
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2011

Parallel machines scheduling with applications to Internet ad-slot Parallel machines scheduling with applications to Internet ad-slot

placement placement

Shaista Lubna
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Repository Citation Repository Citation
Lubna, Shaista, "Parallel machines scheduling with applications to Internet ad-slot placement" (2011).
UNLV Theses, Dissertations, Professional Papers, and Capstones. 1406.
http://dx.doi.org/10.34917/3332656

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/3332656
mailto:digitalscholarship@unlv.edu

PARALLEL MACHINES SCHEDULING WITH APPLICATIONS TO INTERNET

AD-SLOT PLACEMENT

By

Shaista Lubna

Bachelor of Engineering in Computer Science and Information
Technology

JNTU University, India
May 2006

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science

School of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
December 2011

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Shaista Lubna

entitled

Parallel Machines Scheduling with Applications to Internet Ad-Slot
Placement

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Wolfgang Bein, Committee Chair

Ajoy Datta, Committee Member

Lawrence Larmore, Committee Member

Emma Regentova, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

December 2011

ii

ABSTRACT

Parallel machines scheduling with applications to Internet

ad-slot placement.

by
Shaista Lubna

Dr. Wolfgang Bein, Examination Committee Chair
Professor, Department of Computer Science

University of Nevada, Las Vegas

We consider a class of problems of scheduling independent jobs on

identical, uniform and unrelated parallel machines with an objective of

achieving an optimal schedule. The primary focus is on the

minimization of the maximum completion time of the jobs, commonly

referred to as Makespan (Cmax). We survey and present examples of

uniform machines and its applications to the single slot and multiple

slots based on bids and budgets.

The Internet is an important advertising medium attracting large

number of advertisers and users. When a user searches for a query, a

search engine returns a set of results with the advertisements either

on top of the page or on the right hand side. The assignment of these

ads to positions is determined by an auction using the ad-slot

placement. The algorithmic approach using the level algorithm (which

constructs optimal preemptive schedules on uniform parallel

machines) is taken into consideration for assigning bidders to the

slots on the Internet.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Wolfgang Bein for chairing my

committee and advising this work. I am thankful for his continuous

guidance and help to deepen my work. Without his generous help this

thesis would not have had such a rich content. I am thankful to Dr.

Ajoy K Datta for his moral support and guidance through my Masters

program and help on my thesis. I would also like to specifically thank

Dr. Lawrence Larmore and Dr. Emma Regentova for serving on the

committee. For this and for being generous with their time when I

needed it, I am deeply indebted to them. I would like to thank the

faculty at the School of Computer Science, University of Nevada, Las

Vegas for the formal education along with generous financial support.

I would also like to extend my appreciation towards my family for

being there for me through thick and thin and always encouraging me

to strive for the best. Without their endless support I would never be

able to reach to the place I’m standing today in my life. Last but not

the least; I thank my friends, for their support in the successful

completion of this work.

iv

TABLE OF CONTENTS

ABSTRACT..iii

ACKNOWLEDGEMENTS..iv

LIST OF FIGURES...vi

CHAPTER 1 INTRODUCTION..1

CHAPTER 2 PARALLEL MACHINES...6
2.1 Identical Parallel Machines..7

2.1.1 P | pmtn | Cmax ...8
2.1.2 P | pmtn |ri Lmax ..9

 2.2 Unrelated Parallel Machines...14
2.2.1 R || Σci ..14
2.2.2 R | pmtn | Cmax, R | pmtn| Lmax and R | pmtn; ri | Lmax15

 2.3 Uniform Parallel Machines...18
 2.3.1 Q | pmtn | Cmax ...18

CHAPTER 3 Application of Level Algorithm.......................................23

CHAPTER 4 Slot Scheduling Theory...39
4.1 Ad slot scheduling...39
4.2 Single-slot...43
 4.2.1 Single-slot with budgets- only..43
 4.2.2 Single-slot with bids and budgets..45

 4.3 Multiple-Slot...48
 4.3.1 Multiple-Slot with budgets-only...50
 4.3.2 Multiple-Slot with bids and budgets.................................53

CHAPTER 5 CONCLUSION AND FUTURE WORK.................................56

BIBLIOGRAPHY...58

VITA..62

v

LIST OF FIGURES

Figure 1 Machine and Job oriented Gantt charts..........................2
Figure 2 Optimal schedule for an instance of P | pmtn | Cmax7
Figure 3 A network for problem P | pmtn | ri Lmax........................11
Figure 4 Example of network for problem P | pmtn | ri Lmax........13
Figure 5 Schedule for problem P| pmtn | ri Lmax..........................13
Figure 6 Application of the level algorithm................................21
Figure 7 Processing 6 jobs jointly on 3 machines.......................22
Figure 8 Plotting the graph with processing time and speeds....25
Figure 9 Intersection of job 4 and job 5......................................26
Figure 10 Intersection of job 3, job 4 and job 5............................26
Figure 11 Intersection of job 1 and job 2......................................27
Figure 12 Intersection of all jobs..27
Figure 13 Completion time of all jobs...28
Figure 14 Optimal schedule for 5 jobs..28
Figure 15 Plotting the graph with processing time and speeds....31
Figure 16 Intersection of job 1 and job 2......................................31
Figure 17 Intersection of job 4 and job 5......................................32
Figure 18 Intersection of job 3, job 4 and job 5...........................33
Figure 19 Intersection of all jobs..33
Figure 20 Completion time of all jobs...34
Figure 21 Optimal schedule for 5 jobs..34
Figure 22 Harmonic series diverges …...38
Figure 23 Screen shot of user query with the search results on
 the left hand the ads on the right................................40
Figure 24 Single-slot D clicks...44
Figure 25 Allocation of D clicks..45
Figure 26 Single-slot with budgets and bidders 1,2 and 3...........48
Figure 27 Multiple-Slots...51
Figure 28 Allocation of multiple slots with budgets.....................52
Figure 29 Allocation of multiple slots with Bids and Budgets......55

vi

CHAPTER 1

INTRODUCTION

In most manufacturing systems, a decision-making process that plays

a crucial role consists in allocating the time at which a particular task is

to be processed by a given resource in order to optimize the

requirements set by the customer. This function is referred to as

scheduling. Indeed, the current economic and commercial market

pressures (the growing consumer demand for variety, reduced product

life cycle, changing markets with global competition, rapid

development of new processes and technologies, etc...) emphasize the

need for a system which requires only small inventory levels,

minimizes waste production but is able to maintain customer

satisfaction by delivering the required goods at the specified time. This

requires efficient, effective and accurate scheduling, which is a

complex operation in almost all production environments. The

importance of scheduling is exemplified by an investigation carried out

in the United States mechanical industrial sector which shows that the

machines spend about 80% of their total processing time in waiting for

the tasks.

Scheduling theory is generally concerned with the optimal allocation of

scarce resources to activities over time. More formally, scheduling

problems involve jobs that must be scheduled on machines subject to

1

certain constraints to optimize some objective function. A schedule is

for each job an allocation of one or more time intervals to one or more

machines [2]. Schedules may be represented by Gantt charts as

shown in Figure 1.

A Gantt chart is a type of bar chart that illustrates a project schedule

and may be machine oriented or job oriented [2]. (a) and (b) denote

the Machine and job oriented Gantt charts respectively.

Graham et al. (1979) introduced the standard α | β | γ notation for

representing scheduling problems. This notation embodies the three

main elements which define the scheduling problem: the machine

environment, the job characteristics, and the optimization criterion. In

2

the sequel, we briefly detail these three fields. In the considered

scheduling models, the number of machines and the number of jobs

are assumed to be finite and fixed.

