and 

the degree of the numerator polynomial of the stabilizer is given by 5(D) = n + nq — 1 = 4, 

where nq = 6(Qm). 

By knowing the parameters N(z, nz) and P(z, np), we can use the pole placement control to 

determine the parameters D(z,nd) and C(z,nc) of the stabilizer. A stable monic polynomial 

F*(z) with 5(F*) = 2n + nq - 1 = 8 of the form 

F*(z) = z8 + f7z
7 + f6z

6 + ... + hz + /o (6.25) 
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is considered. An appropriate choice of the zeros of F* has to be made, such that all its zeros 

are in \z\ < 1. The closed-loop system with both the parameter identifier and the stabilizer is 

shown in Figure. 6.1, whose characteristic polynomial is given by 

V(z) = C(z, nc)Qm{z)P(z, np) + D(z, nd)N(z, nz) (6.26) 

For the purpose of pole placement control scheme, we have ty(z) — F*(z), further 

C(z, nc)Qm(z)P{z, np) + D(z, nd)N(z, nz) = F*(z) (6.27) 

From Eqn. 6.27, C(z,nc) and D(z,rid) can be determined, only if N(z,nz) and P(z,np) are 

known. Further, for the validation of Eqn 6.27 N(z,nz) and (Qm(z)P(z,np)) need to be co-

prime. It is found that that, for the BAUV model in yaw plane the polynomials N(z, nz) and 

P(z,np) are co-prime. Also, the zeros of G{z) are not the same as the zeros of Qm{z). (The 

calculation of (c*, d*) of C and D are shown in the appendix II.B.l). 

Our objective is to ensure that the tracking error converges to zero. This is made possible 

by the internal model consisting the reference input signal and the constant disturbance input 

signal (exosystem) in the forward path. The closed-loop system is found to be stable and 

hence the tracking error converges to zero. 

The control law in Eqn 6.22 can be expressed in a linearly parameterized form [40]. For 

manipulation of the control law in Eqn 6.22 we introduce a monic stable stabilizer polynomial 

^,i{z) of the form 

^ ( z ) = z4 + /x32
3 + fi2z

2 + Hiz + A*0 (6.28) 

where,(S^^z)) = n + nq - 1 = 4).Operating Eqn 6.22 by ^^{z) gives 

uc{kT) = (^,(z) - C(z,nc)Qm(z))--l—uc(kT) + D(z,nd)-^—[zr(kT) - y(kT)} (6.29) 

Since ^ and CQm are monic polynomials <5(\I>M - CQm) < <K*/i)- Define 

*„(*) - C(z,nc)Qm(z) = [hMMMHz) = lTu(z) 
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Diz^n^^iz) = d4 + [da0,dal,da2,da3\u(z) = d4 + dT
av(z) (6.30) 

where v{z) — [1, z, z2, z3]T € RA. (The vectors I and da are given in the appendix II.B.2.) The 

control law Eqn 6.29 can now be written in the form 

uc{kT) = lTw0{kT) + dT
awe(kT) + di[zr(kT) - zd{kT)] (6.31) 

where wp(kT) and we(kT) satisfy the state equations 

w0\(k + 1)T] = A,jW0{kT) + B,,uc(kT) 

w, \{k + 1)T] = A^(kT) + B^ZrikT) - zd(kT)) (6.32) 

where 

A„ 

0 0 

0 0 1 0 

0 0 0 1 

-Mo - M i - M 2 - M 3 

Bu (6.33) 

For the derivation of the control law Eqn 6.31, the parameters of the model were assumed 

to be known. Now an adaptive control law design is considered, with unknown BAUV model 

parameters. By certainty equivalence principle, parameter estimate 9P of 6* is assumed to 

be true parameter vector of the BAUV and the compensator is designed. The stabilizer 

parameter vectors are calculated at each sampling instant, for every value of the parameter 

estimate. The modified stabilizer equation is given 

C(z,nc)Qm(z)P{z,hp) + D(z,nd)N(z,nt) = F*{z) (6.34) 

where hz = (60,^1,^2,^3) and hp = (00,01,02,^3) are estimated at every sampling instant 

from dj and 6$. The stabilizer vectors nc and nd are updated at each sampling instant based 

on the estimated BAUV system parameters. The vectors I, da and d4 are also computed at 
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each sampling instant to obtain the control law Eqn 6.31. It is seen that the tracking error 

zd(kT) - zr(kT) converges to zero [13] and all the signals are bounded. 

Remark 1: For convenience, the polynomials A(z), F*(z) and ^^(z) are taken as A(z) = 

z\ F*(z) = z8 and V^z) = zA. 

