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ABSTRACT 

 

New Cross Sections for H on H2  

Collisional Transitions 

 

 

by 

 

Qianxia Zou 

 

Dr. Stephen Lepp, Examination Committee Chair 

Professor of Physics 

University of Nevada, Las Vegas 

 

 

The cross section for H on H2 collisions is important for astrophysics as well as 

our understanding of the simple chemical systems. This is the simplest atom-molecule 

cross section. With a new H3 potential surface by Mielke et al., we have modified the 

ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. 

These cross sections are compared to previous cross section calculations. 
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CHAPTER 1 

 

INTRODUCTION 

This thesis contains a study the quantum mechanical calculation of the H on H2 

cross section calculated with the ABC code. The ABC code uses a close-coupled 

approximation to do a quantum calculation on a potential surface and produce a state 

to state S-matrix
1
. For this thesis we have used the Mielke’s potential surface

2
, this 

builds on the work of David Archer
3
 who did a similar calculation with the BKMP 

potential
4
. The new calculation is compared to that of Archer as well as others. 
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CHAPTER 2 

 

APPLICATION IN ASTROPHYSICS 

Since its discovery in 1671 by Robert Boyle, hydrogen has been an important 

element. It is the simplest atom. The energy level of hydrogen is one of the few 

problems which can be solved analytically
5
. Studying hydrogen has significant 

meaning to astrophysics. 

Hydrogen is the lightest and most abundant chemical element, constituting 

roughly 75% of the universe’s chemical elemental mass and over 90% by number of 

atoms. This element is found in great number in stars and gas giant planets. Molecular 

clouds of H2 are associated with star formation. Also hydrogen is the most important 

reactant in the powering stars through proton-proton reaction and CNO cycle nuclear 

fusion. Throughout the universe, most of the hydrogen is in the atomic and plasma 

states. Stars in the main sequence are mainly composed of hydrogen in its plasma 

state. 

Hydrogen is both an important cooling mechanism and diagnostic for astrophysics. 

As the massive element, most of the cooling of the first objects occurs through 

molecular hydrogen. To calculate this cooling requires collisional cross sections and 

Einstain A-values. These reactions are crucial to the thermal balance of the medium. 

Rovibrationally inelastic scatterings of H on H2 provided are cooling essential to the 

gravitational collapse of inhomogeneities in the primordial gas and the formation of 

the first stars. In the galactic interstellar medium, shock heating of the molecular gas 
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can lead to partial dissociation of H2, in which case H-H2 collisions determine the 

thermal profile and chemical evolution of the postshock gas as it cools to its 

equilibrium state. In photon-dominated regions of the interstellar medium, which are 

exposed to sources of ultravoilet radiation, there exists a region of overlap of atomic 

and molecular hydrogen, where the optical depth in the ultravoilet electronic 

absorption bands of H2 becomes sufficient to shield the H2 deeper in the cloud from 

the dissociating radiation. The kinetic temperature in this region is controlled by 

inelastic H-H2 collisions. 

For the formation of star in the cloud, hydrogen is crucial. In the early universe, 

when the cloud meets the Jean’s condition, it starts to collapse. As the collapse 

continues, the energy created by gravity potential energy should be released by some 

way. Or the cloud cannot satisfy the condition anymore, the collapse stops. Hydrogen 

provides an efficient way to release this energy to make the collapse continue without 

break the Jean’s conditions. There are two important conditions for a star to form in 

the dust. Another is also related with hydrogen, cooling. The cooling is primarily by 

hydrogen molecule. 

Hydrogen also provides an effective way to study the phenomenon of astrophysics. 

In the shocked region, there is a large emission from H2. Observed H2 line ratio could 

be explained by a phenomena called a bow shock. X-ray illuminated regions such as 

active galaxies, star burst galaxies also produce hot H2 emission. 
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CHAPTER 3 

 

H3 POTENTIAL SURFACES  

 

 

Figure 1   H2 Potential Surface 

 



5 

 

Here is the potential surface of H2. The transitions we study focus on ground 

potentials. For H3 potential surface, it is much more complicated.  