There are several machine environments (represented by the field α)

which are summarized in the following:

• Single machine (α = 1): The process of assigning various jobs to one

machine.

• Parallel machines (α = P or Q or R): Each job requires a single

operation to be performed on one out of a set of available machines.

• Flow shop (α = F): There are several machines in series. Each job

has to be processed on each one of the machines. All jobs have the

same routing.

• Job shop (α = J): This model is similar to the flow shop, with the only

difference that each job has its own route to follow.

• Open shop (α = O): Likewise the job shop, each job has to be

processed on each one of the machines. However, there is no

restriction on the routing of each job. The scheduler is allowed to

determine the route of any job [1].

Several possible job characteristics (represented by the field β) may

modify the scheduling environment. Some of these characteristics are:

3

• Preemption (pmtn): The processing of any operation may be

interrupted and resumed at a later time.

• Precedence constraints (prec): A precedence relation between jobs

requires that one or more jobs have to be completed before another

job is allowed to start its processing.

• Release dates or heads (rj): No job can start its processing before its

release date.

• Delivery times or tails (qj): After finishing its processing, each job has

to spend an amount of time before exiting the system [1].

The goal of a scheduling algorithm is to produce a ”good” schedule,

but the definition of ”good” will vary depending on the application.

Therefore, an optimization criterion (represented by the field γ) has to

be specified. The most commonly chosen criteria involve the

minimization of:

• Makespan (Cmax): The completion time of the last job to leave the

system.

• Maximum lateness (Lmax): The worst violation of the due dates. The

job lateness is non-negative if it is completed late and negative

otherwise.

4

• Maximum tardiness (Tmax): The difference between tardiness and

lateness is that tardiness equals zero if the job is completed early (i.e.

Tmax = max(0, Lmax)).

• Maximum flow time (Fmax): The flow time of a job denotes the time

elapsed between its entry to its exit from the system.

• Total (weighted) completion time (C j or w j C j):The sum of the

(weighted) completion times. It indicates the total holding (or

inventory) costs incurred by the schedule. This criterion is equivalent

to the total (weighted) flow time criterion.

• Total (weighted) tardiness (T j or w j T j): It is a more general

cost function than the total (weighted) completion time .

• (Weighted) Number of tardy jobs (U j or w j U j): A job is

considered as tardy if it is completed after its due date [1].

 Thesis Overview: In chapter 2 we survey the types of Parallel

machines and approximation algorithms. The applications of the level

algorithm is presented in detail in Chapter 3, with suggestive

examples. Ad-slot mechanism is reviewed in Chapter 4 with single slot

and multiple slots and its illustration. We finish with concluding

remarks in Chapter 5.

5

CHAPTER 2

 PARALLEL MACHINES

Given a set of n jobs J ii=1, .. . , n to be processed on m parallel

machines M j j=1, . . . , m . Each job J i has a processing requirement

P ii=1, .. . , n and every machine has a speed S j j=1, . . . ,m . Each job

requires a single operation to be performed on one out of a set of

available machines. The goal is to attain an optimal schedule that

specifies when and on which machine each job is to be executed.

The following examples illustrate the role of parallel machines in two

different real-life situations.

Example 2.1: Consider the central processing unit of a computer that

must process a sequence of programs (jobs) that arrive over time. In

what ordering should the programs be processed in order to minimize

the average completion time?

Example 2.2: Consider a factory that produces paper bags for cement,

charcoal, dog food, and so on. The basic raw material for such an

operation is rolls of papers. The production process consists of three

stages: printing the logo, gluing the side of the bag, and sewing up one

end or both ends. The different bags require different amounts of

processing times on different machines. The factory has orders for

batches of bags; each order has a date by which it must be completed.

6

In what ordering should the machines work on different bags in order

to ensure that the factory completes as many orders as possible on

time?

Parallel Machines can be divided into three classes:

•Identical parallel machines (α = P): All the available machines have

the same speed.

•Uniform parallel machines (α = Q): The machines have different

speeds, but these speeds are independent of the jobs.

•Unrelated parallel machines (α = R): The machines have different

speeds, but these speeds are dependent of the jobs [1].

2.1 Identical Parallel Machines :

We consider the problem of scheduling independent jobs on identical

parallel machines. Formally there are n jobs J ii=1,.. . , n with

processing times p ii=1,. .. , n to be processed on m identical parallel

machines M 1 , . . . , M m [2].

Figure 2 : Optimal schedule for an instance of P | pmtn | Cmax .

7

Mc Naughtons wrap around rule : Compute D=max {max pi ,1/m p i } .

Assign the jobs in any order from time 0 until time D on machine. If a

jobs processing extends beyond time D, preempt the job at time D,

and continue its processing on next machine, starting at time 0.

Repeat this process until all jobs are assigned [7][18].

2.1.1 P | pmtn | Cmax

Theorem 1: Mc Naughtons wrap around rule is optimal for

P | pmtn | Cmax [7].

Proof: It is clear that D is a lower bound for the optimal schedule

length. If we can show that wrap around rule can always generate a

feasible schedule in the time interval [0,D],then the schedule must be

optimal.

i) D≥max {Pi } no jobs can overlap i.e.; simultaneously execute on

more than one machine.

ii) mD≥{P j } as there is enough capacity in the time interval [0,D] to

schedule all jobs.

Thus a wrap around rule can always generate a feasible schedule can

be constructed in O(n) time.

8

2.1.2 P | pmtn; ri | Lmax

Each job J i has a release time r i and a due date d i with r i≤d i .

To find a preemptive schedule on m identical machines such that the

maximum lateness Li is defined as max i=1
n

{C i−d i } is minimized.

Taking in to account the decision version of the problem: Given some

threshold value L there exist a schedule such that

max i=1
n Li=maxi=1

n {C i−d i}L (1)

The above relation holds if and only if

C id i
L :=Ld i for all i=1,. .. , n.

All jobs i must finish before the modified due dates d i
L and cannot

start before the release times r i , i.e. each job J i must be

processed in an interval [ri , d i
L] associated with Ji . These intervals

are called time windows [2]. We approach the general problem of

finding a preemptive schedule for jobs J ii=1,... , n on m identical

machines such that all jobs J i are processed within their interval or

time windows [r i , d i] by reducing to a maximum flow problem in a

network constructed as follows.

Let

 t 1t 2...t r

be the ordered sequence of all different r i values and d i values.

Consider the intervals

9

I K :=[tK , tK1]of lengthT K=t K1−t K for K=1,... , r−1.

We associate a job vertex with each job J i and an interval vertex with

each interval. In addition to the existing nodes we add two dummy

vertices source node 's' and target node 't'. Between these vertices,

arcs and capacities for these arcs are defined as follows. From s we

have an arc to each job vertex J i with capacity p i and from each

interval vertex I K we have an arc to t with capacity mT K .

There exists an arc from J i to I K if job J i can be processed in

IK , i.e. iff ritK and tK1d i . The capacity of this arc is TK . It is

not difficult to prove that there exists a schedule respecting all time

windows if and only if the maximum flow in N has the value  i=1
n p i .

If this is the case, the flow x i on the arc  J i , I K  corresponds with

the time period in which job J i is processed in the time interval I K

and we have

 K=1
r−1 x iK

=p i for i=1,. .. , n. (2)

 i=1
n xi K

≤mT K for K=1,... , r−1. (3)

10

Therefore each job is completely processed and the total amount of

processing time in I K is at the most mT K , which is the capacity of

m machines.

Furthermore, x iK≤T K for all (J i , I K) ∈ A. (4)

Then there exists a maximal flow satisfying, a feasible solution for the

scheduling problem with time windows is constructed by scheduling

partial jobs J iK with processing times x iK0 in the intervals I K

on m identical machines.