Remark 2: The designed servoregulator also has the capability to reject arbitrary periodic 

wave forces on the BAUV at each sampling instant, provided, the frequency of the wave 

forces are known. Also, the frequency of the wave force disturbance should coincide with 

the frequency of oscillation the fin. The control law already has the capability to reject any 

constant disturbance input Da. 

6.4 Simulation Results For Depth Trajectory Tracking 

In this section, simulation results for the depth trajectory tracking of the closed-loop system 

Eqn 6.1 and Eqn 6.2 using MATLAB/SIMULINK are presented. The nonlinear BAUV system 

parameters are taken from [17]. The vehicle parameters are I = 1.282 m , m= 4.1548 kg, Iy= 

0.5732 kgm2, xG = 0, and ZG = 0.578802 x 10~8 m. The hydrodynamic parameters for the 

forward velocity of 0.8 m/sec are z'q = -0.825 x 10"5, z[b = -0.825 x 10"5, z'q = -0.238 x 10~2, 

z'w = -0.738 x 10~2, M'Q = -0.16 x 10~3, Mi = -0.825 x 10~5, M'q = -0.117 x 10~2, and 

M'w = 0.314 x 10 -2 . The pectoral fins are attached at a distance of dcgd = 0.03 m. The BAUV 

is assumed to be moving with a constant forward velocity of 0.8 m/sec.The pectoral fins are 

considered to be oscillating at a frequency of ojf = 8 Hz. 

A fixed Strouhal number St — 0.6 is used for the calculation of normal fin forces and 

control moment, where St = jf^-, £/«> is 0.8 m/sec, / is the frequency of the fin oscillation and 

Ch is the chord of the foil. Then the values of fa, fb, ma, nib for M=4 are 

fa = (0, -6.8175, -8.2597, -0.1748,0.1311, -0.3496, -4.0643,0,0) 
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fb = (74.3671, -11.0173, -26.0410, -38.5607, -21.0331, -3.2551,2.2535,5.5087,2.2535) 

ma = (0,0.0803,0.1193,0.0023,0,0, -0.0138,0.0023,0) 

mb = (-0.6178, -0.3681,0.2235, -0.1840, -0.0263, -0.0526, -0.0131,0.0131,0.0263) 

These parameters are obtained using the Fourier decomposition of the fin force and mo­

ment, and are computed by multiplying the Fourier coefficients by \p-Wa.Uoo2 and \p.Wa.Ch-U<x> > 

respectively, where Wa is the surface area of the foil. For simulation, the initial conditions of 

the vehicle are assumed to be x(0) = 0. 

Although, the design has been done to track constant reference trajectories, simulation for 

tracking of constant and sinusoidal time-varying reference trajectories is considered. Further­

more, nonlinear functions of Eqn 6.2 are retained for simulation. The objective is reference 

command tracking and constant disturbance input rejection. The BAUV is controlled to move 

at a constant forward velocity of 0.8 m/sec by some control mechanism. The pectoral fins are 

attached between the eg and the nose of the vehicle. The number of unstable zeros in the 

transfer function of the BAUV model depends of the distance {dcg<j) of the fin from the eg. It 

is found that for any choice of values of the dcgd, there is at least one unstable zero present 

in the discretized BAUV model transfer function, hence the system is always non-minimum 

phase. The modification of the controlled output variable to derive a minimum phase system 

is discussed in [17]. Since, the adaptive closed-loop feedback control law is applicable to both 

minimum phase and non-minimum phase systems, we leave the system to be in non-minimum 

phase form, with one zero outside the unit disk in the complex plane. It is found that there 

is a single unstable zero if the fins are attached closer to the eg, but two unstable zeros are 

present if the fin distance from the eg exceeds a critical value. In our case, dcg(i is chosen such 

that the BAUV transfer function has only one unstable zero. 
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The stabilizer designed for the indirect adaptive control law is in discrete form. Hence the 

control input uc is sampled and changed to a new value at T = T0 sec, where To = 1 / / is 

the fundamental period of the fin force (/<*) and moment (m^). The update law is given by 

Eqn 6.22. The gains in Eqn 6.22 are chosen as T — O.Ol/gxg, 0 < T < 21 and k0 is set to 1. 