The H3 potential surface has developed for a long time. According to the method 

used to solve H2 potential surface, we extend to H3. Assuming the three atoms are at 

fixed coordinates, and determine a potential energy surface in the three coordinates 

which are required to describe the relative positions of three atoms. This procedure is 

the Born-Oppenheimer approximation. London’s potential is thought to be earliest 

work for this area. After it, the most well known potentials are LSTH
6
 

(Liu-Seigbahn-Truhlar-Horowitz), DMBE
7
 (double many-body expansion) and 

BKMP
8
 & BKMP2

9
 (Boothroyd-Keogh-Martin-Peterson). The most recent ones are 

Extensive Quantum Monte Carlo (EQMC)
10

 and Mielke. Generally, they fit more 

theoretical calculation points as the time goes on. 

London’s potential surface
11 

is one of the earliest examples for H3 potential 

surface. Though it did not agree well with the experimental data, it built up the basic 

technique for all the early calculations.  

One of the early ab initio calculations of the H3 potential surface used variational 

methods to compute the potential for linear symmetric configuration of the three 

hydrogen atoms
12

. This method improved a lot. Even though, most of the earlier ab 

initio surface did not agree well with existing experimental results. 

The early LSTH potential energy surface was developed by Liu using a potential 

energy surface for linear H3. It is reasonable to use a one dimensional 

Born-Oppenheimer approximation to determine the potential energy surface for the 



6 

 

motion of the three nuclei on a collinear geometry. Then Siegbahn and Liu
13 

extended 

the potential to three dimensions. The later LSTH potential is improved by Truhlar 

and Horowitz
14

, making a least-squares analytical fit to it. 

DMBE potential is created by Varandas, Brown, Mead, and Truhlar, using a new 

analytic fit to more existing points. This fits used 316 points of the potential surface to 

determine the analytical fit. “It is claimed by Varandas et al. That their potential is 

superior to the LSTH potential at intermediate and long-range separations of H and 

H2.” Here the condition is critical to this qualitative assessment. 

The BKMP potential extended the LSTH surface based on a more extensive grid 

of ab initio interaction energies. 

BKMP2 potential is more accurate than the DMBE or LSTH potentials, an 

analytical fit to 8701 points. However, the experimental evidence showed it is less 

accurate as presented in Banares
15 

in regions of the potential energy surface. 

EQMC (Extensive Quantum Monte Carlo) potential and Mielke’s potential are 

more recent than the one above. 

In the potential Born-Oppenhermer approximation
16

, the interactions of the 

electrons are accounted for by a potential surface. The most accurate available 

potential surface is by Mielke. The Mielke potential surface should yield more 

accurate scattering data, particularly near-threshold cross sections and the 

corresponding low-temperature rate coefficients. 

In our calculations, we prefer the Mielke potential, comparing with the previous 

potentials. In the following part, we are going to talk about Mielke’s potential. 
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Mielke’s Potential Surface 

The Mielke performed MRCI calculation at 4067 configurations with the standard 

aug-cc-pVDZ,aug-cc-pVTZ, and aug-cc-pVQZ basis sets. 

 Mielke potential fits best with collinear van der Waals. 

Consider corrections to the Born-Oppenheimer approximation, that have not been 

included yet in H3 surfaces. Mielke improved the potential by two ways as below: 

Basis Set Extrapolation
17 18

:  

(1) (2) (3)

ABC A AB ABCV V V V    
 

Where 
(1)

AV
 is the energy of an isolated atom A, and 

(2)

ABV
 and 

(3)

ABCV  
are two- 

and three-body interaction energies, respectively. 
 

   
 

3 3 2 2

3 3

2 2

body body body body

i j CBS ibody body

CBS i body body

i j

E E E E
E E

E E

   

 

 

  
 



 

Where n body

CBSE 
 denotes the sum of all the n-body energies, i and j denote the two 

basis sets used, and it requires i > j. 

Fitting: the functional form is taken to be a London potential
19

, augmented with a 

three-center correction 

3London CV V V 
 

Because of the completeness of basis-set, the Mielke potential has the highest 

accuracy. Also it has better harrier height, van der vaals well depth, and lowest energy 

conical intersection. Compare with earlier analytic H3 potential surfaces, it displays a 

considerably improved representation of the long-range anisotropy which is expected 

to be important for the accurate description of low energy scattering processes. 
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CHAPTER 4 

 

SOLUTION OF H3 PROBLEM 

There are several steps to solve the H3. First, we need to solve the wave function. 