For each K, this is essentially a P | pmtn | Cmax problem, which has a

solution with Cmax≤T K because of (3) and (4).

Because network N has at the most O(n) vertices, the maximum flow

problem can be solved in O(n3) time. Furthermore, the schedule

11

respecting the windows can be constructed in O(n2) time. Thus, the

window problem can be solved in O(n3) steps [2].

Example: Consider the problem P | ri | Lmax on three machines. Given

are processing times p1 = 2, p2 = 2, p3 = 3, p4 = 2. r1 = 0, r2 = 1, r3 =4,

r4 = 1. d1 = 5, d2 = 8, d3 = 6, d4 = 8. and let the threshold value L be 3.

Use the network flow method with time windows to see if there exists a

feasible schedule for the problem L=3. If yes, Draw the schedule.

Solution:

(i) Modify the due dates by dL = L + di . We have

d1 = 5 + 3 = 8.

d2 = 8 + 3 = 11.

d3 = 6 + 3 = 9.

d4 = 8 + 3 = 11.

(ii) Unions of Release times and due dates are 0, 1, 4, 8, 9, 11.

The time windows derived are [0,1] [1,4] [4,8] [8,9] [9,11].

IK := [tK , tK+1] of length TK = tK+1 − tK for K = 1, . . . r. There exists an

arc between Ji and Ik iff job Ji can be processed in Ik i.e; iff ri ≤ Tk and

Tk+1 ≤ di. The capacity is Tk.

12

flow [J1 , I1] = 1

flow [J1 , I2] = 1

flow [J2 , I2] = 2

flow [J3 , I3] = 3

flow [J4 , I3] = 2

 P i = 2 + 2 + 3 + 2 = 9

The Optimal Schedule is

13

2.2 Unrelated Parallel Machines

We have n independent jobs i = 1, . . . , n to be processed on m

machines. The processing time of job i on machine M j is pij (i = 1, . . . ,

n; j = 1, . . . , m). This model is a generalization of the uniform machine

model we get by setting pij = pi /sj which is explained in the next

section.

2.2.1 R || C i

 R || C i is reduced to an assignment problem[2]. If i1 , i2 , . . . , ir is

the sequence of jobs processed at machine Mj, then the contribution of

these jobs in the objective function is

r pi1 jr−1 p i2 j...1 pi r j

We define a position of a job on a machine by considering the job

processed last on the first position, the job processed second from last

on the second position, etc. To solve problem R || C i we have to

assign the jobs i to positions k on machines j. The cost of assigning job

i to (k, j) is kpij . Note that an optimal solution of this assignment

problem has the following property: if some job i is assigned to position

k > 1 on machine j, then there is also a job assigned to position k − 1

on machine j. Otherwise, scheduling job i in position k − 1 would

improve the total assignment cost (provided that p ij > 0). Thus,

14

solution of the assignment problem always yields an optimal solution

of our scheduling problem.

2.2.2 R | pmtn | Cmax , R | pmtn | Lmax and R | pmtn; ri | Lmax

We solve problem R | pmtn | Cmax in two steps. In the first step we

formulate a linear program to calculate for each job i and each

machine j the amount of time tij machine j works on job i in an optimal

schedule. In a second step, a corresponding schedule is constructed.

First we give the linear programming formulation. Problem R | pmtn |

Cmax is given by nm positive integers pij , which represents the total

processing time of job i on machine Mj. Let tij be the processing time of

that part of job i which is processed on M j. Then tij /pij is the fraction of

time that job i spends on machine j, and the equation

 j=1
m t ij

p ij

= 1

must hold in order for job i to be completed (i = 1, . . . , n).

This leads to the following formulation of the problem:

minimize Cmax

subject to

 j=1
m t ij

p ij

= 1, i = 1...n. (a)

 j=1
m t ij≤Cmax i = 1. ..n. (b)

i=1
n t ij≤Cmax j = 1...m. (c)

15

t ij ≥ 0 i = 1. ..n ; j = 1. ..m.

The left-hand side of (b) represents the time job i (i = 1, . . . , n) spends

on all machines. The left-hand side of (c) represents the total time

machine Mj (j = 1, . . . , m) spends processing jobs. Note that for an

optimal solution of this linear program we have

Cmax = max {maxi=1
n  j=1

m t ij ,max j=1
m  i=1

n t ij

The problem of finding a corresponding schedule is equivalent to the

problem of finding a solution to the preemptive open shop problem

with processing times tij (i = 1, . . . , n; j = 1, . . . , m) which has a Cmax

value given by (4). We conclude that problem R | pmtn | Cmax is

polynomially solvable.

A similar approach may be used to solve R | pmtn | Lmax. We formulate

a linear programming problem to minimize Lmax.

Assume that the jobs are numbered in nondecreasing due date order,

i.e. d1 ≤ d2 ≤ . . . ≤ dn.

Let t ij
1 be the total amount of time that machine Mj spends on job i

in time period I1 = [0, d1 + Lmax]. Furthermore, for k = 2, . . . , n let

t ij
k  be the total amount of time that machine M j spends on job i

within the time period Ik = [dk−1 + Lmax , dk + Lmax]. Then we have to

solve minimize Lmax subject to

 j=1
m

k=1
i t i j

k 

p ij

= 1, i=1,...n

16

 j=1
m t ij

1 ≤ d1  Lmax , i=1,...n

 j=1
m t ij

k 
≤ d k − dk−1 , i=1,. ..n; k=2,. ..n

i=1
n t ij

1
≤ d1  Lmax , j=1,. ..m

i=k
n tij

k ≤ d k − dk−1 , j=1,. ..m; k=2,. ..n

t ij
k ≥ 0, j = 1,. .. ,m ; i , k = 1,. ..n.

Given an optimal solution of this linear programming problem, an Lmax

optimal schedule can be obtained by constructing for each of the time

periods Ik (k = 1, . . . , n) a corresponding schedule using the data

given by the matrix T k =  tij
k . We again conclude that problem

R|pmtn | Lmax is polynomially solvable. In a similar way, we may solve

problem R | pmtn; ri | Lmax by considering intervals [tk , tk+1], k = 1, . . . ,

r − 1, where

t1 < t2 < . . . < tr

is the ordered sequence of all ri values and di + Lmax values. In this

case, we have the variables t ij
k  and Lmax where t ij

k  is the

processing time of job i on Mj within the interval [tk , tk+1] [2].

17

2.3Uniform Parallel Machines

We now consider n jobs Ji (i = 1, . . . , n) to be processed on m parallel

uniform machines Mj (j = 1, . . . , m). The machines have different

speeds sj (j = 1, . . . , m) but the speed of each machine is constant

and does not depend on the job. Every job Ji has a processing

requirement pi (i = 1, . . . , n). Execution of job Ji on machine Mj requires

pi / sj time units. If we set sj = 1 for j = 1, . . . , m. we have m parallel

identical machines. All problems with parallel identical machines which

are NP-hard are also NP-hard if we replace the machines by uniform

machines. Therefore, we consider problems with preemptions. We also

assume that 1 = s1 ≥ s2 ≥ ... ≥ sm and p1 ≥ p2 ≥ . . . ≥ pn [2].

2.3.1 Q | pmtn | Cmax

Initially we will present a lower bound ω for the objective value of

problem Q | pmtn |Cmax. In the latter step, we will give an algorithm

which constructs a schedule of length ω (i.e. an optimal schedule). Let

Pi = p1 + . . . + pi and Sj = s1 + . . . + sj for i = 1, . . . , n and j = 1, . . . ,

m. Furthermore, we assume that n ≥ m. If n < m, we only have to

consider the n fastest machines. A necessary condition for processing

all jobs in the interval [0, T] is

Pn = p1 + . . . + pn ≤ s1 T + . . . + sm T = Sm T

or

Pn /Sm ≤ T

18

Similarly,the condition Pj /Sj ≤ T should also be for j = 1, . . . , m−1

because Pj /Sj is a lower bound on the length of a schedule for the jobs

J1 , . . . , Jj.