The simulation results are obtained for a reference depth of 2 meters in the dive plane, for 

both constant and sinusoidal trajectories. The distance of the fin dcgd, from the eg is critical 

and is chosen to be 0.02 m. For this value of dcgd the discrete-time BAUV system is found 

to be in non-minimum phase with one unstable zero at 24.3685 (outside the unit circle in the 

complex plane). The other zero and pole values for the BAUV transfer function are 24.3685, 

-0.2261, 0.5540 and 1.0000, 0.3675, 0.9854, 1.0000, respectively. The parameter coefficients 

for the parameter identifier (Aj,i = 0,1,2,3 and the stabilizer Ui,i — 0,1, ...,3) are taken as 

zero, for convenient design. 

The zero and pole locations of the stabilizer transfer function is calculated by Eqn 6.34. 

For this purpose, it is necessary to assign the zero location for the stable monic polynomial 

F*(z) in Eqn 6.34. There is no standard procedure to determine the zero locations and a 

pole matching technique is employed here. It is to be noted the that better responses for the 

closed-loop system can be obtained by appropriately choosing the zeros of F*(z). In our case, 

we have chosen F*(z) to be 

F*{z) = z4(z2 - 0.12)(z - 0.3)(z + 0.2) 

Case I: Dive plane depth control, constant depth reference trajectory, zr = 2 m, 

fin oscillation frequency 8 Hz, parameter uncertainty: +20 % 

The complete closed-loop systems Eqn 6.2 and Eqn 6.31 are simulated for a fin oscillation 

frequency of 8 Hz. A constant reference trajectory zr converging to z* ~ 2 m is taken. 

Simulation results are shown for a constant reference trajectory with a depth magnitude of 2 

84 



m. Of course, the designed adaptive control law will steer the BAUV to any given reference 

depth, but it will take a longer time to attain the steady state target depth and also the 

control input required will be higher. The output response characteristics also depend on 

the nature of the input reference command. Here, the reference trajectory is carefully chosen 

using appropriate command shaping methods to ensure a smooth maneuver of the BAUV to 

the target depth at smaller bias angles. The command trajectory zr(t) is given by 

Zr = z**JL + [\- exp(0.09 * v * T)\ 
180 

where z* = 2 m, v is just a simulation variable which is introduced for input command shaping. 

It is incremented from 0 to 1 in steps of 0.01. In the update control law Eqn 6.22, the initial 

estimate parameter uncertainty considered is +20% of the actual vector 9*, 9P(0) = 1.20*. 

The simulation results are shown in Figure. 6.2. It is observed that the BAUV reaches the 

target depth accurately in about 35 sees. The maximum control input required is around 40 

deg. After the initial transient phase which lasts for around 2 sees, the bias angle required 

gradually tends to zero. The maximum control input of 40 deg can be supplied by the pectoral 

fins. Of course, the control input to be provided can be shared between multiple oscillating 

fins, which also reduce the time taken to attain the target reference depth. The pitching angle. 

goes up to a maximum of 1 deg and then slowly begins to oscillate around zero once the 

transient phase is overcome. The normal force (fd) and the control moment (m,*) produced 

by the oscillating fins are around 50 N and 0.3 Nm, respectively. Once the control bias angle 

input falls to zero, the control force and moment begin to oscillate with zero offset making the 

time average zero. Even though the bias angle is zero in steady state, there is still a forward 

thrust present which is necessary for the propulsion of the vehicle in the forward direction. 

In spite of the parameter uncertainties, reference trajectory tracking in achieved in the dive 

plane and also the the impact of the input disturbance vector is nullified. 
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Case II: Dive plane depth control, Sinusoidal depth reference trajectory, zr 

= 2 m, fin oscillation frequency 8 Hz, parameter uncertainty: +20 % 

The adaptive control law was designed to track the constant reference trajectories. The 

internal model of the exosignals was obtained only for constant reference trajectory. Hence, 

the transfer function Q^{z) was derived as j ^ . Despite the adaptive control law design 

restricted to constant command tracking alone, it was observed that the accurate tracking of 

sinusoidal commands can also be accomplished. The initial estimate parameter uncertainty 

considered is +20% of the actual vector 0*, 0P(O) = 1.20*. The sinusoidal reference input is 

of the form 

zr = z* * —— * [1 — exp(0.09 * v * T)] * [sin(0.5 * v * T)] 
180 

where z* = 2 m, v is just a simulation variable which is introduced for input command shaping. 

It is incremented from 0 to 1 in steps of 0.01. The simulation results are shown in Figure. 