Here we use the time-independent wave function. Second, apply the proper potential 

surface into the wave function. Then we can use the program to calculate the function. 

From the result of ABC program, we can calculate cross section and compare with 

previous works. The transitions between different energy levels of H3 contain 

collisional transition and radiation transition. In our calculation, we only consider the 

collisional transition here. 

The way to solve H3 problem developed a lot. We are going to discuss different 

ways to solve this problem, both advantage and disadvantage. 

 

Classical Trajectory 

The classical trajectory use a large number of randomly chosen classical 

trajectories for a given impact parameter that are computed using the potential energy 

surface with initial conditions that are consistent with the desired initial condition in 

order to compute the desired cross sections
20

. 

Advantage of this method is significantly less computationally intensive, provide 

a complete set of cross sections and rate coefficients to high energies in a reasonable 

time frame. But it cannot give good results at low temperature where purely 

quantum-mechanical effects contribute to the cross sections. The calculation mainly 

base on the Newton’s law. Assume the potential surface first, get the force from it to 
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calculate the mechanics. 

F ma  

F V   

 

Quantum Calculations 

In the quantum calculation there are two types, one is time-dependent and another 

is time-independent. Here is our analysis. 

Time-dependent Schrödinger equation： 

Time-dependent calculations solve the time-dependent Schrödinger equation: 

(r,t)
(r,t)=iH

t







  

For each initial state, S-matrix should be calculated. According to the limit ability 

of the current computer, it is hard to solve the problem in three dimensions for a 

realistic potential. We are looking forward the more powerful computer developed. 

Time-independent Schrödinger equation： 

By separation of variables, the time dependence of the equation can be removed, 

provided the potential has no explicit time dependence.  

Consider time-independent Schrödinger equation.  

2
2 ( ) ( ) ( ) ( )

2
r V r r E r

m
     



 

Assume that the solution has this form
21

: 

( , ) ( ) ( )t t  r r
 

Substitute it into the time-dependent Schrödinger equation, at the same time 

assume no explicit time dependence in the potential. We get: 
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2
2( ) ( ) ( ) ( ) ( ) ( )

2

d
i t t V

dt m


       


 r r r r

 

Both sides divided by 
( ) ( )t r

 

2
2( ) 1

( ) ( )
( ) 2 ( )

i d t
V

t dt m




 
   

 
r r

r
 

Now the left side is a function of time and the right side is a function of position, 

they can only be equal if both sides are equal to constant E. 

Then the left side can be integrated: 

( )
E

i t
i tt Ae Ae 


 

 

The right side yields the time-independent Schrödinger equation: 

2
2 ( ) ( ) ( )

2
V E

m
 

 
    
 


r r r

 

If this equation is expressed in the hyperspherical coordinate, the observables that 

can be calculated from the resulting helicity-reprensentation S-matrix elements 

' ', ( )J

n k nkS E  range from fully state-resolved differential   

2

' '
' ' ',

1
( , ) (2 1) ( ) ( )

2

J Jn k nk
k k n k nk

Jn

d
E J d S E

d ik


   




 

and integral 

2

' ' ' ',2
( , ) (2 1) ( )J

n k nk n k nk

Jn

d E J S E
k


   

 

Reactive scattering cross sections are thought to have considerably more averaged 

quantities such as initial state-selected reaction cross sections and thermal rate 

constants. 