Thus,

:=max{max j=1
m−1 P j/S j , Pn/Sm }

is a lower bound for the Cmax − values.

Now we will construct a schedule which achieves this bound. The

corresponding algorithm is called the level algorithm. Given a partial

schedule up to time t, the level pi (t) of job i at time t is the portion of pi

not processed before t. At time t, the level algorithm calls a procedure

assign (t) which assigns jobs to machines. The machines run with this

assignment until some time s > t. A new assignment is done at time s,

and the process is repeated [2].

Algorithm level

1: t := 0;

2: WHILE there exist jobs with positive level DO

BEGIN

3: Assign(t);

4: t1 := min{s > t | a job completes at time s };

5: t2 := min{s > t | there are jobs i, j with pi (t) > pj (t) and

pi (s) = pj (s) };

6: t:=min{t1 , t2 }

19

END

7: Construct the schedule.

The procedure assign(t) is given by

Assign (t)

1. J := { i | pi (t) > 0 };

2. M := { M1 , . . . , Mm };

3. WHILE J≠ and M≠ DO

BEGIN

4. Find the set I ⊆ J of jobs with highest level;

5. r := min {| M |, | I |};

6. Assign jobs in I to be processed jointly on the r fastest

machines in M;

7. J :=J ∖ I

8. Eliminate the r fastest machines in M from M

END

The example with 5 jobs to be processed on 4 machines presented

below in the figure shows how the algorithm works.

20

Initially, the four jobs 1,2,3,4 with the largest processing times are

processed on machines M1 , M2 , M3 , M4 , respectively. At time t1 job 4

has a level which is equal to the processing time of job 5. Thus, from

time t1 jobs 4 and 5 are processed jointly on machine M4. Due to the

fact that job 1 is processed on a faster machine than job 2 at time t2 ,

we reach the situation that p1 (t2) = p2 (t2). Therefore, jobs 1 and 2 are

processed jointly on both M1 and M2 .

21

To process r jobs 1, . . . , r jointly on l machines M1 , . . . , Ml (r ≥ l)

during some time period T, we process each job during a period of T /r

time units on each of the machines. A corresponding schedule is shown

in the above figure (6 jobs 3 machines) for the case r = 6 and l = 3

[2].

22

CHAPTER 3

Application of the Level Algorithm

EXAMPLE 1: Consider the problem Q | pmtn |Cmax with 5 jobs and 4

machines. Given are the processing times and speeds

P1=5 ; P2=4 ; P3=3 ; P4=2 ; P5=1 .

Harmonic progression is a progression formed by taking the

reciprocals of an arithmetic progression. In other words, it is a

sequence of the form

a ,
a

1d
,

a
12d

,
a

13d
 where -1/d is not a natural number.

 (Note: Speeds are in a harmonic progression a=1 and d=1) .

S1=1 ; S2=
1
2

 ; S3=
1
3

 ; S4=
1
4

.

Construct the optimal schedule using level algorithm and find the

value of Cmax ?

Solution: Initially we will present a lower bound  for the objective

value of problem Q | pmtn |Cmax.

Let ' n ' be the number of jobs and ' m' be the number of machines. If

n < m, we only have to consider the n fastest machines.

A necessary condition for processing all jobs in the interval [0,T] is

Pn /SmT .

23

Similarly we must have P j/ S jT for j=1,...,m-1 because P j / S j is a

lower bound on the length of a schedule for the jobs . Thus J1, . . . , Jj.

 :=max {max j=1
m−1 P j /S j , Pn/Sm }

is a lower bound for the Cmax values.

Pn/Sm=54321/10.500.330.25⇒15 /2.08⇒7.2115

Similarly for P j / S j for j=1,...,m-1. Here m=4 so j = 1, 2, 3

=max {max {5/1 ,[54/10.5] ,[543/ 10.500.33]},7.2115 };

=max {max {5, 6,6.55} ,7.2115 }

=7.2115

We now plot the graph considering the jobs and speeds on Y- axis and

X- axis respectively which results in the t values.

The slope of a line for a job i is considered to be the speed S i .

The straight line equation for slope intercept form:

y=mxb

24

b is the y-intercept and m is the slope.

To find the equation of line that passes through the point (5,0) with a

slope of 1 for job J 1 is y=−x5

Similarly we calculate the equation of line for jobs 2, 3 ,4 and 5

respectively.

y=−1 /2x4 ;

y=−1 /3 x3 ;

y=−1 /4x2 ;

y=1 ;

Figure 8 : Plotting the graph with processing times and speeds.

The first point of intersection is between job 1 and job 2 at (2 , 3) we

get t 1=2.0 . At this point of time job 1 and 2 are done jointly on

machine 1and machine 2.

Re-plotting the graph with the new equations.

25

Figure 9 : Intersection of job 4 and job 5.

Similarly at t 2 job1, job 2 and job 3 intersect at (3.571, 1.821) the

value of t 2=3.571

At t 2 job 1 , job 2 and job 3 are done jointly on machine 1 ,2 and 3.

We now re-plot the graph with the jointly performed jobs J 1 , J 2 , J 3 .

Figure 10: Intersection of job 3, job 4 and job 5.

26

t 3 is the point of time where job 4 and job 5 are done jointly on

machine 4 the point of intersection of job 4 and job 5 is (4.0 ,1.0). The

value of t 3=4.0 .

Figure 11: Intersection of job 1 and job 2.

t 4 is the point of intersections of job 1 , job 2 and job 3 with job 4

and job 5 i,e (5.422, 0.822). Hence the value of t 4=5.422

Figure 12 : Intersection of all jobs.

27

To calculate t 5 we re-plot the graph with the t 4 as the point of

intersection of (1,2,3,4,5) and slope is considered to be the average of

speeds of machines 1,2,3 and 4.

The value of t 5=7.9

Final Graph is plotted with t 1 , t 2 , t3 , t4 and t 5 .

Figure 13 : Completion time of all jobs.

We now draw the optimal schedule for these jobs.

Figure 14: Optimal schedule for 5 jobs.

28

Example with same processing times but with different speeds.
Consider the problem Q | pmtn |Cmax with 5 jobs on 4 machines.
Given are the processing times and speeds

P1=5 ; P2=4 ; P3=3 ; P4=2 ; P5=1 .

Harmonic progression is a progression formed by taking the

reciprocals of an arithmetic progression. In other words, it is a

sequence of the form

a ,
a

1d
,

a
12d

,
a

13d
 where -1/d is not a natural number.

Note: Speeds are in a harmonic progression with a=1 and d=0.5

S1=1 ; S2=
1

10.5
⇒0.666 ; S3=

1
11

⇒0.5 ; S4=
1

11.5
⇒0.4 .

Construct the optimal schedule using level algorithm and find the value

of Cmax .

Solution: Initially we will present a lower bound  for the objective

value of problem Q | pmtn | Cmax.

Let ' n ' be the number of jobs and ' m ' be the number of machines. If

nm , we only have to consider the n fastest machines.

Pn/SmT

Similarly we must have P j/ S jT for j=1,. .. ,m−1 because P j / S j is

a lower bound on the length of a schedule for the jobs J1 , ... , J j .

 Thus

 :=max {max j=1
m−1 P j /S j , Pn/ Sm}

is a lower bound for the Cmax values.

