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ABSTRACT

Parallel machines scheduling with applications to Internet 

ad-slot placement.

by
Shaista Lubna

Dr. Wolfgang Bein, Examination Committee Chair
Professor, Department of Computer Science

University of Nevada, Las Vegas

We consider a class of  problems of scheduling independent jobs on 

identical, uniform and unrelated parallel machines with an objective of 

achieving  an  optimal  schedule.  The  primary  focus  is  on  the 

minimization of the maximum completion time of the jobs, commonly 

referred to as Makespan (Cmax ). We survey and present examples of 

uniform machines and its applications to the single slot and multiple 

slots  based on bids and budgets.

The  Internet  is  an  important  advertising  medium  attracting  large 

number of advertisers and users. When a user searches for a query, a 

search engine returns a set of results with the advertisements either 

on top of the page or on the right hand side. The assignment of these 

ads  to  positions  is  determined  by  an  auction  using  the  ad-slot 

placement. The algorithmic approach using the level algorithm (which 

constructs  optimal  preemptive  schedules  on  uniform  parallel 

machines)   is  taken into consideration for  assigning  bidders to the 

slots on the Internet.  
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CHAPTER 1

INTRODUCTION

In most manufacturing systems, a decision-making process that plays 

a crucial role consists in allocating the time at which a particular task is 

to  be  processed  by  a  given  resource  in  order  to  optimize  the 

requirements  set  by  the  customer.  This  function  is  referred  to  as 

scheduling.  Indeed,  the  current  economic  and  commercial  market 

pressures (the growing consumer demand for variety, reduced product 

life  cycle,  changing  markets  with  global  competition,  rapid 

development of new processes and technologies, etc...) emphasize the 

need  for  a  system  which  requires  only  small  inventory  levels, 

minimizes  waste  production  but  is  able  to  maintain  customer 

satisfaction by delivering the required goods at the specified time. This 

requires  efficient,  effective  and  accurate  scheduling,  which  is  a 

complex  operation  in  almost  all  production  environments.  The 

importance of scheduling is exemplified by an investigation carried out 

in the United States mechanical industrial sector which shows that the 

machines spend about 80% of their total processing time in waiting for 

the tasks. 

Scheduling theory is generally concerned with the optimal allocation of 

scarce  resources  to  activities  over  time.  More  formally,  scheduling 

problems involve jobs that must be scheduled on machines subject to 
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certain constraints to optimize some objective function. A schedule is 

for each job an allocation of one or more time intervals to one or more 

machines [2].  Schedules may be represented by  Gantt charts  as 

shown in Figure 1. 

A Gantt chart is a type of bar chart that illustrates a project schedule 

and may be machine oriented or job oriented [2].  (a) and (b) denote 

the Machine and job oriented Gantt charts respectively.

Graham et al.  (1979) introduced the standard  α |  β |  γ  notation for 

representing scheduling problems. This notation embodies the three 

main  elements  which  define  the  scheduling  problem:  the  machine 

environment, the job characteristics, and the optimization criterion. In 
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the  sequel,  we  briefly  detail  these  three  fields.   In  the  considered 

scheduling models, the number of machines and the number of jobs 

are assumed to be finite and fixed. 

There are several machine environments (represented by the field α) 

which are summarized in the following: 

• Single machine ( α = 1): The process of assigning various jobs to one 

machine.

•  Parallel  machines  (α  = P  or  Q  or  R):  Each  job  requires  a  single 

operation to be performed on one out of a set of available machines.

• Flow shop (α = F ): There are several machines in series. Each job 

has to be processed on each one of the machines. All jobs have the 

same routing.

• Job shop (α = J): This model is similar to the flow shop, with the only 

difference that each job has its own route to follow.

•  Open  shop  (α  =  O):  Likewise  the  job  shop,  each  job  has  to  be 

processed  on  each  one  of  the  machines.  However,  there  is  no 

restriction  on  the  routing  of  each  job.  The  scheduler  is  allowed  to 

determine the route of any job [1].

Several possible job characteristics (represented by the field β) may 

modify the scheduling environment. Some of these characteristics are: 
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•  Preemption  (pmtn):  The  processing  of  any  operation  may  be 

interrupted and resumed at a later time.

• Precedence constraints (prec): A precedence relation between jobs 

requires that one or more jobs have to be completed before another 

job is allowed to start its processing.

• Release dates or heads (rj ): No job can start its processing before its 

release date.

• Delivery times or tails (qj ): After finishing its processing, each job has 

to spend an amount of time before exiting the system [1].

The goal of a scheduling algorithm is to produce a ”good” schedule, 

but  the definition  of  ”good” will  vary depending on the application. 

Therefore, an optimization criterion (represented by the field γ) has to 

be  specified.  The  most  commonly  chosen  criteria  involve  the 

minimization of: 

• Makespan (Cmax ): The completion time of the last job to leave the 

system.

• Maximum lateness (Lmax ): The worst violation of the due dates. The 

job  lateness  is  non-negative  if  it  is  completed  late  and  negative 

otherwise.
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• Maximum tardiness  (Tmax ):  The difference between tardiness  and 

lateness is that tardiness equals zero if the job is completed early (i.e. 

Tmax = max(0, Lmax )).

• Maximum flow time (Fmax ): The flow time of a job denotes the time 

elapsed between its entry to its exit from the system.

• Total (weighted) completion time ( C j  or w j C j ):The sum of the 

(weighted)  completion  times.  It  indicates  the  total  holding  (or 

inventory) costs incurred by the schedule. This criterion is equivalent 

to the total (weighted) flow time criterion.

• Total (weighted) tardiness ( T j  or w j T j ): It is a more general 

cost function than the total (weighted) completion time .

•  (Weighted)  Number  of  tardy  jobs  ( U j or  w j U j  ):  A  job  is 

considered as tardy if it is completed after its due date [1].

 Thesis  Overview:   In  chapter  2  we  survey  the  types  of  Parallel 

machines and approximation algorithms. The applications of the level 

algorithm  is  presented  in  detail  in  Chapter  3,  with  suggestive 

examples. Ad-slot mechanism is reviewed in Chapter 4 with single slot 

and  multiple  slots  and  its  illustration.  We  finish  with  concluding 

remarks in Chapter 5.
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CHAPTER 2

 PARALLEL MACHINES

Given a set of   n jobs  J ii=1, .. . , n  to be processed on  m parallel 

machines M j j=1, . . . , m . Each job J i  has a processing requirement 

P ii=1, .. . , n and every machine has a speed S j j=1, . . . ,m . Each job 

requires a single operation  to be performed on one out  of  a set of 

available  machines.  The  goal  is  to  attain  an  optimal  schedule  that 

specifies when and on which machine each job is to be executed.

The following examples illustrate the role of parallel machines in two 

different real-life situations.

Example 2.1: Consider the central processing unit of a computer that 

must process a sequence of programs (jobs) that arrive over time. In 

what ordering should the programs be processed in order to minimize 

the average completion time?