6.3. It is observed that the response of the actual output quickly converges to the reference 

command trajectory. The maximum input bias angle required is around 60 deg. This higher 

value of the bias angle is attributed to the time-varying reference trajectory. Though the 

control input required is 60 deg, it can still be supplied by the pectoral fins. The steady state 

value of the bias angle is zero. The pitch angle (0) is observed to around 2 deg. The pitch 

angle reduces to zero after the initial transient phase. The fin control force (fa) and moment 

(ma) are 80 N and 0.5 Nm, respectively. 

The simulations were also performed for under-estimated initial values. It has been found • 

that better closed-loop responses are obtained for the over-estimation of the initial estimate 

0P(O). 
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Figure 6.1: Closed-loop BAUV system 
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Figure 6.2: BAUV depth control for constant reference command, frequency of fin oscillation 
uif = 8 Hz, parameter uncertainty: + 20 % 
(a) Dive plane depth, Zd, and Reference depth, zr (m), (b) Pitch angle, 6 (deg), (c) Bias angle 
(deg), (d) Velocity (m/sec), (e) Normal force (N), (f) Moment (Nm), (g) Pitch rate (deg/sec), 
(h) Pitch rate (deg/sec), and Pitch rate (deg). 
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Figure 6.3: BAUV depth control for sinusoidal reference command, frequency of fin oscillation 
ijjj = 8 Hz, parameter uncertainty: + 20 % 
(a) Dive plane depth, zd, and Reference depth, zr (m), (b) Pitch angle, 8 (deg), (c) Bias angle 
(deg), (d) Velocity (m/sec), (e) Normal force (N), (f) Moment (Nm), (g) Pitch rate (deg/sec), 
(h) Pitch rate (deg/sec), and Pitch rate (deg). 



CHAPTER 7 

CONCLUSION 

In this research work, multiple control design methods were analyzed for the control of an 

BAUV in yaw and dive planes using pectoral-like fins. Also, both continuous-time and discrete-

time controllers were designed and their performances were simulated. The mathematical 

model of the BAUV had inherent nonlinearities present in them. For control law design, the 

nonlinearities were neglected, whereas, the original BAUV system model was considered for 

simulation. For all the different control designs implemented, the bias angle of the fin was 

taken as the lone control input. Depending on the planar motion of the BAUV, the output 

variable was either the depth (dive plane) or the yaw angle (yaw plane). 

In chapter 3, an adaptive servoregulator was designed for the control of BAUVs in yaw 

plane. The parameters of the BAUV model including the hydrodynamic coefficients are un­

known. The adaptive controller could be efficiently designed without the knowledge of the 

system parameters. For design purposes, averaging of the fin force and moment was done. 

The yaw angle and its derivative alone were considered for feedback. The designed controller 

required the tuning of a single gain alone. Simulation results showed that the set point control 

of the yaw angle was achieved in spite of the uncertainties in the system parameters. Also, 

the performance of the controller was examined for perturbations in the fin force and control 

moment. 

In chapter 4, a new design methodology for the control of BAUVs using pectoral-like os-
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dilating fins was presented. For the dive plane control, a pair of pectoral-like harmonically 

heaving and pitching fins were used. The bias angle of pitch motion of the fin was treated as 

a control input. For the purpose of design, an exosystem of third-order was introduced and 

the original time-varying nonlinear system was embedded in a larger class of time-invariant 

nonlinear system. For robust design, an internal model of k-fold exosystem was introduced. 

The augmented system, including the internal model, was stabilized using optimal control the­

ory. In the closed-loop system including the internal model of the k-fold exosystem, harmonic 

components of order up to k of the tracking error are suppressed. This special property is not 

possible using averaging method or discretization approach reported in literature. A simple 

servocompensator using only integral error feedback and a fifth-order servocompensator were 

designed. Simulation results were obtained, which showed robust depth control performance. 

Interestingly, the internal model of 2-fold exosystem was capable of attenuating the depth 

tracking error to a negligible level in spite of uncertainties in the system parameters. It was 

seen that flexibility exists in the choice of weighting matrices for shaping responses using op­

timal control theory. In chapter 5, similar design methodology was adopted for the control 

BAUVs in yaw plane. 