29

Pn/ Sm=54321/10.660.50.4⇒15/2.56⇒5.859375

Similarly for P j / S j for j=1,. ..m−1

Here m=4 so j = 1, 2, 3

=max {max 5/1 , [54/10.66] ,[543/ 10.660.50] ,5.859375¿ ;

=max {max {5, 5.4216,5.555 },5.8593}

=5.8593

We now plot the graph considering the jobs and speeds on Y- axis and

X- axis respectively which results in the t values.

The slope of a line for a job i is considered to be the speed S i .

The straight line equation for slope intercept form:

y=mxb where b is the y-intercept and m is the slope.

To find the equation of line that passes through the point (5,0) with a

slope of 1 for job J 1 is

y=−x5

Similarly we calculate the equation of line for jobs 2, 3 ,4 and 5

respectively.

y=−0.666 x4 ;

y=−0.5 x3 ;

y=−0.4 x2 ;

y=1 ;

The resulting graph for the above plotted lines

30

Figure 15: Plotting the graph with processing times and speeds.

The first point of intersection is between job 4 and job 5 at (2.5 , 1) we

get t 1=2.5 . After time t1 job 4 and 5 merge and are processed jointly.

Figure 16: Intersection of job 4 and job 5.

31

Similarly at t 2 job1, job 2 intersect at (2.94, 2.05) the value of

t 2=2.94 .

At t 2 job 1 and job 2 are done jointly on machine 1 and 2.

We now re-plot the graph with the jointly performed jobs J 1 and J2

Figure 17 : Intersection of job 1 and job 2.

t 3 is the point of time where job 1,2 and job 3 are done jointly on

machine 1, 2 and 3 the time (point)of intersection of all these jobs is

(4.5454, 0.7272).The value of t 3=4.5454 .

32

Figure 18 : Intersection of job 1 , job 2 and job 3.

At time t 4 job 1,2,3 and 4,5 intersect (4.761 , 0.547) and the value of

t 4=4.761

Figure 19 : Intersection of all jobs.

33

Job 1, 2 and Job 3 are combined with job 4 and 5 and are performed on

Machines 1, 2, 3 and 4 and completed at 5.8

Hence the value of t 5=5.8 .

Final Graph is plotted with t 1 , t 2 , t3 , t4 and t 5 .

Figure 20 : Completion time of all jobs.

We now draw the optimal schedule for these jobs.

Figure 21 : Optimal schedule of 5 jobs.

The Cmax value is max { 2.5, 2.94, 4.54, 4.76, 5.8} = 5.8

34

Theorem 2: Algorithm level constructs an optimal schedule for problem
Q∣pmtn∣Cmax [2].

Proof :Because

 :=max {max j=1
m−1 P j /S j , Pn/Sm }

is a lower bound for the schedule length, it is sufficient to show that

the schedule constructed achieves this bound.

Assume that at the beginning of the level algorithm we have

p10≥ p20≥...≥ pn0 . This order does not change during the

algorithm, i.e. we have

p10≥ p20≥. . .≥ pn0 for all t.

We assume that the algorithm always assigns jobs to machines in this

order. To prove the desired property, we first assume that no machine

is idle before all jobs are finished, say at time T. Then

T  s1...sm=p1 p2...pn or T=Pn/S m

Thus bound  is achieved by the algorithm. If a machine is idle

before the last job finishes, then for the finishing times f 1,. .. , f m of

machines M 1 , ... , M m we have

f 1≥ f 2≥...≥ f m

35

Or Else, if f i f i1 for some 1≤i≤m−1 , the level of the last job

processed on M i at some time f i− , where 0 is sufficiently

small, is smaller than the level of the last job on M i1 at the same

time. This is a contradiction. Furthermore, in the above equation we

have at least one strict inequality.

Assume that T := f 1= f 2=...= f j f j1 with jm . The jobs finishing at

time T must have been started at time 0. If this is not the case, then

we have a job i which starts at time t0 and finishes at time T. This

implies that at time 0 at least m jobs, say jobs 1,... ,m. are started

and processed together on all machines. We have

p10≥...≥ pm0≥ pi0 , which implies

p1T−≥...≥ pm T−≥ pi T−0 for all  with 0T−t .

Thus, until time T no machine is idle, which is a contradiction. We

conclude T=P j /S j .

The level algorithm calls the procedure assign(t) at the most O(n)

times. The computational effort for assigning jobs to machines after

each call is bounded by O(nm). Thus, we get a total complexity of

On2 m (the total work for calculating all t values is dominated by

this).

36

Theorem 3 : Given a set of parallel machines ‘m ‘ with speeds in

harmonic series and jobs ‘n’ with processing times all jobs complete

together.

Instead of a formal proof we provide motivation:

We assume that n ≥ m and m = n-1. If n < m, we only have to

consider the n fastest machines.

Similarly the speeds of the machines ‘M ‘ are in harmonic series

a ,
a

1d
,

a
12d

,
a

13d
 where -1/d is not a natural number.

To prove that all jobs complete together we use that concept of

divergent series.

One way to prove divergence is to compare the harmonic series with

another divergent series:

Each term of the harmonic series is greater than or equal to the

corresponding term of the second series, and therefore the sum of the

harmonic series must be greater than the sum of the second series.

However, the sum of the second series is infinite:

37

It follows that the sum of the harmonic series must be infinite as well.

More precisely, the comparison above proves that

 for every positive integer k

It can also be proved by the integral test that harmonic series diverges

very slowly.

Figure 22 : Harmonic series diverges.

Harmonic series have terms that overlap with the adjacent term there

by diverging.

Using the level algorithm and obtaining an optimal schedule with

speeds in harmonic progression we observe that the optimal schedule

leads to the completion of all jobs at the same time.

38

CHAPTER 4

Slot Scheduling Theory

As discussed in Chapter 3, the level algorithm produces an

optimal schedule. This chapter is divided in two sections. We first

discuss the ad-slot scheduling mechanism. In the second part we

discuss the application of the level algorithm in Internet ad-slot

placement.

4.1Ad-slot scheduling

One of the more visible means by which the Internet has disrupted

traditional activity is the manner in which advertising is sold. Offline,

the price for advertising is typically set by negotiation or posted price.

Online, much advertising is sold via auction. Most prominently, Web

search engines like Google and Yahoo! auction space next to search

results, a practice known as sponsored search.

Sponsored search is a form of advertising typically sold at auction

where merchants bid for positioning along side web search results.

Web search engines monetize their service by auctioning off

advertising space next to their standard algorithmic search results

[27]. For example, Pepsi or sunkist may bid to appear among the

advertisements usually located above or to the right of the algorithmic

results whenever users search for “soda “.

39

Figure 23 : Screen shot of user query with the search results on the left

and the ads on the right.

 These sponsored results are displayed in a format similar to

algorithmic results: as a list of items each containing a title, a text

description, and a hyperlink to the advertiser’s Web page. We call each

position in the list a slot.

Basically, there are three parties involved in sponsored search[22].

• The first party is the advertisers who have multiple objectives in

seeking to place advertisements. Some advertisers want to develop

their brand, some seek to make sales, and yet others advertise for

defensive purposes on specific keywords central to their business.

Some have budget constraints, while others are willing to spend as

40

much as it takes to achieve their goal. Some seek to obtain many

clicks and eyeballs, yet others attempt to optimize their return on

investment. So, in general, advertisers are of varied types [22].

• The second party is the auctioneer, in this case, the search engine.

The search engines have to balance many needs. They must maintain

useful search results and have advertisements enhance, rather than

interfere with, the search experience. They need to make sure the

advertisers get their needs fulfilled, and at the same time ensure that

the market the advertisers participate in is efficient and conducive to

business.