Example 2.2: Consider a factory that produces paper bags for cement, 

charcoal,  dog food,  and so on.  The basic  raw material  for  such an 

operation is rolls of papers. The production process consists of three 

stages: printing the logo, gluing the side of the bag, and sewing up one 

end  or  both  ends.  The  different  bags  require  different  amounts  of 

processing  times  on  different  machines.  The  factory  has  orders  for 

batches of bags; each order has a date by which it must be completed. 
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In what ordering should the machines work on different bags in order 

to ensure that the factory completes as many orders as possible on 

time?

Parallel Machines can be divided into three classes:

•Identical parallel machines (α = P): All the available machines have 

the same speed.

•Uniform  parallel  machines  (α  =  Q):  The  machines  have  different 

speeds, but these speeds are independent of the jobs.

•Unrelated parallel machines (α = R): The machines have different

speeds, but these speeds are dependent of the jobs [1].

2.1 Identical Parallel Machines :

We consider the problem of scheduling independent jobs on identical 

parallel  machines.  Formally  there  are  n jobs  J ii=1,.. . , n  with 

processing times p ii=1,. .. , n  to be processed on m identical parallel 

machines M 1 , . . . , M m [2].

Figure 2 : Optimal schedule for an instance of P | pmtn | Cmax .
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Mc Naughtons wrap around rule : Compute  D=max {max pi ,1/m p i } . 

Assign the jobs in any order from time 0 until time D on machine. If a 

jobs processing extends  beyond time D, preempt the job at time D, 

and  continue  its  processing  on  next  machine,  starting  at  time  0. 

Repeat this process until all jobs are assigned [7][18].

2.1.1  P | pmtn | Cmax

Theorem  1:  Mc  Naughtons  wrap  around  rule  is  optimal  for 

P | pmtn | Cmax [7].

Proof:  It  is  clear  that  D  is  a  lower  bound  for  the  optimal  schedule 

length. If we can show that wrap around rule can always generate a 

feasible schedule in the time interval [0,D],then the schedule must be 

optimal.

i)  D≥max {Pi }  no jobs  can overlap i.e.;  simultaneously  execute on 

more than one machine.

ii) mD≥{P j } as there is enough capacity in the time interval [0,D] to

schedule all jobs.

Thus a wrap around rule can always generate a feasible schedule can 

be constructed in O(n) time.
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2.1.2 P | pmtn; ri | Lmax 

Each job J i has a release time r i  and a due date d i  with r i≤d i . 

To find a preemptive schedule on m identical machines such that the 

maximum lateness Li is defined as max i=1
n

{C i−d i }  is minimized. 

Taking in to account the decision version of the problem: Given some 

threshold value L  there exist a schedule such that

max i=1
n Li=maxi=1

n {C i−d i}L (1) 

The above relation holds if and only if 

C id i
L :=Ld i for all i=1,. .. , n.

All jobs i must finish before the modified due dates  d i
L  and cannot 

start  before  the  release  times r i ,   i.e.  each  job J i  must  be 

processed in an interval [ri , d i
L ]  associated with Ji . These intervals 

are called  time windows  [2].  We approach the general problem of 

finding a preemptive schedule for  jobs  J ii=1,... , n  on m identical 

machines such that all jobs J i  are processed within their interval or 

time windows  [r i , d i ]  by reducing  to a maximum flow problem in a 

network constructed as follows.

Let

 t 1t 2...t r

be the ordered sequence of all different  r i  values and  d i  values. 

Consider the intervals 
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I K :=[ tK , tK1]of lengthT K=t K1−t K for K=1,... , r−1.

We associate a job vertex with each job J i and an interval vertex with 

each interval.  In addition to the existing nodes we add two dummy 

vertices source node 's' and target node 't'. Between these vertices, 

arcs and capacities for these arcs are defined as follows. From s we 

have an arc to each job vertex J i  with capacity p i  and from each 

interval vertex I K  we have an arc to t with capacity mT K . 

There exists an arc from J i  to I K  if job J i  can be processed in 

IK , i.e. iff ritK  and tK1d i . The capacity of this arc is TK . It is 

not difficult to prove that there exists a schedule respecting all time 

windows if and only if the maximum flow in N has the value   i=1
n p i . 

If this is the case, the flow x i  on the arc  J i , I K   corresponds with 

the time period in which job J i  is processed in the time interval I K  

and we have

 K=1
r−1 x iK

=p i for i=1,. .. , n. (2)

 i=1
n xi K

≤mT K for K=1,... , r−1. (3)  
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Therefore each job is completely processed and the total amount of 

processing time in I K  is at the most mT K  , which is the capacity of 

m machines. 

Furthermore, x iK≤T K  for all ( J i , I K ) ∈ A. (4) 

Then there exists a maximal flow satisfying, a feasible solution for the 

scheduling problem with time windows is constructed by scheduling 

partial jobs  J iK  with processing times  x iK0  in the intervals  I K  

on m identical machines. 

For each K, this is essentially a P | pmtn | Cmax problem, which has a 

solution with Cmax≤T K  because of (3) and (4). 

Because network N has at the most O(n) vertices, the maximum flow 

problem  can  be  solved  in  O(n3)  time.  Furthermore,  the  schedule 
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respecting the windows can be constructed in O(n2)  time. Thus, the 

window problem can be solved in O(n3) steps [2]. 

Example: Consider the problem P | ri | Lmax on three machines. Given 

are processing times p1 = 2, p2 = 2, p3 = 3, p4 = 2. r1 = 0, r2 = 1, r3 =4, 

r4 = 1. d1 = 5, d2 = 8, d3 = 6, d4 = 8. and let the threshold value L be 3. 

Use the network flow method with time windows to see if there exists a 

feasible schedule for the problem L=3. If yes, Draw the schedule. 

Solution: 

(i) Modify the due dates by dL = L + di . We have 

d1 = 5 + 3 = 8. 

d2 = 8 + 3 = 11. 

d3 = 6 + 3 = 9. 

d4 = 8 + 3 = 11. 

(ii) Unions of Release times and due dates are 0, 1, 4, 8, 9, 11. 

The time windows derived are [0,1] [1,4] [4,8] [8,9] [9,11]. 

IK := [tK , tK+1 ] of length TK = tK+1 − tK for K = 1, . . . r. There exists an 

arc between Ji and Ik iff job Ji can be processed in Ik i.e; iff ri ≤ Tk and 

Tk+1 ≤ di. The capacity is Tk. 
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flow [J1 , I1 ] = 1 

flow [J1 , I2 ] = 1 

flow [J2 , I2 ] = 2 

flow [J3 , I3 ] = 3 

flow [J4 , I3 ] = 2 

 P i  = 2 + 2 + 3 + 2 = 9 

The Optimal Schedule is 
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2.2 Unrelated Parallel Machines 

We have n independent jobs  i  = 1,  .  .  .  ,  n to be processed on m 

machines. The processing time of job i on machine M j is pij (i = 1, . . . , 

n; j = 1, . . . , m). This model is a generalization of the uniform machine 

model  we get  by  setting pij =  pi /sj which  is  explained in  the next 

section.