The coupled-channel hyperspherical coordinate method that is used in the ABC 
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program is based on the Schrödinger equation: 

H E


    

After apply the truncated range of k quantum numbers, the orbital angular 

momentum functions JMjl  could be obtained from the orthogonal transformation 

max

max

min( , , )

min( , , )

J j k
Jj

kl

k J j k

JMjl JMjk D


 
 

Where Jj

klD  is a component of an eigenvector of the matrix representation of the 

operator 2l  in the truncated helicity basis. This matrix representation of 2l  is 

tri-diagonal, with diagonal elements 

2 2( 1) ( 1) 2JMjk l JMjk J J j j k    
 

And off-diagonal elements 

   
1 1

2
2 2

| ' |,1' ( 1) ' ( 1) ' k kJMjk l JMjk J J k k j j k k      
 

If the helicity basis were complete, the elements Jj

klD  of the eigenvectors of this 

matrix would be: 

1

22 1
( , 0 )

2 1

Jj

kl

l
D D jlJ k k

J

 
  

   

 

Born Oppenheimer Approximation 

In basic terms, it allows the wave function of a molecule to be broken into its 

electronic and nuclear (vibrational, rotational) components. 

total electronic nuclear   
 

First step: In the first step of the BO approximation the electronic Schrödinger 
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equation is solved, yielding the wave function ψelectronic depending on electrons only. 

Second step: In the second step of the BO approximation the nuclear kinetic 

energy Tn (containing partial derivatives with respect to the components of R) is 

reintroduced and the Schrödinger equation for the nuclear motion is solved.  

The Hamiltonian for the H3 can be written as: 

N eH H H   

Where HN is the nuclear Hamiltonian and He is the electronic Hamiltonian. 

The total wave function is: 

tot totH E    

Here we skip the steps how to solve the equation, get this equation below: 

   
2

0 02

N N

nk nk km km nm n n n

m k

i A i A V E    
 

 
      

 
 


  

The BO approximation only consider the first term: 

0 0tot    

Leave only the first eigenvalue equation to determine the wave function: 

 
2

2

2
iA V E 



 
    
 


 

This results in the term having the identical form of a magnetic vector potential. 

In analogy to the Aharonov-Bohm effect, the processes that encircle the conical 

intersection would cause the wave function to change sign. So this will affect the H3 

system. We need to properly antisymmetrize the interference of reactive and 

non-reactive parts of wave function when interchange the three H atoms. This is the 

source of the change of sign in the interference terms to calculate the integral cross 
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sections. According to Archer’s study of geometric phase effects, exact cancellation of 

potential geometric phase effects will not affect the H3 system integral cross sections. 

 

Identical Particles (three identical particles) 

In our ABC program, we use a couple-channel hyperspherical coordinate. 

 

 

Figure 2   Postions of Three Hydrogen Atoms 

 

In the ABC program, first we treat the three Hydrogen atoms as distinguishable 

particles. Assume that the three atoms are at fixed coordinates, and compute this for a 

number of inter-nuclear spacings. From this we get an effective potential energy 

surface. This procedure is called the Born-Oppenheimer. To get correct results for H3 

system, one must post antisymmetrize the results. The H3 potential has a conical 

intersection where geometric phase effects may manifest. It is not clear that how to 

take account in the geometric phase and other effects. To some extent it is potential 

dependent, the BKMP2 potential implies there are no geometric phase effects to 

account for, while some other potentials imply that there are. Fortunately, for some 
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reasons that is not clear yet, integral cross sections and rate coefficients do not seem 

to change in either case. 

 

Cross Section 

In nuclear and particle physics, the concept of a cross section is used to express 

the likelihood of interaction between particles. When particles in a beam are thrown 

against a foil made of a certain substance, the cross section σ is a hypothetical area 

measure around the target particles of the substance (usually its atoms) that represents 

a surface. If a particle of the beam crosses this surface, there will be some kind of 

interaction. 

The term is derived from the purely classical picture of (a large number of) 

point-like projectiles directed to an area that includes a solid target. Assuming that an 

interaction will occur (with 100% probability) if the projectile hits the solid, and not 

at all (0% probability) if it misses, the total interaction probability for the single 

projectile will be the ratio of the area of the section of the solid (the cross section, 

represented by σ) to the total targeted area. 