• The third party is perhaps the most important in the game: these are

search users. Users come to search engines for information and

pointers. In addition, they also come to discover shopping

opportunities, good deals, and new products. There are millions of

users with different goals and behavior patterns with respect to

advertisements [22].

Ad slot is a premium ad sales platform used by publishers to increase

revenue and significantly reduce cost of sales. The process of choosing

and charging the advertisers is a daunting algorithmic and engineering

task. The search engines typically take in to consideration several

factors including the search key word, the demographics of the user,

41

the frequency of the keyword, as well as the bid, budget and click

through rate of the advertisers for each of these decisions.

We consider the Ad Slot Scheduling problem, where advertisers must

be scheduled to sponsored search slots during a given period of time.

Advertisers specify a budget constraint, as well as a maximum cost per

click, and may not be assigned to more than one slot for a particular

search [5].

 A natural mechanism for Ad Slot Scheduling is the following: Find a

feasible schedule and a set of prices that maximizes revenue, subject

to the bidders’ constraints. It is straightforward to derive a linear

program for this optimization problem, but unfortunately this is not a

truthful mechanism. However, there is a direct truthful mechanism—

the price-setting mechanism that results in the same outcome as an

equilibrium of the revenue-maximizing mechanism.

Jon et al. [5] derive this mechanism (and prove that it is truthful) by

starting with the single-slot case, where two extreme cases have

natural, instructive interpretations. With only bids (and unlimited

budgets), a winner-take-all mechanism works; with only budgets (and

unlimited bids) the clicks are simply divided up in proportion to

budgets. Combining these ideas in the right way results in a natural

descending-price mechanism, where the price (per click) stops at the

point where the bidders who can afford that price have enough budget

to purchase all of the clicks.

42

Generalizing to multiple slots requires understanding the structure of

feasible schedules, even in the special budgets-only case. We solve the

budgets-only case by characterizing the allowable schedules in terms

of the solution (level algorithm) to the problem of Q | pmtn | Cmax. The

difficulty that arises is that the lengths of the jobs in the scheduling

problem actually depend on the price charged. Thus, we in corporate

the scheduling algorithm into a descending-price mechanism, where

the price stops at the point where the scheduling constraints are tight;

at this point a block of slots is allocated at a fixed uniform price

(dividing the clicks equally by budget) and the mechanism iterates.

4.2 Single slot

In this section we consider only one advertising slot with some

number of clicks. As mentioned earlier we consider two cases single

slot with budgets only and single slot with bids and budgets. We

represent the bids as b1,. ... , bn , budgets as B1 ,… , Bn and ' D ' as the

number of clicks.

4.2.1 Single-slot with budgets-only

Our input in this case is a set of budgets B1 ,... , Bn , and consider all

bids as b i=∞ we are supposed to allocate D clicks with no ceiling on

the per-click price. We apply the principle of Proportional sharing

(Proportional Share Scheduling is a type of scheduling which

preallocates certain amount of time to each of the processes). Let

43

 B = ∑i Bi. Now to each bidder i, allocate (Bi / B)D clicks. Set all prices

the same: pi = p = B/D. The mechanism guarantees that each bidder

exactly spends his/her budget, thus no bidder will report Bi
'B i . Now

suppose some bidder reports Bi
'=B i−∆ , for ∆ > 0. Then this bidder is

allocated D(Bi − ∆) / (B − ∆) clicks, which is less than D(Bi / B), since

n > 1 and all Bi > 0 [5] [22].

Example 1: Suppose there are three bidders and D = 100 clicks in a

single slot. Bidder 1 has a budget B1=$25 , bidder 2 has B2 = $15 and

bidder 3 has B3= $10. Allocate the number of clicks to each bidder.

Solution: Let us calculate B = ∑i Bi

B = 25+15+10 = 50.

The price for all bidders is p = B / D = 50 / 100 => 0.5

Allocating the number of clicks for bidder 1 c1 =D *(B1 / B)

c1 = 100 * (25 /50)

c1 = 50 clicks.

Similarly, allocating the number of clicks for bidder 2 c2 =D *(B2 / B)

c2 = 100 * (15 /50)

44

 c2 = 30 clicks.

Allocating the number of clicks for bidder 3 c3 = D *(B3 / B)

 c3 = 100 * (10 /50)

 c3 = 20 clicks.

4.2.2 Single-slot with bids and budgets.

Let us first assume all budgets Bi = ∞. Then, our input amounts to bids

b1 > b2 > . . . >bn. The obvious mechanism is simply to give all the

clicks to the highest bidder. We charge bidder 1 her full price p1 = b1.

A simple argument shows that reporting the truth is a weakly dominant

strategy for this mechanism. The losing bidders cannot gain from

decreasing bi. The winning bidder can lower her price by lowering bi,

but this will not gain her any more clicks, since she is already getting

all D of them. We incorporate the price setting mechanism essentially

the descending price mechanism: the price stops descending when the

bidders willing to pay at that price have enough budget to purchase all

the clicks. We have to be careful at the moment a bidder is added to

the pool of the willing bidders; if this new bidder has a large enough

budget, then suddenly the willing bidders have more than enough

budget to pay for all of the clicks. To compensate, the mechanism

45

decreases this “threshold” bidder’s effective budget until the clicks are

paid for exactly.

Price-Setting (PS) Mechanism (Single Slot with bids and

budgets)

• Assume wlog that b1b2. . .bn≥0 .

• Let k be the first bidder such that bk1≤∑i=1
k B i/D . Compute price

p=min{∑i=1
k Bi /D ,bk } .

• Allocate Bi / p clicks to each i ≤ k −1 . Allocate Bk / p clicks to

bidder k, where B k= pD−∑i=1
k −1 Bi .

Example 2 : Suppose there are four bidders with b1 = $3, b2 = $2,

b3 = $1, b4 = $0.25 and B1 = $20, B2 = $60, B3 = $40, B4 = $5 and

D = 100 clicks. Allocate appropriate clicks based on the price-setting

mechanism.

Solution: In this case b1b2. . .bn≥0

Case 1: Let k=1 be the first bidder and lets check for the condition

bk1≤∑i=1
k B i/D

b11≤∑i=1
1 Bi /100

b2≤20/100

Let us substitute the value of b2 we get 2≤0.2 This condition does

not satisfy.

46

Case 2 :Let k=2 be the first bidder and lets check for the condition

bk1≤∑i=1
k B i/D

b21≤∑i=1
2 Bi /100

b3≤2060/100

Let us substitute the value of b3 we get 1≤0.8 This condition does

not satisfy.

Case 3 :Let k=3 be the first bidder and lets check for the condition

bk1≤∑i=1
k B i /D

b31≤∑i=1
3 Bi/100

b4≤206040/100

Let us substitute the value of b4 we get 0.25≤1.2 This condition

satisfies.

Running the PS mechanism we get k = 3

The price is then set as p=min {∑i=1
k Bi /D ,bk }

p=min {∑i=1
3 Bi /D ,b3}

p=min {
206040

100
,1}

p=1

Allocating Bi / p clicks to each i≤k−1 we get i≤2as k=3

When i=1 ; 20/1 => 20 clicks are allocated to bidder 1.

 When i=2 ; 60/1 => 60 clicks are allocated to bidder 2.

47

Remaining clicks are allocated based on B k / p clicks to bidder k,

where Bk= pD−∑i=1
k −1 Bi as per the price setting mechanism.

B k= pD−∑i=1
k −1 Bi Here k=3 , p=1, and D=100

Hence B3=1∗100−2060 we get B3=20

Therefore bidder 1 gets 20 clicks, bidder 2 gets 60 clicks and bidder 3

gets 20 clicks and only $20 of bidder 3 budget is used. There is no

threshold bidder.