2.2.1  R || C i

 R || C i is reduced to an assignment problem[2]. If i1 , i2 , . . . , ir is 

the sequence of jobs processed at machine Mj, then the contribution of 

these jobs in the objective function is 

r pi1 jr−1 p i2 j...1 pi r j

We define a position  of  a job on a machine by considering the job 

processed last on the first position, the job processed second from last 

on the second position,  etc.  To solve problem R || C i we have to 

assign the jobs i to positions k on machines j. The cost of assigning job 

i  to (k, j)  is  kpij .  Note that an optimal solution of this assignment 

problem has the following property: if some job i is assigned to position 

k > 1 on machine j, then there is also a job assigned to position k − 1 

on  machine  j.  Otherwise,  scheduling  job  i  in  position  k  −  1  would 

improve  the  total  assignment  cost  (provided  that  p ij >  0).  Thus, 
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solution of the assignment problem always yields an optimal solution 

of our scheduling problem. 

2.2.2 R | pmtn | Cmax , R | pmtn | Lmax and R | pmtn; ri | Lmax 

We solve problem R | pmtn | Cmax in two steps. In the first step we 

formulate  a  linear  program  to  calculate  for  each  job  i  and  each 

machine j the amount of time tij machine j works on job i in an optimal 

schedule. In a second step, a corresponding schedule is constructed. 

First we give the linear programming formulation. Problem R | pmtn | 

Cmax is given by nm positive integers pij ,  which represents the total 

processing time of job i on machine Mj. Let tij be the processing time of 

that part of job i which is processed on M j. Then tij /pij is the fraction of 

time that job i spends on machine j, and the equation 

 j=1
m t ij

p ij

= 1

must hold in order for job i to be completed (i = 1, . . . , n). 

This leads to the following formulation of the problem: 

minimize Cmax 

subject to 

 j=1
m t ij

p ij

= 1, i = 1...n. (a)

 j=1
m t ij≤Cmax i = 1. ..n. (b)

i=1
n t ij≤Cmax j = 1...m. (c)
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t ij ≥ 0 i = 1. ..n ; j = 1. ..m.

The left-hand side of (b) represents the time job i (i = 1, . . . , n) spends 

on all  machines.  The left-hand side of  (c)  represents the total  time 

machine Mj (j = 1, . . . , m) spends processing jobs. Note that for an 

optimal solution of this linear program we have 

Cmax = max {maxi=1
n  j=1

m t ij ,max j=1
m  i=1

n t ij

The problem of finding a corresponding schedule is equivalent to the 

problem of finding a solution to the preemptive open shop problem 

with processing times tij (i = 1, . . . , n; j = 1, . . . , m) which has a Cmax 

value  given  by  (4).  We  conclude  that  problem  R  |  pmtn  |  Cmax is 

polynomially solvable. 

A similar approach may be used to solve R | pmtn | Lmax. We formulate 

a linear programming problem to minimize Lmax. 

Assume that the jobs are numbered in nondecreasing due date order, 

i.e. d1 ≤ d2 ≤ . . . ≤ dn. 

Let t ij
1  be the total amount of time that machine Mj spends on job i 

in time period I1 = [0, d1 + Lmax ]. Furthermore, for k = 2, . . . , n let 

t ij
k   be the total  amount of  time that machine M j spends on job i 

within the time period Ik = [dk−1 + Lmax , dk + Lmax ]. Then we have to 

solve minimize Lmax subject to

 j=1
m

k=1
i t i j

k 

p ij

= 1, i=1,...n
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 j=1
m t ij

1 ≤ d1  Lmax , i=1,...n

 j=1
m t ij

k 
≤ d k − dk−1 , i=1,. ..n; k=2,. ..n

i=1
n t ij

1
≤ d1  Lmax , j=1,. ..m

i=k
n tij

k ≤ d k − dk−1 , j=1,. ..m; k=2,. ..n

t ij
k ≥ 0, j = 1,. .. ,m ; i , k = 1,. ..n.

Given an optimal solution of this linear programming problem, an Lmax 

optimal schedule can be obtained by constructing for each of the time 

periods Ik (k = 1, . .  .  ,  n) a corresponding schedule using the data 

given by the matrix T k =  tij
k . We again conclude that problem 

R|pmtn | Lmax is polynomially solvable. In a similar way, we may solve 

problem R | pmtn; ri | Lmax by considering intervals [tk , tk+1 ], k = 1, . . . , 

r − 1, where 

t1 < t2 < . . . < tr 

is the ordered sequence of all ri values and di + Lmax values. In this 

case,  we  have  the  variables  t ij
k   and  Lmax where  t ij

k   is  the 

processing time of job i on Mj within the interval [tk , tk+1 ] [2]. 
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2.3Uniform Parallel Machines

We now consider n jobs Ji (i = 1, . . . , n) to be processed on m parallel 

uniform machines Mj (j  = 1, . .  .  ,  m). The machines have different 

speeds sj (j = 1, . . . , m) but the speed of each machine is constant 

and  does  not  depend  on  the  job.  Every  job  Ji has  a  processing 

requirement pi (i = 1, . . . , n). Execution of job Ji on machine Mj requires 

pi / sj time units. If we set sj = 1 for j = 1, . . . , m. we have m parallel 

identical machines. All problems with parallel identical machines which 

are NP-hard are also NP-hard if we replace the machines by uniform 

machines. Therefore, we consider problems with preemptions. We also 

assume that 1 = s1 ≥ s2 ≥ ... ≥ sm and p1 ≥ p2 ≥ . . . ≥ pn  [2]. 

2.3.1  Q | pmtn | Cmax 

Initially  we will  present  a lower  bound ω for  the objective  value of 

problem Q | pmtn |Cmax. In the latter step, we will  give an algorithm 

which constructs a schedule of length ω (i.e. an optimal schedule). Let 

Pi = p1 + . . . + pi and Sj = s1 + . . . + sj for i = 1, . . . , n and j = 1, . . . , 

m. Furthermore, we assume that n ≥ m. If n < m, we only have to 

consider the n fastest machines. A necessary condition for processing 

all jobs in the interval [0, T ] is 

Pn = p1 + . . . + pn ≤ s1 T + . . . + sm T = Sm T 

or 

Pn /Sm ≤ T  
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Similarly,the condition Pj /Sj ≤ T should also be for j = 1, . . . , m−1 

because Pj /Sj is a lower bound on the length of a schedule for the jobs 

J1 , . . . , Jj. 

Thus,

:=max{max j=1
m−1 P j/S j , Pn/Sm }

is a lower bound for the Cmax − values. 

Now  we  will  construct  a  schedule  which  achieves  this  bound.  The 

corresponding algorithm is called the level algorithm. Given a partial 

schedule up to time t, the level pi (t) of job i at time t is the portion of pi 

not processed before t. At time t, the level algorithm calls a procedure 

assign (t) which assigns jobs to machines. The machines run with this 

assignment until some time s > t. A new assignment is done at time s, 

and the process is repeated [2]. 