In chapter 6, an indirect adaptive closed-loop control law was designed for the depth 

control of a BAUV in the dive plane using mechanical pectoral fins. The pectoral fins were 

considered to be oscillating with pitching and heaving motions. The oscillating fins produce 

periodic forces. The control force and moment coefficients of the fins are computed using 

Fourier decomposition methods. The control force produced by the pectoral fins is a function 

of the bias angle. The bias angle is taken as the control input. The depth variable zd is taken 

as the output variable. Since the hydrodynamic coefficients and the system parameters of 

the BAUV model are unknown, a parameter identifier was designed to determine the system 
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parameters. For the convenient design of a parameter estimator, a sampled-data control 

system was derived. The transfer function of the BAUV model was found to be non-minimum 

phase, with one unstable zero. An adaptive feedback control law was designed for the reference 

command tracking and the rejection of constant input disturbance. The depth tracking error 

was also desired to converge to zero. For the purpose of control law design, an internal model 

of exosignals was obtained for constant reference signals. The pole-zero coefficients of the 

stabilizer were determined using pole matching methods. Simulation results showed that an 

precise depth trajectory tracking can be achieved in spite of the uncertainties in the system 

parameters. Though the control law was designed for constant reference trajectory tracking, 

it was observed that accurate sinusoidal trajectory tracking can also be achieved. 

The advantage of the adaptive control law lies in its application to both minimum-phase 

and non-minimum phase BAUV models. 
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APPENDIX I 

SYSTEM PARAMETERS 

1. Hyrdrodynamic coefficents for BAUV model in dive plane [6] 

I = 1.282 m 

m = 4.1548 kg 

Iy = 0.5732 kgm2 

xG = 0 

ZG = 0.578802 x 10 -8 m 

U = 0.8 m/sec 

Zq = -0.825 x 10-5 

4 , = -0.825 x 10"5 

z'g = -0.238 x 10"2 

z'w = -0.738 x 10~2 

M'q = -0.16 x 10~3 

M4 = -0.825 x 10~5 

M'q = -0.117 x 10~2 

M'w = 0.314 x 10~2. 
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2. Hyrdrodynamic coefflcents for BAUV model in yaw plane[35] 

I = 1.391 m 

mass(m) = 18.826 kg 

Iz = 1.77 kgm2 

XG = -0.012 

YG = 0 

U = 0.8 m/sec 

Yr = -0.3781 

Yi, = -5.6198 

Yr = 1.1694 

Yv = -12.0868 

Nr = -0.3781 

Ni, = -0.8967 

Â r = -1.0186 

Nv - -4.9587. 
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APPENDIX II 

MATHEMATICAL CALCULATIONS 

A. Matrices A\} and minimum polynomials 

A® 

431 

0 %jf 0 

— U>f 0 LOf 

0 -2ojf 0 

0 3ujf 0 0 

-uif 0 2UJ} 0 

0 - 2 a ; / 0 LO} 

0 0 -3a>/ 0 

0 4uf 0 0 0 

- a ; / 0 3a;/ 0 0 

0 -2uf 0 2a;/ 0 

0 0 -3a;/ 0 a;/ 

0 0 0 -uif 0 

Computing the minimum polynomials pM(A) of ylW and p^{\) of AJf1 (k = 2,3,4), one finds 

that 

pM = \(\2+co2
}) 

p® = A(A2 + (2a./)2) 
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pW = A(A2 + (2a;/)
2)(A2 + (4W/)

2) 

B. l Stabilizer parameters (cj,dj) 

The compensator equation Eqn 6.27 can be further expanded as 

{z3+C2Z2+c1z+Co){z-l)(z4+a3z
3+a2Z2+a1z+a0)+(d4Z4+d3Zz+d2Z2+d1z+do)(b3z

3+b2z
2+biZ+bo 

= z8 + f7z
7 + f6z

6 + f5z
5 + fAzA + f3z

3 + f2z
2 + hz + /o 

and then converted into matrix form as follows 

c0 d0 ci di c2 d2 d3 d4 
xS = 

/o 

h 

h 

(/3 + ao) 

(A - «o + ai) 

(/5 - ai + a2) 

(/e -a2 + a3) 

(/7 + 1 - a3) 

where 

S = 

0 

0 

0 

0 

0 

0 

—a 

bo 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

-a0 (a0 - ai) ( d - a2) (a2 - a3) (a3 - 1) 1 

b0 h b2 b3 0 0 

-a0 (a0 - aj) (a! - a2) (a2 - a3) (a3 - 1) 

&i 62 63 0 

- a 0 (a0 - ai) (d - a2) (a2 - a3) (a3 - 1) 1 

b0 h b2 b3 0 0 

0 60 bx b2 b3 0 

0 0 60 61 b2 b3 

(7.1) 

(7.2) 
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Post multiplying Eqn 7.2 by S x gives the controller parameters (ci,di). 

B.2 The vectors I and da of control law 

(d0 - d4fj,0) {di - dAin) (d2 - dA^2) (dz ~ d4Hz) 

lT 

(Mo + co) ( M I - C O + CI) (M2-C1 + C2) (//3-C2 + I) 
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