4.3 Multiple Slots

Generalizing to multiple slots makes the scheduling constraint

nontrivial. Now instead of splitting a pool of D clicks arbitrarily, we

need to assign clicks that correspond to a feasible schedule of bidders

to slots. The conditions under which this is possible add a complexity

that needs to be incorporated into the mechanism.

As in the single-slot case it will be instructive to consider first the cases

of infinite bids or budgets. Suppose all Bi=∞ . In this case, the input

consists of bids only b1b2. . .bn . Naturally, what we do here is rank

by bid, and allocate the slots to the bidders in that order. Since each

48

budget is infinite, we can always set the prices p i equal to the bids

b i . By the same logic as in the single-slot case, this is easily seen to

be truthful. In the other case, when b i=∞ , there is a lot more work to

do.

Without loss of generality, we may assume the number of slots equals

the number of bids (i.e., n′ = n); if this is not the case, then we add

dummy bidders with Bi=b i=0 , or dummy slots with Di=0 , as

appropriate.

Assigning slots using a classical scheduling algorithm:

First we give an important lemma that characterizes the conditions

under which a set of bidders can be allocated to a set of slots, which

turns out to be just a restatement of a classical result from scheduling

theory.

Lemma 1 [5][22] : Suppose we would like to assign an arbitrary set {1,

. . . , k} of bidders to a set of slots {1, . . . , k} with D1 . ..D k . Then,

a click allocation c1 ≥ . ..≥c k is feasible iff

c1. . .ck ≤ D 1. . .D k for all l=1,... , k.

Proof: In scheduling theory, we say a job with service requirement x

is a task that needs x/s units of time to complete on a machine with

speed s. The question of whether there is a feasible allocation is

equivalent to the following scheduling problem: Given k jobs with

service requirements xi=ci , and k machines with speeds si=Di ,

49

there a schedule of jobs to machines (with preemption allowed) that

completes in one unit of time ?

As shown in Chapter 3 the optimal schedule for this problem

(a.k.a. Q | pmtn | Cmax) can be found efficiently by the level

algorithm,Level algorithm and the schedule completes in time

max l ≤ k ∑i=1
l x i/∑i=1

l si . Thus, the conditions of the lemma are exactly the

conditions under which the schedule completes in one unit of time.

4.3.1 Multiple-Slot Budgets-only

This mechanism is roughly a Descending-price mechanism where we

decrease the price until a prefix of budgets fits tightly into a prefix of

positions at that price, where upon we allocate that prefix, and

continue to decrease the price for the remaining bidders. More

formally, it can be written as follows [5] [22]:

Price-Setting Mechanism (Multiple Slots, Budgets Only)

• If all Di=0 , assign bidders to slots arbitrarily and exit.

• Sort the bidders by budget and assume wlog that B1 ≥ B2 ≥ ...≥ Bn .

• Define r l=∑i=1
l B i /∑i=1

l Di . Set price p=maxl rl .

• Let l∗ be the largest l such that r l= p . Allocate slots {1, . . . l∗}

to bidders {1, . . . l∗} at price p, using all of their budgets; i.e.,

c i=Bi / p .

• Repeat the steps above on the remaining bidders and slots until all

slots are allocated.

50

Example of Multiple-Slot with Budgets-only :

Suppose there are four bidders A,B,C and D with B1 = $80, B2 = $70,

B3 = $20, B4 = $1 and D1 = 100, D2 = 50, D3 = 25, and D4 =0. Allocate

appropriate clicks based on the price-setting mechanism for multiple

slots with budgets-only.

Solution: In the example Di≠0 so we cannot assign bidders to slot

arbitrarily and exit.

We then sort the bidders by budget , but we do not need to sort as

they are already sorted in the order B1 ≥ B2 ≥ ...≥ Bn

For l=1 r l=∑i=1
l B i /∑i=1

l Di the value of r 1=80 /100 Therefore

r 1=0.8

51

For l=2 r l=∑i=1
l B i /∑i=1

l Di the value of r 2=[8070/10050 ]

Therefore r 2=1

For l=3 r l=∑i=1
l B i /∑i=1

l Di the value of r 3=[807020 / 1005025]

Therefore r 3=0.971

For l=4 r l=∑i=1
l B i /∑i=1

l Di the value of r 4=[8070201/ 1005025]

Therefore r 4=0.977

Here l∗ =2 since the largest values among r is r2

Allocate slots {1, .. .2} to bidders {1, .. .2} at a price p=1 , using all of

their budgets; i.e., ci=B i/ p

 c1=B1/ p Therefore the no. of clicks c1=80 /1 => c1=80

Similarly c2=B2/ p Therefore the no. of clicks c2=70 /1 => c2=70

We similarly repeat the above steps on the remaining bidders and slots

until all slots are allocated.

In the second price block, we get B3/D3=20 /25 and

B3B4/D3D4=21/25 . Thus p2 is set to 21/25 = $0.84,

Bidder 3 gets 500/21 (approx 24) clicks and bidder 4 gets 25/21

(approximately 1) click, using the schedule as shown.

52

4.3.2 Multiple-Slots with bids and budgets

The generalization of the multiple slot price setting mechanism to use

both bids and budgets combines the ideas from the bids and-budgets

version of the single slot mechanism with the budgets-only version of

the multiple-slot mechanism. As our price descends, we maintain a set

of “active” bidders with bids at or above this price, as in the single-slot

mechanism. These active bidders are kept ranked by budget, and

when the price reaches the point where a prefix of bidders fits into a

prefix of slots (as in the budgets-only mechanism) we allocate them

and repeat. As in the single-slot case, we must be careful when a

bidder enters the active set and suddenly causes an over-fit; in this

case we again reduce the budget of this “threshold” bidder until it fits

[5][22].

Price-setting Mechanism (Multiple slot with Bids and Budgets)

• Assume wlog that b1b2...bn=0.

• Let k be the first bidder such that running price-setting mechanism

on bidders 1,. ..k .would result in a price p≥bk1 .

• Reduce Bk until running price-setting mechanism on bidders

1,. .. , k would result in a price p≤bk . Apply this allocation, which for

some g l∗ ≤k ives the first l∗ slots to the l∗ bidders among

1,. .. , k with the largest budgets.

 • Repeat the above steps on the remaining bidders and slots until all

slots are allocated.

53

Example for multiple-slots with bids and budgets.

Suppose there are four bidders A,B,C and D with B1 = $80, B2 = $70,

B3 = $20, B4 = $1 and D1 = 100, D2 = 50, D3 = 25, and D4 =0 . Bids are

also assigned for each bidder b1 = $3 , b2 = $0.75, b3 = $1, b4 = $0.50.

Allocate appropriate clicks based on the price-setting mechanism for

multiple slots with bids and budgets.

Solution : As per the assumption of w log we are supposed to have

b1b2...bn=0.

We first re arrange the bids which leads to b2 = $1, b3 = $0.75.

Running Price-Block mechanism on only bidder 1 gives a price of

r1=80 /100 ,

0.8 which is less than the next bid of $1.

So, we re-run Price-Block mechanism on bidders 1 and 3 (the next-

highest bid), giving r1=80 /100 and r2=100 /150 .

We still get a price of $0.80, but now this is more than the next-highest

bid of $0.75, so we allocate the first bidder to the first slot at a price of

$0.80. We are left with bidders 2-4 and slots 2-4. With just bidder 3

(the highest bidder) and slot 2, we get a price p = 20/50 => 0.4

0.4 which is less than the next-highest bid of $0.75, so we consider

bidders 2 and 3 on slots 2 and 3.

This gives a price of max{70/50, 90/75} = $1.40, which is more than

$0.50. Since this is also more than $0.75, we must lower B2 until

the price is exactly $0.75, which makes B2 = $36.25.