Algorithm level 

1: t := 0; 

2: WHILE there exist jobs with positive level DO 

BEGIN 

3:  Assign(t); 

4: t1 := min{s > t | a job completes at time s }; 

5: t2 := min{s > t | there are jobs i, j with pi (t) > pj (t) and 

pi (s) = pj (s) }; 

6: t:=min{t1 , t2 } 
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END 

7: Construct the schedule. 

The procedure assign(t) is given by 

Assign (t) 

1. J := { i | pi (t) > 0 }; 

2. M := { M1 , . . . , Mm }; 

3. WHILE J≠  and M≠  DO 

BEGIN 

4. Find the set I ⊆ J of jobs with highest level; 

5. r := min {| M |, | I |}; 

6. Assign jobs in I to be processed jointly on the r fastest 

machines in M; 

7. J :=J ∖ I

8. Eliminate the r fastest machines in M from M 

END 

The example with 5 jobs to be processed on 4 machines presented 

below in the figure shows how the algorithm works.
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Initially,  the four  jobs  1,2,3,4  with  the  largest  processing times are 

processed on machines M1 , M2 , M3 , M4 , respectively. At time t1 job 4 

has a level which is equal to the processing time of job 5. Thus, from 

time t1 jobs 4 and 5 are processed jointly on machine M4. Due to the 

fact that job 1 is processed on a faster machine than job 2 at time t2 , 

we reach the situation that p1 (t2 ) = p2 (t2 ). Therefore, jobs 1 and 2 are 

processed jointly on both M1 and M2 . 
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To process r jobs 1, . . . , r jointly on l machines M1 , . . . , Ml (r ≥ l) 

during some time period T, we process each job during a period of T /r 

time units on each of the machines. A corresponding schedule is shown 

in the above figure ( 6 jobs 3 machines) for the case r = 6 and l = 3 

[2]. 
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CHAPTER 3

Application of the Level Algorithm

EXAMPLE 1: Consider the problem  Q | pmtn |Cmax with 5 jobs and 4 

machines. Given are the processing times and speeds 

P1=5   ; P2=4  ; P3=3  ; P4=2  ; P5=1  .

Harmonic  progression  is  a  progression  formed  by  taking  the 

reciprocals  of  an  arithmetic  progression.  In  other  words,  it  is  a 

sequence of the form

a , 
a

1d
, 

a
12d

,
a

13d
 where -1/d is not a natural number.

 (Note: Speeds are in a harmonic progression a=1 and d=1) . 

S1=1  ; S2=
1
2

 ; S3=
1
3

 ; S4=
1
4

.

Construct  the  optimal  schedule  using  level  algorithm  and find  the 

value of Cmax ?

Solution: Initially we will present a lower bound   for the objective 

value of problem  Q | pmtn |Cmax.

Let ' n '  be the number of jobs and ' m'  be the number of machines. If  

n < m, we only have to consider the n fastest machines.

A necessary condition for processing all jobs in the interval [0,T] is 

 

Pn /SmT .
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Similarly we must have P j/ S jT  for j=1,...,m-1  because P j / S j  is a 

lower bound on  the length of a schedule for the jobs . Thus J1, . . . , Jj. 

 :=max {max j=1
m−1 P j /S j , Pn/Sm }  

is a lower bound for the Cmax  values. 

Pn/Sm=54321/10.500.330.25⇒15 /2.08⇒7.2115

Similarly for P j / S j  for j=1,...,m-1.  Here m=4 so j = 1, 2, 3

=max {max {5/1 ,[54/10.5] ,[543/ 10.500.33]},7.2115 };

=max {max {5, 6,6.55} ,7.2115 }

=7.2115

We now plot the graph considering the jobs and speeds on Y- axis and 

X- axis respectively which results in the t values.

The slope of a line for a job i is considered to be the speed S i .

The straight line equation for slope intercept form:

y=mxb
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b is the y-intercept and m is the slope.

To find the equation of line that passes through the point (5,0) with a 

slope of 1 for job J 1  is y=−x5

Similarly we calculate the equation of line for jobs 2, 3 ,4 and 5 

respectively.

y=−1 /2x4 ;

y=−1 /3 x3 ;

y=−1 /4x2 ;

y=1 ;

Figure 8 : Plotting the graph with processing times and speeds.

The first point of intersection is between job 1 and job 2 at (2 , 3) we 

get  t 1=2.0 . At  this  point  of  time job 1  and 2 are done jointly  on 

machine 1and machine 2.

Re-plotting the graph with the new  equations. 
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Figure 9 : Intersection of job 4 and job 5.

Similarly at  t 2  job1, job 2 and job 3 intersect at (3.571, 1.821) the 

value of t 2=3.571  

At t 2  job 1 , job 2 and job 3 are done jointly on machine 1 ,2 and 3.

We now re-plot the graph with the jointly performed jobs J 1 , J 2 , J 3 .

Figure 10: Intersection of job 3, job 4 and job 5.
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t 3  is the point of time where job 4 and job 5 are done jointly on 

machine 4 the point of intersection of job 4 and job 5 is (4.0 ,1.0). The 

value of t 3=4.0 .

Figure 11: Intersection of job 1 and job 2.

t 4  is the point of intersections of job 1 , job 2 and job 3 with job 4

and job 5  i,e ( 5.422, 0.822). Hence the value of t 4=5.422

Figure 12 : Intersection of all jobs.
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To calculate  t 5  we re-plot the graph with the  t 4  as the point of 

intersection of (1,2,3,4,5) and slope is considered to be the average of 

speeds of machines 1,2,3 and 4.

The value of t 5=7.9

Final Graph is plotted with t 1 , t 2 , t3 , t4 and t 5 .

Figure 13 : Completion time of all jobs.

We now draw the optimal schedule for these jobs.

Figure 14: Optimal schedule for 5 jobs.
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Example with same processing times but with different speeds.
Consider the problem Q | pmtn |Cmax with 5 jobs on 4 machines.  
Given are the processing times and speeds

P1=5   ; P2=4  ; P3=3  ; P4=2  ; P5=1  .

Harmonic  progression  is  a  progression  formed  by  taking  the 

reciprocals  of  an  arithmetic  progression.  In  other  words,  it  is  a 

sequence of the form

a , 
a

1d
, 

a
12d

,
a

13d
 where -1/d is not a natural number.

Note: Speeds are in a harmonic progression with a=1 and d=0.5 

S1=1 ; S2=
1

10.5
⇒0.666 ; S3=

1
11

⇒0.5  ; S4=
1

11.5
⇒0.4 . 

Construct the optimal schedule using level algorithm and find the value 

of  Cmax .

Solution: Initially we will present a lower bound   for the objective 

value of problem Q | pmtn | Cmax.

Let ' n ' be the number of jobs and ' m ' be the number of machines. If 

nm , we only have to consider the n fastest machines. 