Classical Mechanics： 

In classical mechanics, consider the collision of two particles initially in the 

internal states described by an index i
22

. To simplify notation, it is convenient to use a 

single index to specify the states of both particles. The angle between the initial and 

final relative velocities v and v’ is given by spherical polar coordinates   and  , 
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where  is the deflection angle in the center of mass frame. We start with a 

well-defined beam of particles with a flux Ii (number of particles per unit area per unit 

time). After the collision, the flux Ij (numbers of particles per unit solid angle per unit 

time) is a function of deflection angle   and is different for each possible set of 

final internal states j. We define the differential cross-section as 

ij j

i

d I

d I




  

Where   is an element of solid angle at deflection angle  . the corresponding 

integral cross-section 
ij is integrated over all possible final direction. Note that this 

quantity has units of area. Furthermore, it depends only on the geometry of the 

scattering center, and not on the incident flux or distance of the detector from the 

scattering center. The geometric interpretation is as follows: consider particles that 

scatter through a solid angle dΩ and ask what values of impact parameter produced 

them. These impact parameters form a differential area, dσ in space. The differential 

cross section is simply 

d

d




 

So it contains information about the total probability of the transition i→j, 

2

0 0

sin
ij

ij

d
d d

d

  




 
    

 
 

 

Quantum Mechanics: 
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In quantum mechanics, the differential cross section is defined as follows: the 

wave function of the incident particle is a plane-wave with amplitude 1, that is e
ikz

. In 

general the scattered wave is of the form 

( , )
ikre

f
r

   

Then we have 

2d
f

d





 

This has the simple interpretation of the probability of finding a scattered particle 

within a given solid angle. 

   The integral cross section is the integral of the differential cross section on the 

whole sphere of observation (4π steradian): 

d
d

d


  

  

A cross section is therefore a measure of the effective surface area seen by the 

impinging particles, and as such is expressed in units of area. Usual units are the cm
2
, 

the barn (1 b = 10
−28

 m
2
) and the corresponding submultiples: the millibarn (1 mb = 

10
−3

 b), the microbarn (1 μb = 10
−6

 b), the nanobarn ( 1 nb = 10
−9

 b), the picobarn (1 

pb = 10
−12

 b), and the shed (1 shed = 10
−24

 b). The cross section of two particles (i.e. 

observed when the two particles are colliding with each other) is a measure of the 

interaction event between the two particles. The cross section is proportional to the 
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probability that an interaction will occur; for example in a simple scattering 

experiment the number of particles scattered per unit of time (current of scattered 

particles Ir) depends only on the number of incident particles per unit of time (current 

of incident particles Ii), the characteristics of target (for example the number of 

particles per unit of surface N), and the type of interaction. 

r iI I N  

1 1
probability of interaction

N

r

i

I

I N
   

 

 

S-Matrix 

The S-matrix operator is an operator connecting states in the infinite past with 

states in the infinite future. If at some infinite time in the past the wave function had 

the form: 

( ) lim ( )
t

t


     

For a definite energy and angular momentum, after the interaction takes place the 

system is in the state  

( ) lim ( )
t

t


     

then 

( ) ( )S     

In the scattering， the S-matrix is the matrix elements of the S operator that 

connects the initial and final states. The S operator is a unitary operator to keep the 
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energy conserved (the total probability for something to happen to be unity). Thus the 

S-matrix value squared is the probability that a given input wave function will result 

in a given output wave function, or in the time independent case the S-matrix value 

squared represents the fractional contribution that a given outgoing wave function 

basis function contributes to the total outgoing wave function. 

For a particular basis set 
i , the outgoing asymptotic wave function can be 

determined using the S operator 

out iS   

The amplitude to observe a given outgoing basis state 
j , is got by 

j out j i j iS S       

The probability of a given transition between two of the basis set states in a 

collision is  

2 2

j i j iP S S   
 

Relation to the S Matrix：
 

If the reduced masses and momenta of the colliding system are mi, ip


 and mf, 

fp


 before and after the collision respectively, the differential cross section is given 

by 

2
4(2 )

f

i f f i

i

pd
m m T

d p





 

Where the on-shell T matrix is defined by 
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2 ( ) ( )fi fi f i i f fiS i E E p p T      
 

 

In terms of the S matrix, the δ function is the distribution called the Dirac delta 

function. The computation of the S-matrix is the main aim of the scattering theory. 
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CHAPTER 5 

 

ABC PROGRAM 

ABC program is a general purpose atom-diatom time-independent reactive 

scattering program that can be used to compute state-to-state scattering matrix values, 

including both reactive and non-reactive channels. A lot of the previous work only 

considers the reactive part of the calculation, without handling the symmetry 

correctly.   