54

With this setting of B2 , Price setting allocates bidders 2 and 3 to slots

2 and 3, giving 75(36.25/56.25) and 75(20/56.25) clicks respectively,

at a price of $0.75 per click.

Bidder 4 is allocated to slot 4, receiving zero clicks.

Note that by the same logic as the budgets-only mechanism, the prices

p1 , p2 , . .. for each price block strictly decreases.

55

 CHAPTER 5

CONCLUSION AND FUTURE WORK

In this paper we studied the types of parallel machines in particular we

have illustrated examples pertaining to uniform parallel machines and

its application in the real world. We have performed various

experiments based on the level algorithm and have tried to present

the behavior of jobs based on the speeds of machines. When the

speeds relating to the machines and processing times were considered

to be in a harmonic progression the completion time of all jobs was

same.

We have presented a existing mechanism that involves assigning of

bidders to the slots based on the classical result from scheduling

theory to characterize the possible allocations. The algorithmic

approach was taken in to consideration when allocation of ad slots was

done based on the level algorithm which is polynomially solvable. As

bidders get added in price setting mechanism, maintaining a sorted list

of bidders and budgets can be done in time O(n log n). Thus it

remains to show that it can be done in O(n) time given these sorted

lists. Computing the ratios rl and allocation can also be done in linear

time.

This thesis focuses on technical preview of ad slot scheduling in

generating a maximum revenue based on bidders, budgets and slots.

56

 But there could also be many constraints that could improve the

quality, efficiency and revenue of the ad slot system which include

user click behavior, number and size of slots, advertiser weights.

Bidders can be provided with incentives like payment schemes,

refunds and cancellations. An additional aspect of the problem from

the auctioneer’s perspective is how to target ads, that is, how to

choose the keywords from the surrounding context. Consequently, the

the resulting algorithmic approach to revenue maximizing of ad slot

scheduling is more intricate and largely unexplored.

57

BIBLIOGRAPHY

1. Anis Gharbi., Exact Algorithms for Scheduling Parallel Machines with

Heads and Tails.

2. Peter Brucker., Scheduling algorithms. Fifth edition. Springer-Verlag,

Guildford, Surrey: 2004.

3. Martin Gairing, Burkhard Monien, and Andreas Woclaw., A Faster

Combinatorial Approximation Algorithm for Scheduling Unrelated

Parallel Machines.

4. Zhi-Long Chen., Department of Systems Engineering, University of

Pennsylvania Philadelphia, PA 19104-6315. Solving Parallel Machines

Scheduling Problems by Column generation.

5. Jon Feldman, S. Muthukrishnan, Evdokia Nikolova, and Martin Pal., A

Truthful Mechanism for Offline Ad Slot Scheduling.

6. J.K Lenstra, A.H.G Rinnoy Kan., An introduction to multi-processor

scheduling.

7. Joseph Y-T. Leung., Handbook of scheduling: algorithms, models,

and performance analysis, Chapter 3 and Chapter 9.

8. E. L. Lawler (1979 a)., Preemptive scheduling of uniform parallel

machines to minimize the weighted number of late jobs, Report BW

105, Center for Mathematics and Computer Science, Amsterdam,

Netherlands, 1979.

58

9. Cheng and Sin (1990)., Parallel Machine Scheduling.

10. Chen, Potts and Woeginger (1998)., A review of Machine

scheduling.

11. Wenxun Xing, Jiawei Zhang., Parallel machine scheduling with

splitting jobs.Discrete Applied Mathematics 103 (2000) 259–269.

12. Tom Ebenlendr, Ji Sgall., Semi-Online Preemptive Scheduling: One

Algorithm for All Variants.

13. Lirong Xia, Vincent Conitzer, Ariel D.Procaccia., A scheduling

approach to coalitional manipulation, Proceedings of the 11th ACM

conference on Electronic commerce, June 07-11, 2010, Cambridge,

Massachusetts, USA.

 [doi>10.1145/1807342.1807386]

14. Dell Amico, M. and Martello S., Optimal scheduling of tasks on

identical parallel processors, ORSA Journal on Computing 7 (1995),

191–200.

15. Horvath, E.C., Lam, S., and Sethi, R., A level algorithm for

preemptive scheduling, Journal of the ACM 24 (1977), 32–43.

16. Gonzalez, T. and Sahni, S., Preemptive scheduling of uniform

processor systems, Journal of the ACM 25 (1978), 92–101.

17. Lawler, E.L. and Labetoulle, J., On preemptive scheduling of

unrelated parallel processors by linear programming, Journal of the

ACM 25 (1978), 612–619.

59

18. McNaughton., R Scheduling with deadlines loss functions Manage

Sct 12, 1 (Oct 1959), 1-12.

19. Muntz, R R, and Coffman, E G JR., Optimal preemptive scheduling

on two-processor systems IEEE Trans Computers C-18, 11 (Nov 1969),

1014-1020.

20. Muntz, R R, and Coffman, E G JR., Preemptive scheduling of real

Ume tasks on multiprocessor systems J ACM 17, 2 (April 1970), 324-

338.

21. Oliver Braun and Günter Schmidt., Parallel processor scheduling

with limited number of preemptions.

22. Jon Feldman, S. Muthukrishnan., Algorithmic Methods for

Sponsored Search Advertising, Performance Modeling and Engineering

(Proc. SIGMETRICS 2008 Tutorial Sessions),pp.91-124.

[www1.cs.columbia.edu]

23. Gagan Aggarwal, Jon Feldman, Martin Pal, S. Muthukrishnan.,

Sponsored Search Auctions for Markovian Users, Fourth Workshop on

Ad Auctions; Workshop on Internet and Network Economics (WINE).,

2008.

24. Ashish Goel, Mohammad Mahdian, Hamid Nazerzadeh, Amin

Saberi., Advertisement Allocation for Generalized Second Pricing

Schemes.

60

http://www1.cs.columbia.edu/~sigmet08/tutorials.html

25. Benjamin Edelman, Michael Ostrovsky, Michael Schwarz, Thank

Drew Fudenberg, Louis Kaplow, Robin Lee, Paul Milgrom, Muriel

Niederle, Ariel Pakes., Internet Advertising and the Generalized Second

Price Auction: Selling Billions of Dollars Worth of Keywords (2005).

26.Gagan Aggarwal, S. Muthukrishnan, David Pal, Martin Pal., General

auction mechanism for search advertising, Proceedings of the 18th

international conference on World wide web, April 20-24, 2009, Madrid,

Spain. [doi>10.1145/1526709.1526742]

27. Noam Nisan., Algorithmic Game Theory, Chapter 28.

28. Equation of a line., http://www.webmath.com/equline1.html ;

29. Plotting Graphs., http://graph.seriesmathstudy.com/

61

http://www.webmath.com/equline1.html
http://www.webmath.com/equline1.html
http://www.webmath.com/equline1.html
http://doi.acm.org/10.1145/1526709.1526742

VITA

Graduate College

University of Nevada, Las Vegas

Shaista Lubna

Degrees:

Bachelor of Engineering, Computer Science and Information

Technology, 2006

JNTU University

Master of Science, Computer Science, 2011

University of Nevada, Las Vegas

Thesis Title: Parallel Machines scheduling with applications to Internet

ad-slot placement.

Thesis Examination Committee:

Chairperson, Dr. Wolfgang Bein, Ph.D.

Committee Member, Dr. Ajoy K Datta, Ph.D.

Committee Member, Dr. Lawrence Larmore, Ph.D

Graduate College Representative, Dr. Emma Regentova, Ph.D

62

	Parallel machines scheduling with applications to Internet ad-slot placement
	Repository Citation

	LIST OF FIGURES