Pn/SmT

Similarly we must have P j/ S jT  for j=1,. .. ,m−1  because P j / S j  is 

a lower bound on the length of a schedule for the jobs J1 , ... , J j .

 Thus

 :=max {max j=1
m−1 P j /S j , Pn/ Sm}

is a lower bound for the Cmax  values. 
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Pn/ Sm=54321/10.660.50.4⇒15/2.56⇒5.859375

Similarly for P j / S j  for  j=1,. ..m−1

Here m=4 so j = 1, 2, 3

=max {max 5/1 , [54/10.66] ,[543/ 10.660.50] ,5.859375¿ ;

=max {max {5, 5.4216,5.555 },5.8593}

=5.8593

We now plot the graph considering the jobs and speeds on Y- axis and 

X- axis respectively which results in the t values.

The slope of a line for a job i is considered to be the speed S i .

The straight line equation for slope intercept form:

y=mxb  where b is the y-intercept and m is the slope.

To find the equation of line that passes through the point (5,0) with a 

slope of 1 for job J 1  is 

y=−x5

Similarly  we  calculate  the  equation  of  line  for  jobs  2,  3  ,4  and  5 

respectively.

y=−0.666 x4 ;

y=−0.5 x3 ;

y=−0.4 x2 ;

y=1 ;

The resulting graph for the above plotted lines 
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Figure 15: Plotting the graph with processing times and speeds.

The first point of intersection is between job 4 and job 5 at (2.5 , 1) we 

get t 1=2.5 . After time t1 job 4 and 5 merge and are processed jointly.

Figure 16:  Intersection of job 4 and job 5.
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Similarly  at  t 2  job1,  job  2  intersect  at  (2.94,  2.05)  the  value  of 

t 2=2.94 .

At t 2  job 1 and job 2 are done jointly on machine 1 and 2.

We now re-plot the graph with the jointly performed jobs J 1  and J2

Figure 17 : Intersection of job 1 and job 2.

t 3  is the point of time where job 1,2 and job 3 are done jointly on 

machine 1, 2 and 3 the time (point)of intersection of all these jobs is 

(4.5454, 0.7272).The value of t 3=4.5454 .
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Figure 18 : Intersection of job 1 , job 2 and job 3.

At time t 4  job 1,2,3 and 4,5 intersect (4.761 , 0.547) and the value of 

t 4=4.761

Figure 19 : Intersection of all jobs.
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Job 1, 2 and Job 3 are combined with job 4 and 5 and are performed on 

Machines 1, 2, 3 and 4 and completed at 5.8

Hence the value of t 5=5.8 .

Final Graph is plotted with t 1 , t 2 , t3 , t4 and t 5 .

Figure  20 : Completion time of all jobs.

We now draw the optimal schedule for these jobs.

Figure 21 : Optimal schedule of 5 jobs.

The Cmax  value is max { 2.5, 2.94, 4.54, 4.76, 5.8} = 5.8
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Theorem 2: Algorithm level constructs an optimal schedule for problem 
Q∣pmtn∣Cmax [2].

Proof :Because 

 :=max {max j=1
m−1 P j /S j , Pn/Sm }

is a lower bound for the schedule length, it is sufficient to show that 

the schedule constructed achieves this bound.

Assume  that  at  the  beginning  of  the  level  algorithm  we  have 

p10≥ p20≥...≥ pn0 .  This  order  does  not  change  during  the 

algorithm, i.e. we have

p10≥ p20≥. . .≥ pn0  for all t.

We assume that the algorithm always assigns jobs to machines in this 

order. To prove the desired property, we first assume that no machine 

is idle before all jobs are finished, say at time T. Then

T  s1...sm=p1 p2...pn or T=Pn/S m

Thus bound    is  achieved by the algorithm.  If  a  machine is  idle 

before the last job finishes, then for the finishing times  f 1,. .. , f m  of 

machines M 1 , ... , M m  we have

f 1≥ f 2≥...≥ f m
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Or Else,  if  f i f i1  for  some  1≤i≤m−1 ,  the level  of  the last  job 

processed on  M i  at some time  f i− ,  where 0  is sufficiently 

small, is smaller than the level of the last job on M i1  at the same 

time. This is a contradiction. Furthermore, in the above equation we 

have at least one strict inequality.

Assume that  T := f 1= f 2=...= f j f j1  with  jm . The jobs finishing at 

time T must have been started at time 0. If this is not the case, then 

we have a job i which starts at time t0  and finishes at time T. This 

implies that at time 0 at least m jobs, say jobs  1,... ,m.  are started 

and processed together on all machines. We have 

p10≥...≥ pm0≥ pi0 , which implies

p1T−≥...≥ pm T−≥ pi T−0  for all   with 0T−t . 

Thus,  until  time T no machine is  idle,  which is  a  contradiction.  We 

conclude T=P j /S j .

The  level  algorithm calls  the  procedure  assign(t)  at  the  most  O(n) 

times. The computational effort for assigning jobs to machines after 

each call  is  bounded by O(nm).  Thus,  we get  a total  complexity  of 

On2 m  (the total work for calculating all t values is dominated by 

this).
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Theorem 3 : Given a  set of parallel machines  ‘m ‘ with  speeds in 

harmonic  series and jobs  ‘n’ with  processing times  all jobs  complete 

together.

Instead of a formal proof we provide motivation:

We assume that  n  ≥ m and m = n-1.  If  n  < m,  we only  have to 

consider the n fastest machines. 

Similarly the speeds of the machines  ‘M ‘ are in harmonic  series  

a , 
a

1d
, 

a
12d

,
a

13d
 where -1/d is not a natural number.

To  prove  that  all  jobs  complete  together  we  use  that  concept  of 

divergent series.

One way to prove divergence is to compare the harmonic series with 

another divergent series:

Each  term  of  the  harmonic  series  is  greater  than  or  equal  to  the 

corresponding term of the second series, and therefore the sum of the 

harmonic series must be greater than the sum of the second series. 

However, the sum of the second series is infinite:
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It follows  that the sum of the harmonic series must be infinite as well. 

More precisely, the comparison above proves that

                  for every positive integer k

It can also be proved by the integral test that harmonic series diverges 

very slowly.

Figure 22 : Harmonic series diverges.

Harmonic series have terms that overlap with the adjacent term there 

by diverging.

Using  the  level  algorithm  and  obtaining  an  optimal  schedule  with 

speeds in harmonic progression we observe  that  the optimal schedule 

leads to the completion of all jobs  at the same time.
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CHAPTER 4

Slot Scheduling Theory

As  discussed  in  Chapter  3,  the  level  algorithm  produces  an 

optimal  schedule.  This  chapter  is  divided  in  two  sections.  We  first 

discuss  the  ad-slot  scheduling  mechanism.  In  the  second  part  we 

discuss  the  application  of  the  level  algorithm  in  Internet  ad-slot 

placement.

4.1Ad-slot scheduling

One of the more visible means by which the Internet has disrupted 

traditional activity is the manner in which advertising is sold. Offline, 

the price for advertising is typically set by negotiation or posted price. 