The program uses a coupled-channel hyperspherical coordinate method to solve 

the Schrödinger equation for the motion of the three nuclei (A, B and C) on a single 

Born-Oppenheimer potential energy surface. The coupled-channel method used 

involves a simultaneous expansion of the wave function in the Delves hyperspherical 

coordinates of the three chemical arrangements (A+BC, B+CA,C+AB). The quantum 

reactive scattering boundary conditions are applied exactly, without the use of an 

imaginary absorbing potential, and the coupling between orbital and rotational 

angular momentum is also implemented correctly for each value of the total angular 

momentum quantum number. 

In each separate run of the ABC program, the reactive scattering Schrödinger 

equation is solved for specified values of the total angular momentum quantum 

number J and the triatomic parity eigenvalue P, and also in the case of A+B2 reactions 

for a specified value of the diatomic parity eigenvalue p(where p=+1 for even and -1 

for odd rotational states of the B2 molecule). Each (J,P,p) tiple therefore requires a 
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different calculation, as indicated for some example reactions in Table 1. 

 

Table 1 Required Values of J, P And p For Various Reactions 

reaction J P p 

A+B2(j=0) 0, 1, 2, ... (-1)
J
 +1 

A+B2(j>0) 0 +1 (-1)
J
 

 1, 2, 3, ...  1 (-1)
J
 

A+BC(j=0) 0, 1, 2, ... (-1)
J
 n/a 

A+BC(j>0) 0 +1 n/a 

 1, 2, 3, ...  1 n/a 

 

The resulting output files contain parity-adapted scattering matrix elements of the 

form 
,

' ' ' ', ( )J P

v j k vjkS E  , where  and ' are arrangement labels, v and v’ are diatomic 

vibrational quantum numbers, j and j’ are diatomic rotational quantum numbers, k and 

k’ are helicity (intermolecular axis angular momentum projection) quantum numbers. 

The primed quantities refer to the products of the reaction and unprimed quantities to 

the reactants, with 1  for the A+BC, ' 2   for the B+CA and ' 3   for the 

C+AB. The argument E of the scattering matrix is the total (collision plus internal) 

energy measured from the bottom of the asymtotic reactant valley. 

Once these scattering matrix elements have been calculated for sufficiently many 

values of J and for energies, they can be used to compute any observable property of 

the reaction. The first stage in this process is to convert the parity-adapted S-matrix 

elements 
,

' ', ( )J P

n k nkS E into standard helicity-representation S-matrix elements 

' ', ( )J

n k nkS E   using the formulas: 

'0 0 , 1 , 1

' ', ' ', ' ', ' ',

(1 )(1 )
( ) [ ]

2

k kJ J J J

n k nk n k n k n k nk n k nkS S E S S
 

 

 

 
  

       (1) 
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And 

'0 0 , 1 , 1

' ', ' ', ' ', ' ',

(1 )(1 )
( ) ( 1) [ ]

2

k kJ J J J J

n k nk n k n k n k nk n k nkS S E S S
 

 

 

 
   

 (2) 

Where n and n’ are composite indices for vj and ' ' 'v j  and the quantum 

numbers k and k’ are restricted such that 0 min( , )k J j  and 

0 ' min( , )k J j  .(the quantum numbers k=0 and k’=0 only occur in the parity block 

with ( 1)JP   , but equation (1) and (2) have been written with this in mind: simply 

set 
,

' ', 0J P

n k nkS   whenever 
1( 1)JP    and k and/or ' 0k  .) 

The observables that can be calculated from the resulting helicity-representation 

S-matrix elements ' ', ( )J

n k nkS E  range from fully state-resolved differential: 

2

' '
' ' ',

1
( , ) (2 1) ( ) ( )

2

J Jn k nk
k k n k nk

Jn

d
E J d S E

d ik


   


  

And integral: 

2

' ' ' ',2
( , ) (2 1) ( )J

n k nk n k nk

Jn

E J S E
k


     

In which, 

 2

2 kin
n

uE
k 

  
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CHAPTER 6 

 

SUMMARY AND CONCLUSION 

The convergence test was checked in Archer’s work and the same parameters were 

used for this calculation as Archer used (Archer 2006). A program written in Java was 

used to calculate the final cross section (Gobeli 2012 private communication). 