Online, much advertising is sold via auction. Most prominently,  Web 

search engines like Google  and Yahoo! auction space next to search 

results, a practice known as sponsored search.

Sponsored  search  is  a  form of  advertising  typically  sold  at  auction 

where  merchants  bid  for  positioning  along side web search results. 

Web  search  engines   monetize  their  service  by  auctioning  off 

advertising  space  next  to  their  standard  algorithmic  search  results 

[27].  For  example,  Pepsi  or  sunkist  may  bid  to  appear  among  the 

advertisements  usually located above or to the right of the algorithmic 

results whenever users search for “soda “.
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Figure 23 : Screen shot of user query with the search results on the left 

and the ads on the right.

 These  sponsored  results  are  displayed  in  a  format  similar  to 

algorithmic results:  as a list of  items each containing a title,  a text 

description, and a hyperlink to the advertiser’s Web page. We call each 

position in the list a slot. 

Basically, there are three parties involved in sponsored search[22].

•  The first  party  is  the advertisers  who have multiple  objectives  in 

seeking to place advertisements.  Some advertisers want to develop 

their  brand, some seek to make sales,  and yet others advertise for 

defensive  purposes  on  specific  keywords  central  to  their  business. 

Some have budget constraints,  while others are willing to spend as 

40



much as it  takes to  achieve their  goal.  Some seek to obtain  many 

clicks  and  eyeballs,  yet  others  attempt  to  optimize  their  return  on 

investment. So, in general, advertisers are of varied types [22]. 

• The second party is the auctioneer, in this case, the search engine. 

The search engines have to balance many needs. They must maintain 

useful search results and have advertisements enhance, rather than 

interfere  with,  the search experience.  They need to  make sure  the 

advertisers get their needs fulfilled, and at the same time ensure that 

the market the advertisers participate in is efficient and conducive to 

business. 

• The third party is perhaps the most important in the game: these are 

search  users.  Users  come  to  search  engines  for  information  and 

pointers.  In  addition,  they  also  come  to  discover  shopping 

opportunities,  good  deals,  and  new products.  There  are  millions  of 

users with different goals and behavior patterns with respect to 

advertisements [22]. 

Ad slot is a premium ad sales platform used by publishers to increase 

revenue and significantly reduce cost of sales. The process of choosing 

and charging the advertisers is a daunting algorithmic and engineering 

task.  The  search  engines  typically  take  in  to  consideration  several 

factors including  the search key word, the demographics of the user, 
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the frequency of the keyword, as well as the bid, budget  and click 

through rate of the advertisers for each of these decisions.

We consider the Ad Slot Scheduling problem, where advertisers must 

be scheduled to sponsored search slots during a given period of time. 

Advertisers specify a budget constraint, as well as a maximum cost per 

click, and may not be assigned to more than one slot for a particular 

search [5]. 

 A natural mechanism for Ad Slot Scheduling is the following: Find a 

feasible schedule and a set of prices that maximizes revenue, subject 

to  the  bidders’  constraints.  It  is  straightforward  to  derive  a  linear 

program for this optimization problem, but unfortunately this is not a 

truthful mechanism. However, there is a direct truthful mechanism—

the price-setting mechanism that results in the same outcome as an 

equilibrium of the revenue-maximizing mechanism. 

Jon et al. [5] derive this mechanism (and prove that it is truthful) by 

starting  with  the  single-slot  case,  where  two  extreme  cases  have 

natural,  instructive  interpretations.  With  only  bids  (and  unlimited 

budgets), a winner-take-all mechanism works; with only budgets (and 

unlimited  bids)  the  clicks  are  simply  divided  up  in  proportion  to 

budgets. Combining these ideas in the right way results in a natural 

descending-price mechanism, where the price (per click) stops at the 

point where the bidders who can afford that price have enough budget 

to purchase all of the clicks. 
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Generalizing to multiple slots requires understanding the structure of 

feasible schedules, even in the special budgets-only case. We solve the 

budgets-only case by characterizing the allowable schedules in terms 

of the solution (level algorithm) to the  problem of  Q | pmtn | Cmax. The 

difficulty that arises is that the lengths of the jobs in the scheduling 

problem actually depend on the price charged. Thus, we in corporate 

the scheduling algorithm into a descending-price mechanism, where 

the price stops at the point where the scheduling constraints are tight; 

at  this  point  a  block  of  slots  is  allocated  at  a  fixed  uniform  price 

(dividing the clicks equally by budget) and the mechanism iterates. 

4.2 Single slot

In  this   section  we   consider  only  one  advertising  slot  with  some 

number of clicks. As mentioned earlier we consider two cases single 

slot  with  budgets  only  and  single  slot  with  bids  and  budgets.  We 

represent the bids as b1,. ... , bn , budgets as B1 ,… , Bn and ' D '  as the 

number of clicks.

4.2.1 Single-slot with budgets-only 

Our input in this case is a set of budgets  B1 ,... , Bn , and consider all 

bids as b i=∞ we are supposed to allocate D clicks with no ceiling on 

the  per-click  price.  We  apply  the  principle  of  Proportional  sharing 

(Proportional  Share  Scheduling is  a  type  of  scheduling  which 

preallocates certain amount of time to each of the processes). Let 
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 B = ∑i Bi. Now to each bidder i, allocate (Bi / B )D clicks. Set all prices 

the same: pi = p = B/D. The mechanism guarantees that each bidder 

exactly spends his/her budget, thus no bidder will report Bi
'B i . Now 

suppose some bidder reports Bi
'=B i−∆ , for ∆ > 0. Then this bidder is 

allocated D(Bi − ∆ ) / ( B − ∆ ) clicks, which is less than D(Bi / B), since 

n > 1 and all Bi > 0 [5] [22]. 

Example 1:  Suppose there are three bidders and D = 100 clicks in a 

single slot. Bidder 1 has a budget B1=$25 , bidder 2 has  B2 = $15 and 

bidder 3 has  B3= $10.  Allocate the number of clicks to each bidder.

Solution:  Let us calculate B = ∑i Bi 

B = 25+15+10 = 50.

The price for all bidders is p =  B / D  = 50 / 100  => 0.5

Allocating the number of clicks for bidder 1 c1 =D *( B1 / B  ) 

c1 = 100 * ( 25 /50)     

c1 = 50 clicks.

Similarly, allocating the number of clicks for bidder 2 c2 =D *( B2 / B  )

c2 = 100 * ( 15 /50)     

44



   c2 = 30 clicks.

Allocating the number of clicks for bidder 3 c3 =  D *( B3 / B )

                                                            c3 = 100 * ( 10 /50)

 c3 = 20 clicks.

4.2.2 Single-slot with bids and  budgets.

Let us first assume all budgets Bi = ∞. Then, our input amounts to bids 

b1 > b2  > . . . >bn. The obvious mechanism is simply to give all the 

clicks to the highest bidder. We charge bidder 1 her full price p1 = b1. 

A simple argument shows that reporting the truth is a weakly dominant 

strategy  for  this  mechanism.  The  losing  bidders  cannot  gain  from 

decreasing bi. The winning bidder can lower her price by lowering bi, 

but this will not gain her any more clicks, since she is already getting 

all D of them. We incorporate the price setting mechanism essentially 

the descending price mechanism: the price stops descending when the 

bidders willing to pay at that price have enough budget to purchase all 

the clicks. We have to be careful at the moment a bidder is added to 

the pool of the willing bidders; if this new bidder has a large enough 

budget,  then  suddenly  the  willing  bidders  have  more  than  enough 

budget  to  pay for  all  of  the clicks.  To  compensate,  the mechanism 
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decreases this “threshold” bidder’s effective budget until the clicks are 

paid for exactly. 

Price-Setting (PS) Mechanism (Single Slot with bids and 

budgets) 

• Assume wlog that b1b2. . .bn≥0 . 

• Let k be the first bidder such that bk1≤∑i=1
k B i/D . Compute price 

p=min{∑i=1
k Bi /D ,bk } . 

• Allocate Bi / p  clicks to each i ≤ k −1 . Allocate Bk / p  clicks to 

bidder k, where B k= pD−∑i=1
k −1 Bi . 

Example 2 : Suppose there are four bidders with b1 = $3, b2 = $2, 

b3 = $1, b4 = $0.25 and B1 = $20, B2 = $60, B3 = $40, B4 = $5 and 

D = 100 clicks. Allocate appropriate clicks based on the price-setting 

mechanism.

Solution:  In this case b1b2. . .bn≥0

Case 1: Let k=1 be the first bidder and lets check for the condition 

bk1≤∑i=1
k B i/D

b11≤∑i=1
1 Bi /100

b2≤20/100

Let us substitute the value of  b2 we get  2≤0.2 This condition does 

not satisfy.
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Case 2 :Let k=2 be the first bidder and lets check for the condition 

bk1≤∑i=1
k B i/D

b21≤∑i=1
2 Bi /100

b3≤2060/100

Let us substitute the value of  b3 we get  1≤0.8 This condition does 

not satisfy.

Case 3 :Let k=3 be the first bidder and lets check for the condition 

bk1≤∑i=1
k B i /D

b31≤∑i=1
3 Bi/100

b4≤206040/100

Let  us  substitute  the  value  of  b4 we get  0.25≤1.2 This  condition 

satisfies.

Running the PS mechanism we get k = 3

The price is then set as p=min {∑i=1
k Bi /D ,bk }

p=min {∑i=1
3 Bi /D ,b3}

p=min {
206040

100
,1}

p=1

Allocating Bi / p clicks to each i≤k−1 we get i≤2as k=3

When i=1 ; 20/1 => 20 clicks are allocated to bidder 1.

 When i=2 ; 60/1 => 60 clicks are allocated to bidder 2.
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Remaining clicks are allocated based on  B k / p  clicks to bidder k, 

where Bk= pD−∑i=1
k −1 Bi as per the price setting mechanism. 

B k= pD−∑i=1
k −1 Bi Here k=3 , p=1, and  D=100 

Hence B3=1∗100−2060 we get B3=20

Therefore bidder 1  gets 20 clicks, bidder 2 gets 60 clicks and bidder 3 

gets 20 clicks and only $20 of  bidder 3 budget is used. There is no 

threshold bidder. 

4.3 Multiple Slots 

Generalizing  to  multiple  slots  makes  the  scheduling  constraint 

nontrivial.  Now instead of  splitting  a pool  of  D clicks  arbitrarily,  we 

need to assign clicks that correspond to a feasible schedule of bidders 

to slots. The conditions under which this is possible add a complexity 

that needs to be incorporated into the mechanism. 

As in the single-slot case it will be instructive to consider first the cases 

of infinite bids or budgets. Suppose all Bi=∞ . In this case, the input 

consists of bids only b1b2. . .bn . Naturally, what we do here is rank 

by bid, and allocate the slots to the bidders in that order. Since each 
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budget is infinite, we can always set the prices p i  equal to the bids 

b i . By the same logic as in the single-slot case, this is easily seen to 

be truthful. In the other case, when b i=∞ , there is a lot more work to 

do.

Without loss of generality, we may assume the number of slots equals 

the number of bids (i.e., n′ = n); if this is not the case, then we add 

dummy  bidders  with  Bi=b i=0 ,  or  dummy  slots  with  Di=0 ,  as 

appropriate.

Assigning slots using a classical scheduling algorithm:

First we give an important lemma  that characterizes the conditions 

under which a set of  bidders can be allocated to a set of slots, which 

turns out to be just a restatement of a classical result from scheduling 

theory. 

Lemma 1 [5][22] :  Suppose we would like to assign an arbitrary set {1, 

. . . , k} of bidders to a set of slots {1, . . . , k} with D1 . ..D k . Then, 

a click allocation c1 ≥ . ..≥c k  is feasible iff 

c1. . .ck ≤ D 1. . .D k for all l=1,... , k.

Proof:  In scheduling theory, we say a job with service requirement x 

is a task that needs x/s units of time to complete on a machine with 

speed  s.  The  question  of  whether  there  is  a  feasible  allocation  is 

equivalent  to  the  following  scheduling  problem:  Given  k  jobs  with 

service requirements  xi=ci  , and k machines with speeds  si=Di  , 
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there a schedule of jobs to machines (with preemption allowed)  that 

completes in one unit of time ? 

As shown in Chapter 3 the optimal schedule for this problem 

(a.k.a.  Q  |  pmtn  |  Cmax  )  can  be  found  efficiently  by  the  level 

algorithm,Level  algorithm  and  the  schedule  completes  in  time 

max l ≤ k ∑i=1
l x i/∑i=1

l si . Thus, the conditions of the lemma are exactly the 

conditions under which the schedule completes in one unit of time. 

4.3.1 Multiple-Slot Budgets-only 

This mechanism  is roughly a Descending-price mechanism where we 

decrease the price until a prefix of budgets fits tightly into a prefix of 

positions  at  that  price,  where  upon  we  allocate  that  prefix,  and 

continue  to  decrease  the  price  for  the  remaining  bidders.  More 

formally, it can be written as follows [5] [22]: 

Price-Setting Mechanism (Multiple Slots, Budgets Only) 

• If all Di=0 , assign bidders to slots arbitrarily and exit. 

• Sort the bidders by budget and assume wlog that B1 ≥ B2 ≥ ...≥ Bn  . 

• Define r l=∑i=1
l B i /∑i=1

l Di . Set price p=maxl rl . 

• Let l∗  be the largest l such that r l= p . Allocate slots {1, . . . l∗}  

to  bidders   {1, . . . l∗} at  price  p,  using  all  of  their  budgets;  i.e., 

c i=Bi / p . 