Since there is few experiment data to compare, we mainly compare our results 

with the previous work. Because the ABC code and Mielke’s potential are the best 

choice to deal with this problem (the author of BKMP also recommend Mielke’s 

potential), our result can be thought as the most accurate data now. This can be seen 

from the comparison with previous work. 

From the data we calculate, we make the graphs below. In figure 3, at the low 

kinetic energy, the curve grows rapidly (for v, j (0,0)→(0,2), there is some fluctuation); 

at around 0.5 ev, the curve turn into flat. That means when it is at the low temperature, 

the change of temperature affects the cross section a lot. A small change of 

temperature can result in big fluctuation of cross section. Once the temperature is high 

enough (still in a certain range), the cross section reaches its top, and is not that 

sensitive to the temperature any more, almost becoming stable. This is related with 

the certain transitions energies between different energy levels. Also the lowest kinetic 

energy to arouse the transition varies with different transitions.  
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Figure 3   Cross Section vs Kinetic Energy For v,j: (0,0)→(0,2), (0,1)→(0,3), by 

ABC Using Mielke’s Potential 
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Figure 4   Cross Section vs Kinetic Energy, For v,j: (0,0)→(0,1), (0,1)→(0,2), 

(0,0)→(0,3) by ABC Using Mielke’s Potential 

 

Here, in the figure 4, we have the cross sections for the transitions for v, j: 

(0,0)→(0,1), (0,1)→(0,2), (0,0)→(0,3). For these three transitions, the curves are 

similar. We also notice that the difference between different transitions is related with 

j is even or odd. There is almost one magnitude between each. I make a figure 5 about 

how |S|^2 value changes with J value, when J’s value follows different curves when it 

is even or odd. 
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Figure 5   |S|^2 Value vs Total Angular Momentum Quantum Number J, At Total 

Energy E=1.29965 ev 

 

 

Figure 6   Cross Section Vs Kinetic Energy, Comparison Of DMBE, BKMP2, 

Mielke Using  ABC Code 
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In the figure 6, we compare our results with DMBE and BKMP2 potentials, all 

calculated by ABC code. Because there is no data of the work done by Archer, this 

graph is produced by combining two graphs in the same scale. In high kinetic energy 

(higher than 0.5 ev), three different potential’s curves are consistent with each other. 

Significant differences exist at the low kinetic energies, both on the quantity level and 

curve’s shape. The cross sections from Mielke are closer to BKMP2 (which is thought 

more accurate than potentials before it) than DMBE, but still lower than BKMP2 in 

some area obviously. While at the high energy, the curves agree better. How to 

describe the potential is critical to study the collision of atoms at low temperature.  

We also make a compare with another calculation result using Mielke’s potential by 

MOLCOL code
23

. See figure 7, black solid lines, it calculated the cross section for J= 

2→0 transition, which is related with J=0→2 done in our calculation. At the low 

temperature, for some part of the line, the value drops and then returns to rise, having 

a similar shape with ours. 

We compare with the work done in Archer. The dark line is our data in this paper. 

The agreement is good both at low energy and high energy. Again our data seem to 

agree with BKMP2 better than DMBE. Both of BKMP2 and Mielke treat H3 system 

as three indistinguishable particles, and properly antisymmetrize the results. It is 

reasonable for these two potentials fit with each more than others. 
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Figure 7   Cross Section vs Kinetic Energy, Comparison of DMBE, BKMP2, Mielke 

Using ABC Code 

 

For future’s work, we will calculate additional energies and states at high 

temperature to get a full view of cross section curve. For higher energies, the time to 

calculate them will much longer. According to the previous work, the curve will start 

to fall after reach the peak. At the low energies, more points should be calculated to 

help to study the quantum behaviors there. Because of the small magnitude of cross 

sections at low energies, improving the ABC program to a more accurate level will 
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help to get better data. So we can build a large database for H3 case. We can try to 

calculate the rate coefficient for the cooling process. Maybe we will also extend to 

calculate a cooling curve from these cross sections.  
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