• Repeat the steps above on the remaining bidders and slots until all 

slots are allocated.
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Example of Multiple-Slot with Budgets-only :

Suppose there are four bidders A,B,C and D with  B1 = $80, B2 = $70, 

B3 = $20, B4 = $1 and D1 = 100, D2 = 50, D3 = 25, and D4 =0. Allocate 

appropriate clicks based on the price-setting mechanism for multiple 

slots with budgets-only.

Solution:  In the example Di≠0  so we cannot assign bidders to slot 

arbitrarily and exit.

We then sort the bidders by budget , but we do not need to sort as 

they are already sorted in the order B1 ≥ B2 ≥ ...≥ Bn

For  l=1   r l=∑i=1
l B i /∑i=1

l Di the  value  of   r 1=80 /100  Therefore 

r 1=0.8
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For  l=2   r l=∑i=1
l B i /∑i=1

l Di the  value  of   r 2=[8070/10050 ]

Therefore  r 2=1

For l=3  r l=∑i=1
l B i /∑i=1

l Di the value of  r 3=[807020 / 1005025]  

Therefore  r 3=0.971

For l=4  r l=∑i=1
l B i /∑i=1

l Di the value of r 4=[8070201/ 1005025]  

Therefore  r 4=0.977

Here l∗ =2 since the largest values among r is r2

Allocate slots {1, .. .2}  to bidders {1, .. .2} at a  price p=1 , using all of 

their budgets; i.e., ci=B i/ p

 c1=B1/ p Therefore the no. of clicks c1=80 /1 => c1=80

Similarly c2=B2/ p Therefore the no. of clicks c2=70 /1 => c2=70

We similarly repeat the above steps on the remaining bidders and slots 

until all slots are allocated.

In  the  second  price  block,  we  get  B3/D3=20 /25  and 

B3B4/D3D4=21/25 . Thus p2  is set to 21/25 = $0.84, 

Bidder 3 gets 500/21 (approx  24 ) clicks   and bidder 4 gets 25/21 

(approximately 1) click, using the schedule as shown. 
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4.3.2 Multiple-Slots with bids and budgets

The generalization of the multiple slot price setting  mechanism to use 

both bids and budgets combines the ideas from the bids and-budgets 

version of the single slot mechanism with the budgets-only version of 

the multiple-slot mechanism. As our price descends, we maintain a set 

of “active” bidders with bids at or above this price, as in the single-slot 

mechanism.  These  active  bidders  are  kept  ranked  by  budget,  and 

when the price reaches the point where a prefix of bidders fits into a 

prefix of slots (as in the budgets-only mechanism) we allocate them 

and repeat.  As  in  the  single-slot  case,  we must  be  careful  when a 

bidder enters the active set and suddenly causes an over-fit;  in this 

case we again reduce the budget of this “threshold” bidder until it fits 

[5][22]. 

Price-setting Mechanism ( Multiple slot with Bids and Budgets)

• Assume wlog that b1b2...bn=0.

• Let k be the first bidder such that running price-setting mechanism 

on bidders 1,. ..k  .would result in a price p≥bk1 .

• Reduce Bk until running price-setting mechanism on bidders 

1,. .. , k  would result in a price p≤bk . Apply this allocation, which for 

some g l∗ ≤k ives the first l∗ slots to the l∗  bidders among 

1,. .. , k with the largest budgets.

 • Repeat the  above steps on the remaining bidders and slots until all 

slots are allocated.
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Example for multiple-slots with bids and budgets.

Suppose there are four bidders A,B,C and D with  B1 = $80, B2 = $70, 

B3 = $20, B4 = $1 and D1 = 100, D2 = 50, D3 = 25, and D4 =0 . Bids are 

also assigned for each bidder b1 = $3 , b2 = $0.75, b3 = $1, b4 = $0.50. 

Allocate appropriate clicks based on the price-setting mechanism for 

multiple slots with bids and budgets.

Solution : As per the assumption of w log we are supposed to have 

b1b2...bn=0.

We first re arrange the bids which leads to  b2 = $1, b3 = $0.75.

Running Price-Block mechanism on only bidder 1 gives a price of 

r1=80 /100 , 

0.8 which is less than the next bid of $1. 

So, we re-run Price-Block mechanism on bidders 1 and 3 (the next-

highest bid), giving r1=80 /100  and r2=100 /150 . 

We still get a price of $0.80, but now this is more than the next-highest 

bid of $0.75, so we allocate the first bidder to the first slot at a price of 

$0.80. We are left with bidders 2-4 and slots 2-4. With just bidder 3 

(the highest bidder) and slot 2, we get a price p = 20/50 => 0.4

0.4 which is less than the next-highest bid of $0.75, so we consider 

bidders 2 and 3 on slots 2 and 3. 

This gives a price of max{70/50, 90/75} = $1.40, which is more than 

$0.50. Since this is also more than $0.75, we must lower B2 until 

the price is exactly $0.75, which makes B2 = $36.25. 
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With this setting of B2 , Price setting  allocates bidders 2 and 3 to slots 

2 and 3, giving 75(36.25/56.25) and 75(20/56.25) clicks respectively, 

at a price of $0.75 per click. 

Bidder 4 is allocated to slot 4, receiving zero clicks. 

Note that by the same logic as the budgets-only mechanism, the prices 

p1 , p2 , . ..  for each price block strictly decreases. 
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                                              CHAPTER 5

CONCLUSION AND FUTURE WORK

In this paper we  studied the types of parallel machines in particular we 

have illustrated  examples pertaining to uniform  parallel machines and 

its  application  in  the  real  world.  We  have  performed  various 

experiments based on the level algorithm and have tried to present 

the  behavior  of  jobs  based  on  the  speeds  of  machines.  When  the 

speeds relating to the machines and processing times were considered 

to be in a harmonic progression the completion time of all jobs was 

same. 

We have presented a existing mechanism that involves assigning of 

bidders  to  the  slots  based  on  the  classical  result  from  scheduling 

theory  to  characterize  the  possible  allocations.  The  algorithmic 

approach was taken in to consideration when allocation of ad slots was 

done based on the level algorithm which is polynomially solvable. As 

bidders get added in price setting mechanism, maintaining a sorted list 

of bidders and budgets can be done in time O(n log n). Thus it 

remains to show that it can be done in O(n) time given these sorted 

lists.  Computing the ratios rl  and allocation can also be done in linear 

time.

This  thesis  focuses  on  technical  preview  of  ad  slot  scheduling   in 

generating a maximum revenue based on bidders, budgets and slots. 
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 But  there could  also be many constraints  that could  improve  the 

quality, efficiency and revenue  of the ad slot system which include 

user click behavior, number and size of  slots, advertiser weights.

Bidders  can  be  provided  with  incentives  like  payment  schemes, 

refunds and cancellations. An additional  aspect of the problem from 

the  auctioneer’s  perspective  is  how  to  target  ads,  that  is,  how  to 

choose the keywords from the surrounding context. Consequently, the 

the resulting algorithmic approach to revenue maximizing of ad slot 

scheduling is more intricate and largely unexplored. 
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